1
|
Jenney FE, Wang H, George SJ, Xiong J, Guo Y, Gee LB, Marizcurrena JJ, Castro-Sowinski S, Staskiewicz A, Yoda Y, Hu MY, Tamasaku K, Nagasawa N, Li L, Matsuura H, Doukov T, Cramer SP. Temperature-dependent iron motion in extremophile rubredoxins - no need for 'corresponding states'. Sci Rep 2024; 14:12197. [PMID: 38806591 PMCID: PMC11133467 DOI: 10.1038/s41598-024-62261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.
Collapse
Affiliation(s)
- Francis E Jenney
- Georgia Campus, Philadelphia College of Osteopathic Medicine, Suwanee, GA, 30024, USA
| | | | | | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Leland B Gee
- LCLS, SLAC National Laboratory, Stanford, CA, 94025, USA
| | | | | | - Anna Staskiewicz
- Georgia Campus, Philadelphia College of Osteopathic Medicine, Suwanee, GA, 30024, USA
| | - Yoshitaka Yoda
- Precision Spectroscopy Division, SPring-8/JASRI, Sayo, Hyogo, 679-5198, Japan
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | | | - Nobumoto Nagasawa
- Precision Spectroscopy Division, SPring-8/JASRI, Sayo, Hyogo, 679-5198, Japan
| | - Lei Li
- Synchrotron Radiation Research Center, Hyogo, 679-5165, Japan
| | | | - Tzanko Doukov
- SSRL, SLAC National Laboratory, Stanford, CA, 94025, USA
| | | |
Collapse
|
2
|
Caviglia B, Di Bari D, Timr S, Guiral M, Giudici-Orticoni MT, Petrillo C, Peters J, Sterpone F, Paciaroni A. Decoding the Role of the Global Proteome Dynamics for Cellular Thermal Stability. J Phys Chem Lett 2024; 15:1435-1441. [PMID: 38291814 DOI: 10.1021/acs.jpclett.3c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Molecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the Escherichia coli proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death. Global roto-translational motions turn out to be the main factor distinguishing the bacterial dynamical properties. We ascribe this behavior to the difference in the average proteome net charge, which becomes less negative for increasing bacterial thermal stability. We propose that the chemical-physical properties of the cytoplasm and the global dynamics of the resulting proteome are fine-tuned by evolution to uphold optimal thermal stability conditions.
Collapse
Affiliation(s)
- Beatrice Caviglia
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Daniele Di Bari
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Stepan Timr
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic
| | - Marianne Guiral
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13400 Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13400 Marseille, France
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Judith Peters
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique (CNRS), Univ. Grenoble Alpes, 140 Rue de la Physique, 38402 Saint-Martin-d'Hères, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
3
|
Barzegari E, Ghaedizadeh S, Pourshohod A, Zeinali M, Jamalan M. Simulation and practical investigation of carbonic anhydrase stability in an industrial solvent system of methyl diethanolamine for carbon dioxide capture. J Biomol Struct Dyn 2024:1-10. [PMID: 38235770 DOI: 10.1080/07391102.2024.2305311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Carbonic anhydrase owing to its potential as an industrial biocatalyst for carbon dioxide sequestration from flue gas has attracted considerable attention in solving global warming problems. A large body of research has been conducted to increase the thermal stability of carbonic anhydrase from different sources against the harsh operational conditions of CO2 capture systems. In contrast to cost-intensive protein engineering methods, solvation with aqueous-organic binary mixtures offers a convenient and economical alternative strategy for retention of protein structure and stability. This study aimed to examine the stabilizing effect of methyl diethanolamine (MDEA) as a component of an aqueous-organic solvent mixture on human carbonic anhydrase II (HCA II) at extreme temperatures. Computational and also spectroscopic examinations were employed for tracking conformational changes and stability evaluation of HCA II in 50:50 (vol %) water: MDEA binary mixture at high temperature. Molecular dynamic (MD) simulation studies predicted the high thermal stability of HCA II in the presence of MDEA. UV absorbance spectra confirmed the thermo-stabilizing effect of the binary solvent mixture on HCA II. While the enzymatic activity of HCA II at 25 °C in the presence of 10, 25, and 50 (vol%) of MDEA was substantially increased, no obvious effect on retention of HCA II activity in the water-MDEA binary solvent mixture at 85 °C was seen. It is shown that the solvation of HCA II in the presence of MDEA could result in the prevention of aggregate formation in high temperatures but not functional stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Ghaedizadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Aminollah Pourshohod
