1
|
França VLB, Bezerra EM, da Costa RF, Carvalho HF, Freire VN, Matos G. Alzheimer's Disease Immunotherapy and Mimetic Peptide Design for Drug Development: Mutation Screening, Molecular Dynamics, and a Quantum Biochemistry Approach Focusing on Aducanumab::Aβ2-7 Binding Affinity. ACS Chem Neurosci 2024; 15:3543-3562. [PMID: 39302203 PMCID: PMC11450751 DOI: 10.1021/acschemneuro.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Seven treatments are approved for Alzheimer's disease, but five of them only relieve symptoms and do not alter the course of the disease. Aducanumab (Adu) and lecanemab are novel disease-modifying antiamyloid-β (Aβ) human monoclonal antibodies that specifically target the pathophysiology of Alzheimer's disease (AD) and were recently approved for its treatment. However, their administration is associated with serious side effects, and their use is limited to early stages of the disease. Therefore, drug discovery remains of great importance in AD research. To gain new insights into the development of novel drugs for Alzheimer's disease, a combination of techniques was employed, including mutation screening, molecular dynamics, and quantum biochemistry. These were used to outline the interfacial interactions of the Aducanumab::Aβ2-7 complex. Our analysis identified critical stabilizing contacts, revealing up to 40% variation in the affinity of the Adu chains for Aβ2-7 depending on the conformation outlined. Remarkably, two complementarity determining regions (CDRs) of the Adu heavy chain (HCDR3 and HCDR2) and one CDR of the Adu light chain (LCDR3) accounted for approximately 77% of the affinity of Adu for Aβ2-7, confirming their critical role in epitope recognition. A single mutation, originally reported to have the potential to increase the affinity of Adu for Aβ2-7, was shown to decrease its structural stability without increasing the overall binding affinity. Mimetic peptides that have the potential to inhibit Aβ aggregation were designed by using computational outcomes. Our results support the use of these peptides as promising drugs with great potential as inhibitors of Aβ aggregation.
Collapse
Affiliation(s)
- Victor L. B. França
- Department
of Physiology and Pharmacology, Federal
University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| | - Eveline M. Bezerra
- Department
of Sciences, Mathematics and Statistics, Federal Rural University of Semi-Arid (UFERSA), 59625-900 Mossoró, RN, Brazil
| | - Roner F. da Costa
- Department
of Sciences, Mathematics and Statistics, Federal Rural University of Semi-Arid (UFERSA), 59625-900 Mossoró, RN, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-864 Campinas, São
Paulo, Brazil
| | - Valder N. Freire
- Department
of Physics, Federal University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| | - Geanne Matos
- Department
of Physiology and Pharmacology, Federal
University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| |
Collapse
|
2
|
Saad EE, Michel R, Borahay MA. Cholesterol and Immune Microenvironment: Path Towards Tumorigenesis. Curr Nutr Rep 2024; 13:557-565. [PMID: 38696074 DOI: 10.1007/s13668-024-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF REVIEW Since obesity is a major risk factor for many different types of cancer, examining one of the most closely associated comorbidities, such as hypercholesterolemia, is crucial to understanding how obesity causes cancer. Hypercholesterolemia is usually associated with many cardiovascular complications such as hypertension, angina, and atherosclerosis. In addition, cholesterol may be a major factor in increasing cancer risk. Cancer patients who received statins, an anti-hypercholesteremic medicine, demonstrated improved prognosis possibly through its effect on tumor proliferation, apoptosis, and oxidative stress. Cholesterol could also aid in tumor progression through reprogramming tumor immunological architecture and mediators. This review focuses on the immunomodulatory role of cholesterol on cellular and molecular levels, which may explain its oncogenic driving activity. We look at how cholesterol modulates tumor immune cells like dendritic cells, T cells, Tregs, and neutrophils. Further, this study sheds light on the modification of the expression pattern of the common cancer-related immune mediators in the tumor immune microenvironment, such as programmed cell death 1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), transforming growth factor-beta (TGF-β), interleukin 12 (IL-12), IL-23, and forkhead box protein P3 (FOXP3). RECENT FINDINGS We highlight relevant literature demonstrating cholesterol's immunosuppressive role, leading to a worse cancer prognosis. This review invites further research regarding the pathobiological role of cholesterol in many obesity-related cancers such as uterine fibroids, post-menopausal breast, colorectal, endometrial, kidney, esophageal, pancreatic, liver, and gallbladder cancers. This review suggests that targeting cholesterol synthesis may be a fruitful approach to cancer targeting, in addition to traditional chemotherapeutics.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Paravati MR, Procopio AC, Milanović M, Scarlata GGM, Milošević N, Ružić M, Milić N, Abenavoli L. Onion Polyphenols as Multi-Target-Directed Ligands in MASLD: A Preliminary Molecular Docking Study. Nutrients 2024; 16:1226. [PMID: 38674916 PMCID: PMC11054911 DOI: 10.3390/nu16081226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
A sedentary lifestyle associated with unregulated diets rich in high-calorie foods have contributed to the great prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) latterly, with up to 60% in the high-risk population and 25% in the general population. The absence of specific pharmacological strategies for this syndrome represents one of the major problems in the management of MASLD patients. Lifestyle interventions and adherence to a healthy diet are the main cornerstones of current therapies. The identification of nutraceuticals useful in the treatment of MASLD appears to be one of the most promising strategies for the development of new effective and safe treatments for this disease. The onion, one of the most widely studied foods in the field of nutraceuticals, serves as an inexhaustible reservoir of potent compounds with various beneficial effects. The following preliminary study analyzes, mediating in silico studies, the iteration of a library of typical onion compounds with 3-hydroxy-3-methylglutaryl-coenzyme A reductase, liver receptors X α and β, as well as peroxisome proliferator-activated receptors α and γ. In this study, for the first time promising smart molecules from the onion that could have a beneficial action in MASLD patients were identified.
Collapse
Affiliation(s)
- Maria Rosaria Paravati
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (A.C.P.); (G.G.M.S.)
| | - Anna Caterina Procopio
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (A.C.P.); (G.G.M.S.)
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.M.); (N.M.); (N.M.)
| | | | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.M.); (N.M.); (N.M.)
| | - Maja Ružić
- Faculty of Medicine, University of Novi Sad, Clinic for Infectious Diseases, University Clinical Centre of Vojvodina, Hajduk Veljkova 1, 21000 Novi Sad, Serbia;
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.M.); (N.M.); (N.M.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (A.C.P.); (G.G.M.S.)
| |
Collapse
|
4
|
Lima Neto JX, Bezerra KS, Barbosa ED, Araujo RL, Galvão DS, Lyra ML, Oliveira JIN, Akash S, Jardan YAB, Nafidi HA, Bourhia M, Fulco UL. Investigation of protein-protein interactions and hotspot region on the NSP7-NSP8 binding site in NSP12 of SARS-CoV-2. Front Mol Biosci 2024; 10:1325588. [PMID: 38304231 PMCID: PMC10830813 DOI: 10.3389/fmolb.2023.1325588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Background: The RNA-dependent RNA polymerase (RdRp) complex, essential in viral transcription and replication, is a key target for antiviral therapeutics. The core unit of RdRp comprises the nonstructural protein NSP12, with NSP7 and two copies of NSP8 (NSP81 and NSP82) binding to NSP12 to enhance its affinity for viral RNA and polymerase activity. Notably, the interfaces between these subunits are highly conserved, simplifying the design of molecules that can disrupt their interaction. Methods: We conducted a detailed quantum biochemical analysis to characterize the interactions within the NSP12-NSP7, NSP12-NSP81, and NSP12-NSP82 dimers. Our objective was to ascertain the contribution of individual amino acids to these protein-protein interactions, pinpointing hotspot regions crucial for complex stability. Results: The analysis revealed that the NSP12-NSP81 complex possessed the highest total interaction energy (TIE), with 14 pairs of residues demonstrating significant energetic contributions. In contrast, the NSP12-NSP7 complex exhibited substantial interactions in 8 residue pairs, while the NSP12-NSP82 complex had only one pair showing notable interaction. The study highlighted the importance of hydrogen bonds and π-alkyl interactions in maintaining these complexes. Intriguingly, introducing the RNA sequence with Remdesivir into the complex resulted in negligible alterations in both interaction energy and geometric configuration. Conclusion: Our comprehensive analysis of the RdRp complex at the protein-protein interface provides invaluable insights into interaction dynamics and energetics. These findings can guide the design of small molecules or peptide/peptidomimetic ligands to disrupt these critical interactions, offering a strategic pathway for developing effective antiviral drugs.
Collapse
Affiliation(s)
- José Xavier Lima Neto
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katyanna Sales Bezerra
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Roniel Lima Araujo
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
5
|
Coelho MM, Bezerra EM, da Costa RF, de Alvarenga ÉC, Freire VN, Carvalho CR, Pessoa C, Albuquerque EL, Costa RA. In silico description of the adsorption of cell signaling pathway proteins ovalbumin, glutathione, LC3, TLR4, ASC PYCARD, PI3K and NF-Kβ on 7.0 nm gold nanoparticles: obtaining their Lennard-Jones-like potentials through docking and molecular mechanics. RSC Adv 2023; 13:35493-35499. [PMID: 38058560 PMCID: PMC10697183 DOI: 10.1039/d3ra06180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023] Open
Abstract
The impact of vaccination on the world's population is difficult to calculate. For developing different types of vaccines, adjuvants are substances added to vaccines to increase the magnitude and durability of the immune response and the effectiveness of the vaccine. This work explores the potential use of spherical gold nanoparticles (AuNPs) as adjuvants. Thus, we employed docking techniques and molecular mechanics to describe how a AuNP 7.0 nm in diameter interacts with cell signaling pathway proteins. Initially, we used X-ray crystallization data of the proteins ovalbumin, glutathione, LC3, TLR4, ASC PYCARD, PI3K, and NF-Kβ to study the adsorption with an AuNP through molecular docking. Therefore, interaction energies were obtained for the AuNP complexes and individual proteins, as well as the AuNP and OVA complex (AuNP@OVA) with each cellular protein, respectively. Results showed that AuNPs had the highest affinity for OVA individually, followed by glutathione, ASC PYCARD domain, LC3, PI3K, NF-Kβ, and TLR4. Furthermore, when evaluating the AuNP@OVA complex, glutathione showed a greater affinity with more potent interaction energy when compared to the other studied systems.
Collapse
Affiliation(s)
- Monique M Coelho
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG) Belo Horizonte MG CEP 31270-910 Brazil
| | - Eveline M Bezerra
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) Mossoró RN CEP 59625-900 Brazil
| | - Roner F da Costa
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) Mossoró RN CEP 59625-900 Brazil
- Departamento de Ciências, Matemática e Estatística, Universidade Federal Rural do Semi-Árido (UFERSA) Mossoró RN CEP 59625-900 Brazil
| | - Érika C de Alvarenga
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
| | - Valder N Freire
- Departamento de Física, Universidade Federal do Ceará (UFC) Fortaleza CE 60455-760 Brazil
| | - Cláudia R Carvalho
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG) Belo Horizonte MG CEP 31270-910 Brazil
| | - Claudia Pessoa
- Programa de Pós-Graduação em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO, ), Universidade Federal do Ceará (UFC) Fortaleza CE CEP 60020-181 Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte (UFRN) Natal RN CEP 59064-741 Brazil
| | - Raquel A Costa
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
| |
Collapse
|
6
|
Abd Rahman IZ, Nor Hisam NS, Aminuddin A, Hamid AA, Kumar J, Ugusman A. Evaluating the Potential of Plukenetia volubilis Linneo (Sacha Inchi) in Alleviating Cardiovascular Disease Risk Factors: A Mini Review. Pharmaceuticals (Basel) 2023; 16:1588. [PMID: 38004453 PMCID: PMC10675584 DOI: 10.3390/ph16111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Plukenetia volubilis Linneo or Sacha Inchi (SI), a traditional natural remedy indigenous to Peru and Brazil, has garnered global attention due to its exceptional nutritional composition. Its protective effects against various non-communicable diseases, notably cardiovascular disease (CVD), have become a subject of interest in recent research. This comprehensive review summarizes the existing evidence from 15 relevant articles concerning the impact of SI on common CVD risk factors, including dyslipidemia, obesity, diabetes, and hypertension. The relevant articles were derived from comprehensive searches on PubMed, Scopus, Google Scholar, and Web of Science using predefined criteria and keywords related to the topic. Overall, SI demonstrated positive effects in attenuating dyslipidemia, obesity, diabetes, and hypertension. The multifaceted mechanisms responsible for the protective effects of SI against these CVD risk factors are primarily attributed to its antioxidative and anti-inflammatory properties. While preclinical studies dominate the current scientific literature on SI, there are limited clinical trials to corroborate these findings. Therefore, future well-designed, large-scale randomized clinical trials are highly recommended to establish the efficacy of SI and determine its optimal dosage, potential drug and food interactions, and practical integration into preventive strategies and dietary interventions for the high-risk populations.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (N.S.N.H.); (A.A.H.); (J.K.)
| | - Nur Syahidah Nor Hisam
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (N.S.N.H.); (A.A.H.); (J.K.)
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (N.S.N.H.); (A.A.H.); (J.K.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (N.S.N.H.); (A.A.H.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (N.S.N.H.); (A.A.H.); (J.K.)
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (N.S.N.H.); (A.A.H.); (J.K.)
| |
Collapse
|
7
|
Bezerra EM, de Alvarenga ÉC, dos Santos RP, de Sousa JS, Fulco UL, Freire VN, Albuquerque EL, da Costa RF. Losartan as an ACE inhibitor: a description of the mechanism of action through quantum biochemistry. RSC Adv 2022; 12:28395-28404. [PMID: 36320533 PMCID: PMC9533318 DOI: 10.1039/d2ra04340h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Losartan (LST) is a potent and selective angiotensin II (Ang II) type 1 (AT1) receptor antagonist widely used in the treatment of hypertension. The formation of Ang II is catalyzed by the angiotensin I-converting enzyme (ACE) through proteolytic cleavage of angiotensin I (Ang I), which is involved in the control of blood pressure. Despite the vast literature on the relationship of losartan with the renin-angiotensin system (RAS), the actions of losartan on the sACE enzyme are so far poorly understood. In view of this, we investigated how losartan can interact with the sACE enzyme to block its activity and intracellular signaling. After performing docking assays following quantum biochemistry calculations using losartan and sACE crystallographic data, we report that their interaction results reveal a new mechanism of action with important implications for understanding its effects on hypertension.
Collapse
Affiliation(s)
- Eveline M. Bezerra
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPgCEM), Universidade Federal Rural do Semi-Árido (UFERSA)CEP 59625-900MossoróRNBrazil,Departamento de Física, Universidade Federal do Ceará (UFC)CEP 60440-900FortalezaCEBrazil
| | - Érika C. de Alvarenga
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ)CEP 36307-352São João del-ReiMGBrazil
| | - Ricardo P. dos Santos
- Engenharia da Computação, Universidade Federal do Ceará (UFC)CEP 62010-560SobralCEBrazil
| | - Jeanlex S. de Sousa
- Departamento de Física, Universidade Federal do Ceará (UFC)CEP 60440-900FortalezaCEBrazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte (UFRN)CEP 59064-741NatalRNBrazil
| | - Valder N. Freire
- Departamento de Física, Universidade Federal do Ceará (UFC)CEP 60440-900FortalezaCEBrazil
| | - Eudenilson L. Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte (UFRN)CEP 59064-741NatalRNBrazil
| | - Roner F. da Costa
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPgCEM), Universidade Federal Rural do Semi-Árido (UFERSA)CEP 59625-900MossoróRNBrazil
| |
Collapse
|
8
|
Dutkiewicz Z. Computational methods for calculation of protein-ligand binding affinities in structure-based drug design. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Drug design is an expensive and time-consuming process. Any method that allows reducing the time the costs of the drug development project can have great practical value for the pharmaceutical industry. In structure-based drug design, affinity prediction methods are of great importance. The majority of methods used to predict binding free energy in protein-ligand complexes use molecular mechanics methods. However, many limitations of these methods in describing interactions exist. An attempt to go beyond these limits is the application of quantum-mechanical description for all or only part of the analyzed system. However, the extensive use of quantum mechanical (QM) approaches in drug discovery is still a demanding challenge. This chapter briefly reviews selected methods used to calculate protein-ligand binding affinity applied in virtual screening (VS), rescoring of docked poses, and lead optimization stage, including QM methods based on molecular simulations.
Collapse
Affiliation(s)
- Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs , Poznan University of Medical Sciences , ul. Grunwaldzka 6 , 60-780 Poznań , Poznan , 60-780, Poland
| |
Collapse
|
9
|
França VLB, Amaral JL, Martins YA, Caetano EWS, Brunaldi K, Freire VN. Characterization of the binding interaction between atrazine and human serum albumin: Fluorescence spectroscopy, molecular dynamics and quantum biochemistry. Chem Biol Interact 2022; 366:110130. [PMID: 36037875 DOI: 10.1016/j.cbi.2022.110130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
Atrazine (ATR), one of the most used herbicides worldwide, causes persistent contamination of water and soil due to its high resistance to degradation. ATR is associated with low fertility and increased risk of prostate cancer in humans, as well as birth defects, low birth weight and premature delivery. Describing ATR binding to human serum albumin (HSA) is clinically relevant to future studies about pharmacokinetics, pharmacodynamics and toxicity of ATR, as albumin is the most abundant carrier protein in plasma and binds important small biological molecules. In this work we characterize, for the first time, the binding of ATR to HSA by using fluorescence spectroscopy and performing simulations using molecular docking, classical molecular dynamics and quantum biochemistry based on density functional theory (DFT). We determine the most likely binding sites of ATR to HSA, highlighting the fatty acid binding site FA8 (located between subdomains IA-IB-IIA and IIB-IIIA-IIIB) as the most important one, and evaluate each nearby amino acid residue contribution to the binding interactions explaining the fluorescence quenching due to ATR complexation with HSA. The stabilization of the ATR/FA8 complex was also aided by the interaction between the atrazine ring and SER454 (hydrogen bond) and LEU481(alkyl interaction).
Collapse
Affiliation(s)
- Victor L B França
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Jackson L Amaral
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Yandara A Martins
- Departament of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ewerton W S Caetano
- Federal Institute of Education, Science and Technology of Ceará, Fortaleza, 60040-531, Brazil
| | - Kellen Brunaldi
- Departament of Physiological Sciences, State University of Maringá, Maringá, 87020-900, Brazil.
| | - Valder N Freire
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
10
|
Lima Neto JX, Vieira DS, de Andrade J, Fulco UL. Exploring the Spike-hACE 2 Residue-Residue Interaction in Human Coronaviruses SARS-CoV-2, SARS-CoV, and HCoV-NL63. J Chem Inf Model 2022; 62:2857-2868. [PMID: 35617018 PMCID: PMC9159508 DOI: 10.1021/acs.jcim.1c01544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Coronaviruses (CoVs) have been responsible for three major outbreaks since the beginning of the 21st century, and the emergence of the recent COVID-19 pandemic has resulted in considerable efforts to design new therapies against coronaviruses. Thus, it is crucial to understand the structural features of their major proteins related to the virus-host interaction. Several studies have shown that from the seven known CoV human pathogens, three of them use the human Angiotensin-Converting Enzyme 2 (hACE-2) to mediate their host's cell entry: SARS-CoV-2, SARS-CoV, and HCoV-NL63. Therefore, we employed quantum biochemistry techniques within the density function theory (DFT) framework and the molecular fragmentation with conjugate caps (MFCC) approach to analyze the interactions between the hACE-2 and the spike protein-RBD of the three CoVs in order to map the hot-spot residues that form the recognition surface for these complexes and define the similarities and differences in the interaction scenario. The total interaction energy evaluated showed a good agreement with the experimental binding affinity order: SARS-2 > SARS > NL63. A detailed investigation revealed the energetically most relevant regions of hACE-2 and the spike protein for each complex, as well as the key residue-residue interactions. Our results provide valuable information to deeply understand the structural behavior and binding site characteristics that could help to develop antiviral therapeutics that inhibit protein-protein interactions between CoVs S protein and hACE-2.
Collapse
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia,
Universidade Federal do Rio Grande do Norte, 59072-970
Natal-RN, Brazil
| | - Davi S. Vieira
- Instituto de Química, Universidade
Federal do Rio Grande do Norte, 59072-970 Natal-RN,
Brazil
| | - Jones de Andrade
- Department of Physical Chemistry,
Universidade Federal do Rio Grande do Sul, 91501-970 Porto
Alegre-RS, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia,
Universidade Federal do Rio Grande do Norte, 59072-970
Natal-RN, Brazil
| |
Collapse
|
11
|
Zhou Y, Jiang Y, Chen SJ. RNA-ligand molecular docking: advances and challenges. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1571. [PMID: 37293430 PMCID: PMC10250017 DOI: 10.1002/wcms.1571] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
With rapid advances in computer algorithms and hardware, fast and accurate virtual screening has led to a drastic acceleration in selecting potent small molecules as drug candidates. Computational modeling of RNA-small molecule interactions has become an indispensable tool for RNA-targeted drug discovery. The current models for RNA-ligand binding have mainly focused on the docking-and-scoring method. Accurate docking and scoring should tackle four crucial problems: (1) conformational flexibility of ligand, (2) conformational flexibility of RNA, (3) efficient sampling of binding sites and binding poses, and (4) accurate scoring of different binding modes. Moreover, compared with the problem of protein-ligand docking, predicting ligand binding to RNA, a negatively charged polymer, is further complicated by additional effects such as metal ion effects. Thermodynamic models based on physics-based and knowledge-based scoring functions have shown highly encouraging success in predicting ligand binding poses and binding affinities. Recently, kinetic models for ligand binding have further suggested that including dissociation kinetics (residence time) in ligand docking would result in improved performance in estimating in vivo drug efficacy. More recently, the rise of deep-learning approaches has led to new tools for predicting RNA-small molecule binding. In this review, we present an overview of the recently developed computational methods for RNA-ligand docking and their advantages and disadvantages.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Yangwei Jiang
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| |
Collapse
|
12
|
Barbosa ED, Lima Neto JX, Bezerra KS, Oliveira JIN, Machado LD, Fulco UL. Quantum Biochemical Investigation of Lys49-PLA 2 from Bothrops moojeni. J Phys Chem B 2021; 125:12972-12980. [PMID: 34793159 DOI: 10.1021/acs.jpcb.1c07298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Envenomation via snakebites occurs largely in areas where it is harder to access the hospital. Its mortality rate and sequelae acquired by the survivors symbolize a big challenge for antivenom therapy. In particular, the homologous phospholipase A2 (Lys49-PLA2) proteins can induce myonecrosis and are not effectively neutralized by current treatments. Thus, by taking advantage of crystallographic structures of Bothrops moojeni Lys49-PLA2 complexed with VRD (varespladib) and AIN (aspirin), a quantum biochemistry study based on the molecular fractionation with conjugate cap scheme within the density functional theory formalism is performed to unveil these complexes' detailed interaction energies. The calculations revealed that important interactions between ligands and the Lys49-PLA2 pocket could occur up to a pocket radius of r = 6.5 (5.0 Å) for VRD (AIN), with the total interaction energy of the VRD ligand being higher than that of the AIN ligand, which is well-correlated with the experimental binding affinity. Furthermore, we have identified the role played by the amino acids LYS0069, LYS0049, LEU0005, ILE0009, CYS0029, GLY0030, HIS0048, PRO0018, ALA0019, CYS0045, TYR0052, TYR0022, PRO0125*, and PHE0126* (LYS0069, LYS0049, GLY0032, LEU0002, and LEU0005) in the VRD↔Lys49-PLA2 (AIN↔Lys49-PLA2) complex. Our simulations are a valuable tool to support the big challenge for neutralizing the damages in victims of snakebites.
Collapse
Affiliation(s)
- E D Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - K S Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - L D Machado
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| |
Collapse
|
13
|
Production and Purification of Novel Hypocholesterolemic Peptides from Lactic Fermented Spirulina platensis through High Hydrostatic Pressure-Assisted Protease Hydrolysis. Catalysts 2021. [DOI: 10.3390/catal11080873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This research focuses on the proteolytic capacity of Spirulina platensis and their hypocholesterolemic activity via the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) inhibitory activity. To select suitable proteases for releasing peptides with high HMGR-inhibiting activity from S. platensis, eight commonly used commercial proteases were used in protease hydrolysis under high hydrostatic pressure (HHP, 100 MPa or 0.1 MPa) at 50 °C for 24 h. The Peptidase R group had the highest inhibitory capacity (67%). First, S. platensis was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. This was followed by the addition of Peptidase R under high hydrostatic pressure (100 MPa at 50 °C) for 0–6 h of enzymatic hydrolysis (HHP-FH-PR6) to determine the hydrolytic capacity of S. platensis protein. As the hydrolysis time extended to 6 h, the peptide content increased from 96.8 mg/mL to 339.8 mg/mL, and the free amino acid content increased from 24 mg/mL to 115.2 mg/mL, while inhibition of HMGR increased from 67.0% to 78.4%. In an experimental simulation of in vitro gastrointestinal digestion, the IC50 of HHP-FH-PR6G on HMGR was 3.5 μg peptide/mL. Peptides with inhibitory activity on HMGR were purified, and their sequences were identified as Arg-Cys-Asp and Ser-Asn-Val (IC50: 6.9 and 20.1 μM, respectively).
Collapse
|
14
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
15
|
Comparison of Transcriptomic Profiles of MiaPaCa-2 Pancreatic Cancer Cells Treated with Different Statins. Molecules 2021; 26:molecules26123528. [PMID: 34207840 PMCID: PMC8226792 DOI: 10.3390/molecules26123528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/24/2023] Open
Abstract
Statins have been widely used for the treatment of hypercholesterolemia due to their ability to inhibit HMG-CoA reductase, the rate-limiting enzyme of de novo cholesterol synthesis, via the so-called mevalonate pathway. However, their inhibitory action also causes depletion of downstream intermediates of the pathway, resulting in the pleiotropic effects of statins, including the beneficial impact in the treatment of cancer. In our study, we compared the effect of all eight existing statins on the expression of genes, the products of which are implicated in cancer inhibition and suggested the molecular mechanisms of their action in epigenetic and posttranslational regulation, and in cell-cycle arrest, death, migration, or invasion of the cancer cells.
Collapse
|
16
|
Gutierrez LLP, Marques CV, Scomazzon SP, Schroeder HT, Fernandes JR, da Silva Rossato J, Homem de Bittencourt PI. A-family anti-inflammatory cyclopentenone prostaglandins: A novel class of non-statin inhibitors of HMG-CoA reductase. Biochimie 2021; 182:37-50. [PMID: 33412161 DOI: 10.1016/j.biochi.2020.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022]
Abstract
Disruption of the intracellular lipid balance leading to cholesterol accumulation is one of the features of cells that participate in the development of atherosclerotic lesions. Evidence form our laboratory indicates that anti-inflammatory cyclopentenone prostaglandins (cyPGs) of A- and J-family deviate lipid metabolism from the synthesis of cholesterol and cholesteryl esters to the synthesis of phospholipids in foam-cell macrophages. cyPGs possessing an α,β-unsaturated cyclopentane ring are highly electrophilic substances able to promptly react with reactive cysteines of intracellular molecules through Michael addition. On the other hand, HMG-CoA reductase (HMGCR), the enzyme responsible for the rate-limiting step in cholesterol biosynthesis, presents critically reactive cysteines at the entry of catalytic domain, particularly Cys561, that could be target of cyPG inhibition. In the present study, we showed that cyPGs (but not other non-α,β-unsaturated PGs) physically interact with HMGCR, in a dithiothreitol- and β-mercaptoethanol-sensitive way, and block the activity of the catalytic subunit of the enzyme (IC50 for PGA2 = 0.17 μM). PGA2 inhibits HMGCR activity in cultured rat and human macrophages/macrophage-foam cells and leads to enhanced expression of HMGCR protein, as observed with statins. In cell culture models, PGA2 effectively inhibits the reductase at non-toxic doses (e.g., 1 μM) that block cell proliferation thus suggesting that part of the well-known antiproliferative effect of PGA2 may be due to its ability of blocking HMGCR activity, as cells cannot proliferate without a robust cholesterogenesis. Therefore, besides the powerfully anti-inflammatory and antiproliferative effects, the anticholesterogenic effects of PGA2 should be exploited in atherosclerosis therapeutics.
Collapse
Affiliation(s)
- Lucila Ludmila Paula Gutierrez
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil; Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Claudia Vieira Marques
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Sofia Pizzato Scomazzon
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - João Roberto Fernandes
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Juliane da Silva Rossato
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
17
|
Farias K, da Costa RF, Meira AS, Diniz-Filho J, Bezerra EM, Freire VN, Guest P, Nikahd M, Ma X, Gardiner MG, Banwell MG, de Oliveira MDCF, de Moraes MO, do Ó Pessoa C. Antitumor Potential of the Isoflavonoids (+)- and (-)-2,3,9-Trimethoxypterocarpan: Mechanism-of-Action Studies. ACS Med Chem Lett 2020; 11:1274-1280. [PMID: 32551011 DOI: 10.1021/acsmedchemlett.0c00097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Synthetically derived samples of (+)-(6aS,11aS)-2,3,9-trimethoxypterocarpan [(+)-1] and its enantiomer [(-)-1], both of which are examples of naturally occurring isoflavonoids, were evaluated, together with the corresponding racemate, as cytotoxic agents against the HL-60, HCT-116, OVCAR-8, and SF-295 tumor cell lines. As a result it was established that compound (+)-1 was particularly active with OVCAR-8 cells being the most sensitive and responding in a dose-dependent manner. A study of cell viability and drug-induced morphological changes revealed the compound causes cell death through a mechanism characteristic of apoptosis. Finally, a computational study of the interactions of compound (+)-1 and (S)-monastrol, an established, synthetically derived, potent, and cell-permeant inhibitor of mitosis, with the kinesin-type protein Eg5 revealed that both bind to this receptor in a similar manner. Significantly, compound (+)-1 binds with greater affinity, an effect attributed to the presence of the associated methoxy groups.
Collapse
Affiliation(s)
- Kaio Farias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Roner F. da Costa
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid Region - UFERSA, Mossoró - RN 59625-900, Brazil
| | - Assuero S. Meira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Jairo Diniz-Filho
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Eveline M. Bezerra
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid Region - UFERSA, Mossoró - RN 59625-900, Brazil
| | - Valder N. Freire
- Department of Physics, Science Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Prue Guest
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Maryam Nikahd
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Xinghua Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael G. Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin G. Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Maria da C. F. de Oliveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Manoel O. de Moraes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| |
Collapse
|
18
|
Zhi B, Mao Y. Vapor-Deposited Nanocoatings for Sustained Zero-Order Release of Antiproliferative Drugs. ACS APPLIED BIO MATERIALS 2020; 3:1088-1096. [DOI: 10.1021/acsabm.9b01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Zhi
- Departments of Biosystems Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yu Mao
- Departments of Biosystems Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
19
|
Morais PA, Maia FF, Solis-Calero C, Caetano EWS, Freire VN, Carvalho HF. The urokinase plasminogen activator binding to its receptor: a quantum biochemistry description within an in/homogeneous dielectric function framework with application to uPA–uPAR peptide inhibitors. Phys Chem Chem Phys 2020; 22:3570-3583. [DOI: 10.1039/c9cp06530j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DFT calculations using the MFCC fragment-based model considering a spatial-dependent dielectric function based on the Poisson–Boltzmann approximation were performed to describe the uPA–uPAR interactions.
Collapse
Affiliation(s)
- Pablo A. Morais
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Campus Horizonte
- Horizonte
- Brazil
| | - Francisco Franciné Maia
- Departamento de Ciências Naturais
- Matemática e Estatística
- Universidade Federal Rural do Semi-Árido
- Mossoró
- Brazil
| | - Christian Solis-Calero
- Departamento de Biologia Estrutural e Funcional
- Instituto de Biologia
- Universidade Estadual de Campinas
- Campinas
- Brazil
| | | | | | - Hernandes F. Carvalho
- Departamento de Biologia Estrutural e Funcional
- Instituto de Biologia
- Universidade Estadual de Campinas
- Campinas
- Brazil
| |
Collapse
|
20
|
DFT calculations of the structural, electronic, optical and vibrational properties of anhydrous orthorhombic L-threonine crystals. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Ronzier E, Parks XX, Qudsi H, Lopes CM. Statin-specific inhibition of Rab-GTPase regulates cPKC-mediated IKs internalization. Sci Rep 2019; 9:17747. [PMID: 31780674 PMCID: PMC6882895 DOI: 10.1038/s41598-019-53700-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Statins are prescribed for prevention and treatment of coronary artery disease. Statins have different cholesterol lowering abilities, with rosuvastatin and atorvastatin being the most effective, while statins like simvastatin and fluvastatin having lower effectiveness. Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab-GTPase proteins, a protein family important for the regulation of membrane-bound protein trafficking. Here we show that endosomal localization of Rab-GTPases (Rab5, Rab7 and Rab11) was inhibited in a statin-specific manner, with stronger effects by fluvastatin, followed by simvastatin and atorvastatin, and with a limited effect by rosuvastatin. Fluvastatin inhibition of Rab5 has been shown to mediate cPKC-dependent trafficking regulation of the cardiac delayed rectifier KCNQ1/KCNE1 channels. We observed statin-specific inhibition of channel regulation consistent with statin-specific Rab-GTPase inhibition both in heterologous systems and cardiomyocytes. Our results uncover a non-cholesterol-reducing statin-specific effect of statins. Because Rab-GTPases are important regulators of membrane trafficking they may underlie statin specific pleiotropic effects. Therefore, statin-specificity may allow better treatment tailoring.
Collapse
Affiliation(s)
- Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Haani Qudsi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
22
|
Bezerra KS, Fulco UL, Esmaile SC, Lima Neto JX, Machado LD, Freire VN, Albuquerque EL, Oliveira JIN. Ribosomal RNA-Aminoglycoside Hygromycin B Interaction Energy Calculation within a Density Functional Theory Framework. J Phys Chem B 2019; 123:6421-6429. [PMID: 31283875 DOI: 10.1021/acs.jpcb.9b04468] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We intend to investigate the drug-binding energy of each nucleotide inside the aminoglycoside hygromycin B (hygB) binding site of 30S ribosomal RNA (rRNA) subunit by using the molecular fractionation with conjugate caps (MFCC) strategy based on the density functional theory (DFT), considering the functional LDA/PWC, OBS, and the dielectric constant parametrization. Aminoglycosides are bactericidal antibiotics that have high affinity to the prokaryotic rRNA, inhibiting the synthesis of proteins by acting on the main stages of the translation mechanism, whereas binding to rRNA 16S, a component of the 30S ribosomal subunit in prokaryotes. The identification of the nucleotides presenting the most negative binding energies allows us to stabilize hygB in a suitable binding pocket of the 30S ribosomal subunit. In addition, it should be highlighted that mutations in these residues may probably lead to resistance to ribosome-targeting antibiotics. Quantum calculations of aminoglycoside hygromycin B-ribosome complex might contribute to further quantum studies with antibiotics like macrolides and other aminoglycosides.
Collapse
Affiliation(s)
- Katyanna S Bezerra
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Stephany C Esmaile
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - José X Lima Neto
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Leonardo D Machado
- Departamento de Física Teórica e Experimental , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Valder N Freire
- Departamento de Física , Universidade Federal do Ceará , 60455-760 Fortaleza-CE , Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| | - Jonas I N Oliveira
- Departamento de Biofísica e Farmacologia , Universidade Federal do Rio Grande do Norte , 59072-970 Natal-RN , Brazil
| |
Collapse
|
23
|
Interaction energy profile for diphenyl diselenide in complex with δ-aminolevulinic acid dehydratase enzyme using quantum calculations and a molecular fragmentation method. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry. Sci Rep 2018; 8:1840. [PMID: 29382901 PMCID: PMC5789983 DOI: 10.1038/s41598-018-20325-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Much of the recent excitement in the cancer immunotherapy approach has been generated by the recognition that immune checkpoint proteins, like the receptor PD-1, can be blocked by antibody-based drugs with profound effects. Promising clinical data have already been released pointing to the efficiency of the drug pembrolizumab to block the PD-1 pathway, triggering the T-lymphocytes to destroy the cancer cells. Thus, a deep understanding of this drug/receptor complex is essential for the improvement of new drugs targeting the protein PD-1. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT), we investigate in silico the binding energy features of the receptor PD-1 in complex with its drug inhibitor. Our computational results give a better understanding of the binding mechanisms, being also an efficient alternative towards the development of antibody-based drugs, pointing to new treatments for cancer therapy.
Collapse
Affiliation(s)
- Ana Beatriz M L A Tavares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - José X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil.
| |
Collapse
|
25
|
Bezerra KS, Lima Neto JX, Oliveira JIN, Albuquerque EL, Caetano EWS, Freire VN, Fulco UL. Computational investigation of the α2β1 integrin–collagen triple helix complex interaction. NEW J CHEM 2018. [DOI: 10.1039/c8nj04175j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, quantum biochemistry methods have been used to describe important protein–protein interactions for the complex integrin–collagen.
Collapse
Affiliation(s)
- K. S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - J. X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - E. L. Albuquerque
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - E. W. S. Caetano
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Fortaleza-CE
- Brazil
| | - V. N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza-CE
- Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| |
Collapse
|
26
|
Solis-Calero C, Zanatta G, Pessoa CDÓ, Carvalho HF, Freire VN. Explaining urokinase type plasminogen activator inhibition by amino-5-hydroxybenzimidazole and two naphthamidine-based compounds through quantum biochemistry. Phys Chem Chem Phys 2018; 20:22818-22830. [DOI: 10.1039/c8cp04315a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types whose inhibition has been shown to slow tumor growth and metastasis.
Collapse
Affiliation(s)
- Christian Solis-Calero
- Department of Structural and Functional Biology
- State University of Campinas
- 13083-863 Campinas
- Brazil
| | - Geancarlo Zanatta
- Department of Physics
- Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
| | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology
- Federal University of Ceará
- 60430-270 Fortaleza
- Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology
- State University of Campinas
- 13083-863 Campinas
- Brazil
| | - Valder N. Freire
- Department of Physics
- Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
| |
Collapse
|
27
|
Lima Neto JX, Soares-Rachetti VP, Albuquerque EL, Manzoni V, Fulco UL. Outlining migrainous through dihydroergotamine–serotonin receptor interactions using quantum biochemistry. NEW J CHEM 2018. [DOI: 10.1039/c7nj03645k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the electronic structure of the complex dihydroergotamine–serotonin receptor to unveil new medications to treat migraine and related diseases.
Collapse
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | | | | | - Vinicius Manzoni
- Instituto de Física
- Universidade Federal de Alagoas
- Maceio-AL
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| |
Collapse
|
28
|
de Sousa B, Oliveira J, Albuquerque E, Fulco U, Amaro V, Blaha C. Molecular modelling and quantum biochemistry computations of a naturally occurring bioremediation enzyme: Alkane hydroxylase from Pseudomonas putida P1. J Mol Graph Model 2017; 77:232-239. [DOI: 10.1016/j.jmgm.2017.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022]
|
29
|
Husain I, Akhtar M, Abdin MZ, Islamuddin M, Shaharyar M, Najmi AK. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. Hum Exp Toxicol 2017; 37:399-411. [PMID: 28441890 DOI: 10.1177/0960327117705431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.
Collapse
Affiliation(s)
- I Husain
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Akhtar
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Zainul Abdin
- 2 Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Islamuddin
- 2 Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Shaharyar
- 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - A K Najmi
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
30
|
Neto JXL, Bezerra KS, Manso DN, Mota KB, Oliveira JIN, Albuquerque EL, Caetano EWS, Freire VN, Fulco UL. Energetic description of cilengitide bound to integrin. NEW J CHEM 2017. [DOI: 10.1039/c7nj02166f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ quantum chemistry methods to investigate the binding energy features of the cyclic RGD pentapeptide cilengitide interacting with the integrin receptor αVβ3.
Collapse
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Dalila N. Manso
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Kyvia B. Mota
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | | | | | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza-CE
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| |
Collapse
|
31
|
Martins ACV, de-Lima-Neto P, Caetano EWS, Freire VN. An improved quantum biochemistry description of the glutamate–GluA2 receptor binding within an inhomogeneous dielectric function framework. NEW J CHEM 2017. [DOI: 10.1039/c6nj03939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new methodology to define the inhomogeneous dielectric constant of protein residues, to apply to the calculation of protein–ligand properties such as the electrostatic interaction.
Collapse
Affiliation(s)
- A. C. V. Martins
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - P. de-Lima-Neto
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - E. W. S. Caetano
- Federal Institute of Education
- Science and Technology of Ceara
- 60040-531 Fortaleza
- Brazil
| | - V. N. Freire
- Department of Physics
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| |
Collapse
|
32
|
Bezerra KS, Oliveira JIN, Lima Neto JX, Albuquerque EL, Caetano EWS, Freire VN, Fulco UL. Quantum binding energy features of the T3-785 collagen-like triple-helical peptide. RSC Adv 2017. [DOI: 10.1039/c6ra25206k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Structural representation of the T3-785 collagen-like triple-helical peptide depicting the 15 most and fewest energetically significant amino acids.
Collapse
Affiliation(s)
- Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | | | | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
33
|
Zanatta G, Della Flora Nunes G, Bezerra EM, da Costa RF, Martins A, Caetano EWS, Freire VN, Gottfried C. Two Binding Geometries for Risperidone in Dopamine D3 Receptors: Insights on the Fast-Off Mechanism through Docking, Quantum Biochemistry, and Molecular Dynamics Simulations. ACS Chem Neurosci 2016; 7:1331-1347. [PMID: 27434874 DOI: 10.1021/acschemneuro.6b00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Risperidone is an atypical antipsychotic used in the treatment of schizophrenia and of symptoms of irritability associated with autism spectrum disorder (ASD). Its main action mechanism is the blockade of D2-like receptors acting over positive and negative symptoms of schizophrenia with small risk of extrapyramidal symptoms (EPS) at doses corresponding to low/moderate D2 occupancy. Such a decrease in the side effect incidence can be associated with its fast unbinding from D2 receptors in the nigrostriatal region allowing the recovery of dopamine signaling pathways. We performed docking essays using risperidone and the D3 receptor crystallographic data and results suggested two possible distinct orientations for risperidone at the binding pocket. Orientation 1 is more close to the opening of the binding site and has the 6-fluoro-1,2 benzoxazole fragment toward the bottom of the D3 receptor cleft, while orientation 2 is deeper inside the binding pocket with the same fragment toward to the receptor surface. In order to unveil the implications of these two binding orientations, classical molecular dynamics and quantum biochemistry computations within the density functional theory formalism and the molecular fractionation with conjugate caps framework were performed. Quantum mechanics/molecular mechanics suggests that orientation 2 (considering the contribution of Glu90) is slightly more energetically stable than orientation 1 with the main contribution coming from residue Asp110. The residue Glu90, positioned at the opening of the binding site, is closer to orientation 1 than 2, suggesting that it may have a key role in stability through attractive interaction with risperidone. Therefore, although orientations 1 and 2 are both likely to occur, we suggest that the occurrence of the first may contribute to the reduction of side effects in patients taking risperidone due to the reduction of dopamine receptor occupancy in the nigrostriatal region through a mechanism of fast dissociation. The atypical effect may be obtained simply by either delaying D3R full blockage by spatial hindrance of orientation 1 at the binding site or through an effective blockade followed by orientation 1 fast dissociation. While the molecular interpretation suggested in this work shed some light on the potential molecular mechanisms accounting for the reduced extrapyramidal symptoms observed during risperidone treatment, further studies are necessary in order to evaluate the implications of both orientations during the receptor activation/inhibition. Altogether these data highlight important hot spots in the dopamine receptor binding site bringing relevant information for the development of novel/derivative agents with atypical profile.
Collapse
Affiliation(s)
- Geancarlo Zanatta
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| | - Gustavo Della Flora Nunes
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| | - Eveline M. Bezerra
- Post-graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Roner F. da Costa
- Department of Physics, Universidade Federal Rural do Semi-Árido, 59780-000 Caraúbas, RN Brazil
| | - Alice Martins
- Post-graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Ewerton W. S. Caetano
- Federal Institute of Education, Science and Technology, 60040-531 Fortaleza, CE Brazil
| | - Valder N. Freire
- Department of Physics, Federal University of Ceará, 60455-760 Fortaleza, CE Brazil
| | - Carmem Gottfried
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| |
Collapse
|
34
|
Mota K, Lima Neto J, Lima Costa A, Oliveira J, Bezerra K, Albuquerque E, Caetano E, Freire V, Fulco U. A quantum biochemistry model of the interaction between the estrogen receptor and the two antagonists used in breast cancer treatment. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Ryde U, Söderhjelm P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem Rev 2016; 116:5520-66. [DOI: 10.1021/acs.chemrev.5b00630] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Pär Söderhjelm
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
36
|
Martins AC, Ribeiro FW, Zanatta G, Freire VN, Morais S, de Lima-Neto P, Correia AN. Modeling of laccase inhibition by formetanate pesticide using theoretical approaches. Bioelectrochemistry 2016; 108:46-53. [DOI: 10.1016/j.bioelechem.2015.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
|
37
|
Sousa BL, Barroso-Neto IL, Oliveira EF, Fonseca E, Lima-Neto P, Ladeira LO, Freire VN. Explaining RANKL inhibition by OPG through quantum biochemistry computations and insights into peptide-design for the treatment of osteoporosis. RSC Adv 2016. [DOI: 10.1039/c6ra16712h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Quantum biochemistry computations are applied to precisely describe important protein–protein interactions, providing a basis for the design of inhibitory peptides against osteoporosis.
Collapse
Affiliation(s)
- Bruno L. Sousa
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Ito L. Barroso-Neto
- Departamento de Química Analítica e Físico-Química
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | - Emerson Fonseca
- Departamento de Física
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Pedro Lima-Neto
- Departamento de Química Analítica e Físico-Química
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Luiz O. Ladeira
- Departamento de Física
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| |
Collapse
|
38
|
Ourique GS, Vianna JF, Neto JXL, Oliveira JIN, Mauriz PW, Vasconcelos MS, Caetano EWS, Freire VN, Albuquerque EL, Fulco UL. A quantum chemistry investigation of a potential inhibitory drug against the dengue virus. RSC Adv 2016. [DOI: 10.1039/c6ra10121f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The total interaction energy of the inhibitor Bz-nKRR-H bound to a serine protease of the dengue virus is mainly due to the action of Asn152, Met49, Tyr161, Asp129 and Gly151 (Met84, Met75, Asp81, Asp79 and Asp80) residues at the NS3 (NS2B) subunit.
Collapse
Affiliation(s)
- G. S. Ourique
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. F. Vianna
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - P. W. Mauriz
- Departamento de Física
- Instituto Federal de Educação
- Ciência e Tecnologia do Maranhão
- São Luís
- Brazil
| | - M. S. Vasconcelos
- Escola de Ciência e Tecnologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - E. W. S. Caetano
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Fortaleza
- Brazil
| | - V. N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - E. L. Albuquerque
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
39
|
Zambrano T, Hirata RDC, Hirata MH, Cerda Á, Salazar LA. Altered microRNome Profiling in Statin-Induced HepG2 Cells: A Pilot Study Identifying Potential new Biomarkers Involved in Lipid-Lowering Treatment. Cardiovasc Drugs Ther 2015; 29:509-518. [PMID: 26602562 DOI: 10.1007/s10557-015-6627-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Statins are widely prescribed drugs to manage hypercholesterolemia. Despite they are considered effective lipid-lowering agents, significant inter-individual variability has been reported in relation to drug response. Among the reasons explaining this variation, genetic factors are known to partially contribute. Nonetheless, poor evidence exists regarding epigenetic factors involved. METHODS We investigated if atorvastatin can modulate the cholesterol related miR-33 family. Furthermore, we analyzed the microRNA expression profiles in HepG2 cells treated for 24 hours with atorvastatin or simvastatin using a microarray platform. RESULTS Our results indicate that atorvastatin does not influence the expression of the miR-33 family. In addition, microarray examination revealed that atorvastatin modulated thirteen miRs, whilst simvastatin only affected two miRs. All significantly modulated miRs after simvastastin therapy were also modulated by atorvastatin. In addition, four novel miRs with previously unreported functions were identified as statin-modulated. CONCLUSION We identified several novel miRs affected by statin treatment. Additional research is needed to determine the biological significance of differentially expressed miRs identified in statins-induced HepG2 cells.
Collapse
Affiliation(s)
- Tomás Zambrano
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rosario D C Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Álvaro Cerda
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,Centro de Biología Molecular & Farmacogenética, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
40
|
Trenin AS. [Microbial metabolites that inhibit sterol biosynthesis, their chemical diversity and characteristics of mode of action]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 39:633-57. [PMID: 25696927 DOI: 10.1134/s1068162013060095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitors of sterol biosynthesis (ISB) are widespread in nature and characterized by appreciable diversity both in their chemical structure and mode of action. Many of these inhibitors express noticeable biological activity and approved themselves in development of various pharmaceuticals. In this review there is a detailed description of biologically active microbial metabolites with revealed chemical structure that have ability to inhibit sterol biosynthesis. Inhibitors of mevalonate pathway in fungous and mammalian cells, exhibiting hypolipidemic or antifungal activity, as well as inhibitors of alternative non-mevalonate (pyruvate gliceraldehyde phosphate) isoprenoid pathway, which are promising in the development of affective antimicrobial or antiparasitic drugs, are under consideration in this review. Chemical formulas of the main natural inhibitors and their semi-synthetic derivatives are represented. Mechanism of their action at cellular and biochemical level is discussed. Special attention is given to inhibitors of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase (group of lovastatin) and inhibitors of acyl-CoA-cholesterol-acyl transferase (ACAT) that possess hypolipidemic activity and could be affective in the treatment of atherosclerosis. In case of inhibitors of late stages of sterol biosynthesis (after squalene formation) special attention is paid to compounds possessing evident antifungal and antitumoral activity. Explanation of mechanism of anticancer and antiviral action of microbial ISB, as well as the description of their ability to induce apoptosis is given.
Collapse
|
41
|
Dantas DS, Oliveira JIN, Lima Neto JX, da Costa RF, Bezerra EM, Freire VN, Caetano EWS, Fulco UL, Albuquerque EL. Quantum molecular modelling of ibuprofen bound to human serum albumin. RSC Adv 2015. [DOI: 10.1039/c5ra04395f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The total interaction energies of the ibuprofen complexed with FA3/FA4 and FA6 binding sites of human serum albumin are in agreement with the hypothesis that the Sudlow's site II is the main binding pocket for ibuprofen.
Collapse
Affiliation(s)
- Diego S. Dantas
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Roner F. da Costa
- Departamento de Física
- Universidade Federal Rural do Semi-Árido
- Brazil
| | - Eveline M. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | |
Collapse
|
42
|
Lima Neto JX, Fulco UL, Albuquerque EL, Corso G, Bezerra EM, Caetano EWS, da Costa RF, Freire VN. A quantum biochemistry investigation of willardiine partial agonism in AMPA receptors. Phys Chem Chem Phys 2015; 17:13092-103. [DOI: 10.1039/c4cp05630b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ quantum biochemistry methods based on the Density Functional Theory (DFT) approach to unveil detailed binding energy features of willardiines co-crystallized with the AMPA receptor.
Collapse
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | | | - Gilberto Corso
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Eveline M. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | | | - Roner F. da Costa
- Departamento de Física
- Universidade Federal Rural do Semi-Árido
- 59780-000 Caraúbas-RN
- Brazil
| | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza-CE
- Brazil
| |
Collapse
|
43
|
Zanatta G, Nunes G, Bezerra EM, da Costa RF, Martins A, Caetano EWS, Freire VN, Gottfried C. Antipsychotic haloperidol binding to the human dopamine D3 receptor: beyond docking through QM/MM refinement toward the design of improved schizophrenia medicines. ACS Chem Neurosci 2014; 5:1041-54. [PMID: 25181639 DOI: 10.1021/cn500111e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
As the dopamine D3R receptor is a promising target for schizophrenia treatment, an improved understanding of the binding of existing antipsychotics to this receptor is crucial for the development of new potent and more selective therapeutic agents. In this work, we have used X-ray cocrystallization data of the antagonist eticlopride bound to D3R as a template to predict, through docking essays, the placement of the typical antipsychotic drug haloperidol at the D3R receptor binding site. Afterward, classical and quantum mechanics/molecular mechanics (QM/MM) computations were employed to improve the quality of the docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. After docking, the calculated QM improved total interaction energy EQMDI = -170.1 kcal/mol was larger (in absolute value) than that obtained with classical molecular mechanics improved (ECLDI = -156.3 kcal/mol) and crude docking (ECRDI = -137.6 kcal/mol) procedures. The QM/MM computations reveal the pivotal role of the Asp110 amino acid residue in the D3R haloperidol binding, followed by Tyr365, Phe345, Ile183, Phe346, Tyr373, and Cys114. Besides, it highlights the relevance of the haloperidol hydroxyl group axial orientation, which interacts with the Tyr365 and Thr369 residues, enhancing its binding to dopamine receptors. Finally, our computations indicate that functional substitutions in the 4-clorophenyl and in the 4-hydroxypiperidin-1-yl fragments (such as C3H and C12H hydrogen replacement by OH or COOH) can lead to haloperidol derivatives with distinct dopamine antagonism profiles. The results of our work are a first step using in silico quantum biochemical design as means to impact the discovery of new medicines to treat schizophrenia.
Collapse
Affiliation(s)
- Geancarlo Zanatta
- Department
of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS Brazil
| | - Gustavo Nunes
- Department
of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS Brazil
| | - Eveline M. Bezerra
- Post-graduate
Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Roner F. da Costa
- Department
of Physics, Universidade Federal Rural do Semi-Árido, 59780-000 Caraúbas, RN Brazil
| | - Alice Martins
- Post-graduate
Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Ewerton W. S. Caetano
- Federal Institute of Education, Science and Technology, 60040-531 Fortaleza, CE Brazil
| | - Valder N. Freire
- Department
of Physics, Federal University of Ceará, 60455-760 Fortaleza, CE Brazil
| | - Carmem Gottfried
- Department
of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS Brazil
| |
Collapse
|
44
|
Wong JPC, Wijaya S, Ting KN, Wiart C, Mustafa K, Shipton F, Khoo TJ. Crude Ethanol Extract of Pithecellobium ellipticum as a Potential Lipid-Lowering Treatment for Hypercholesterolaemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:492703. [PMID: 24839451 PMCID: PMC4009285 DOI: 10.1155/2014/492703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022]
Abstract
If left untreated, hypercholesterolaemia can lead to atherosclerosis, given time. Plants from the Fabaceae family have shown the ability to significantly suppress atherosclerosis progression. We selected four extracts from Pithecellobium ellipticum, from the Fabaceae family, to be screened in a 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) assay. The ethanol extract, at a concentration of 500 μ g/mL, exhibited superior inhibition properties over the other extracts by demonstrating 80.9% inhibition, while 0.223 μ g/mL of pravastatin (control) showed 78.1% inhibition towards enzymatic activity. These findings led to the fractionation of the ethanol extract using ethyl acetate : methanol (95 : 5), gradually increasing polarity and produced seven fractions (1A to 7A). Fraction 7A at 150 μ g/mL emerged as being the most promising bioactive fraction with 78.7% inhibition. FRAP, beta carotene, and DPPH assays supported the findings from the ethanol extract as it exhibited good overall antioxidant activity. The antioxidant properties have been said to reduce free radicals that are able to oxidize lipoproteins which are the cause of atherosclerosis. Phytochemical screenings revealed the presence of terpenoid, steroid, flavonoid, and phenolic compounds as the responsible group of compound(s), working individually or synergistically, within the extract to prevent binding of HMG-CoA to HMG-CoA reductase.
Collapse
Affiliation(s)
- Janet P.-C. Wong
- Center for Natural and Medicinal Products Research, School of Pharmacy, Faculty of Science, University of Nottingham, Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Sumi Wijaya
- Center for Natural and Medicinal Products Research, School of Pharmacy, Faculty of Science, University of Nottingham, Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kang-Nee Ting
- School of Biomedical, Faculty of Science, University of Nottingham, Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Christophe Wiart
- Center for Natural and Medicinal Products Research, School of Pharmacy, Faculty of Science, University of Nottingham, Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kamarul'Ain Mustafa
- Faculty of Chemistry, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia
| | - Fiona Shipton
- Center for Natural and Medicinal Products Research, School of Pharmacy, Faculty of Science, University of Nottingham, Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Teng-Jin Khoo
- Center for Natural and Medicinal Products Research, School of Pharmacy, Faculty of Science, University of Nottingham, Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
45
|
da Silva Ribeiro TC, da Costa RF, Bezerra EM, Freire VN, Lyra ML, Manzoni V. The quantum biophysics of the isoniazid adduct NADH binding to its InhA reductase target. NEW J CHEM 2014. [DOI: 10.1039/c3nj01453c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Ali N, Allam H, Bader T, May R, Basalingappa KM, Berry WL, Chandrakesan P, Qu D, Weygant N, Bronze MS, Umar S, Janknecht R, Sureban SM, Huycke M, Houchen CW. Fluvastatin interferes with hepatitis C virus replication via microtubule bundling and a doublecortin-like kinase-mediated mechanism. PLoS One 2013; 8:e80304. [PMID: 24260365 PMCID: PMC3833963 DOI: 10.1371/journal.pone.0080304] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV)-induced alterations in lipid metabolism and cellular protein expression contribute to viral pathogenesis. The mechanism of pleiotropic actions of cholesterol-lowering drugs, statins, against HCV and multiple cancers are not well understood. We investigated effects of fluvastatin (FLV) on microtubule-associated and cancer stem cell marker (CSC), doublecortin-like kinase 1 (DCLK1) during HCV-induced hepatocarcinogenesis. HCV replication models, cancer cell lines and normal human hepatocytes were used to investigate the antiviral and antitumor effects of statins. FLV treatment resulted in induction of microtubule bundling, cell-cycle arrest and alterations in cellular DCLK1 distribution in HCV-expressing hepatoma cells. These events adversely affected the survival of liver-derived tumor cells without affecting normal human hepatocytes. FLV downregulated HCV replication in cell culture where the ATP pool and cell viability were not compromised. Pravastatin did not exhibit these effects on HCV replication, microtubules and cancer cells. The levels of miR-122 that regulates liver homeostasis and provides HCV genomic stability remained at steady state whereas DCLK1 mRNA levels were considerably reduced during FLV treatment. We further demonstrated that HCV replication was increased with DCLK1 overexpression. In conclusion, unique effects of FLV on microtubules and their binding partner DCLK1 are likely to contribute to its anti-HCV and antitumor activities in addition to its known inhibitory effects on 3-hydroxy-3-methylglutary-CoA reductase (HMGCR).
Collapse
Affiliation(s)
- Naushad Ali
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- * E-mail: (NA); (CWH)
| | - Heba Allam
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, National Liver Institute, Menoufiya University, Menoufiya, Egypt
| | - Ted Bader
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Randal May
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Kanthesh M. Basalingappa
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - William L. Berry
- Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Parthasarathy Chandrakesan
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Dongfeng Qu
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Nathaniel Weygant
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Michael S. Bronze
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Shahid Umar
- Department of Molecular and Integrative Physiology, and Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Sripathi M. Sureban
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Mark Huycke
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
| | - Courtney W. Houchen
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- * E-mail: (NA); (CWH)
| |
Collapse
|
47
|
Conformational analysis of geometric isomers of pitavastatin together with their lactonized analogues. MOLECULES (BASEL, SWITZERLAND) 2013; 18:13283-96. [PMID: 24169468 PMCID: PMC6270003 DOI: 10.3390/molecules181113283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 01/22/2023]
Abstract
Super-statins are synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, which is the rate-limiting enzyme responsible for the biosynthesis of cholesterol. All of the super-statins with a C=C double bond spacer between the heterocyclic and the dihydroxycarboxylic moiety that are currently on the market exist as E-isomers. To extend the understanding of conformational and thermodynamic preferences of Z-isomeric super-statin analogues, this study focused on analyzing pitavastatin and its lactonized derivatives via NMR spectroscopy and ab initio calculations. Z-isomeric pitavastatin analogues exist in solution as a pair of interconverting rotamers, where the Gibbs free energies between the major and minor rotamers are within 0.12 and 0.25 kcal mol-1 and the rotational energy barriers are between 15.0 and 15.9 kcal mol-1. The analysis of long-range coupling constants and ab initio calculations revealed that rotation across the C5'-C7 single bond is essential for generating a pair of atropisomers. The overall comparison of the results between Z-isomeric pitavastatin and rosuvastatin analogues demonstrated that the former are to some extent more flexible to attain numerous conformations. Demonstrating how structural differences between super-statin analogues induce distinctive conformational preferences provides important insight into the super-statins' conformational variability and may well improve future drug design.
Collapse
|
48
|
Statin use in primary inflammatory breast cancer: a cohort study. Br J Cancer 2013; 109:318-24. [PMID: 23820253 PMCID: PMC3721387 DOI: 10.1038/bjc.2013.342] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 12/31/2022] Open
Abstract
Background: Some studies have suggested that statins, which have cholesterol-lowering and anti-inflammatory properties, may have antitumor effects. Effects of statins on inflammatory breast cancer (IBC) have never been studied. Methods: We reviewed 723 patients diagnosed with primary IBC in 1995–2011 and treated at The University of Texas MD Anderson Cancer Center. Statin users were defined as being on statins at the initial evaluation. Based on Ahern et al's statin classification (JNCI, 2011), clinical outcomes were compared by statin use and type (weakly lipophilic to hydrophilic (H-statin) vs lipophilic statins (L-statin)). We used the Kaplan–Meier method to estimate the median progression-free survival (PFS), overall survival (OS) and disease-specific survival (DSS), and a Cox proportional hazards regression model to test the statistical significance of potential prognostic factors. Results: In the multivariable Cox model, H-statins were associated with significantly improved PFS compared with no statin (hazard ratio=0.49; 95% confidence interval=0.28–0.84; P<0.01); OS and DSS P-values were 0.80 and 0.85, respectively. For L-statins vs no statin, P-values for PFS, DSS, and OS were 0.81, 0.4, and 0.74, respectively. Conclusion: H-statins were associated with significantly improved PFS. A prospective randomised study evaluating the survival benefits of statins in primary IBC is warranted.
Collapse
|
49
|
|
50
|
Rodrigues C, Oliveira J, Fulco U, Albuquerque E, Moura R, Caetano E, Freire V. Quantum biochemistry study of the T3-785 tropocollagen triple-helical structure. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.12.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|