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Majid Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
4
|
Bertrand Q, Coquille S, Iorio A, Sterpone F, Madern D. Biochemical, structural and dynamical characterizations of the lactate dehydrogenase from Selenomonas ruminantium provide information about an intermediate evolutionary step prior to complete allosteric regulation acquisition in the super family of lactate and malate dehydrogenases. J Struct Biol 2023; 215:108039. [PMID: 37884067 DOI: 10.1016/j.jsb.2023.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
In this work, we investigated the lactate dehydrogenase (LDH) from Selenomonas ruminantium (S. rum), an enzyme that differs at key amino acid positions from canonical allosteric LDHs. The wild type (Wt) of this enzyme recognises pyuvate as all LDHs. However, introducing a single point mutation in the active site loop (I85R) allows S. Rum LDH to recognize the oxaloacetate substrate as a typical malate dehydrogenase (MalDH), whilst maintaining homotropic activation as an LDH. We report the tertiary structure of the Wt and I85RLDH mutant. The Wt S. rum enzyme structure binds NADH and malonate, whilst also resembling the typical compact R-active state of canonical LDHs. The structure of the mutant with I85R was solved in the Apo State (without ligand), and shows no large conformational reorganization such as that observed with canonical allosteric LDHs in Apo state. This is due to a local structural feature typical of S. rum LDH that prevents large-scale conformational reorganization. The S. rum LDH was also studied using Molecular Dynamics simulations, probing specific local deformations of the active site that allow the S. rum LDH to sample the T-inactive state. We propose that, with respect to the LDH/MalDH superfamily, the S. rum enzyme possesses a specificstructural and dynamical way to ensure homotropic activation.
Collapse
Affiliation(s)
- Quentin Bertrand
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France; Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | | | - Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
5
|
Ijaz S, Haq IU, Malik R, Nadeem G, Ali HM, Kaur S. In silico characterization of differentially expressed short-read nucleotide sequences identified in dieback stress-induced transcriptomic analysis reveals their role as antimicrobial peptides. FRONTIERS IN PLANT SCIENCE 2023; 14:1168221. [PMID: 37021314 PMCID: PMC10069654 DOI: 10.3389/fpls.2023.1168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
We investigated the in silico characterization of short-length nucleotide sequences that were differentially expressed in dieback stress-induced transcriptomic analysis. They displayed homology with C-terminal flanking peptides and defensins-like proteins, revealing their antimicrobial activity. Their predicted fingerprints displayed protein signatures related to antimicrobial peptides. These short-length RGAs have been shown to possess structural motifs such as APLT P-type ATPase, casein kinase II (CK2), protein kinase 3, protein kinase C (PKC), and N-glycosylation site that are the attributes of disease resistance genes. The prediction of arginine and lysine residues in active binding sites in ligand docking analysis prophesied them as antimicrobial peptides due to their strong relation with antimicrobial activity. The in silico structural-functional characterization has predicted their role in resistance against microbial pathogens. Moreover, the predicted antimicrobial peptide regions showed their homology with the signature domain of PR-5-like protein and AMP family Thaumatin.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Riffat Malik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Ghalia Nadeem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sukhwinder Kaur
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Kumar S, Duggineni VK, Singhania V, Misra SP, Deshpande PA. Unravelling and Quantifying the Biophysical– Biochemical Descriptors Governing Protein Thermostability by Machine Learning. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vinay Kumar Duggineni
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vibhuti Singhania
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Swayam Prabha Misra
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
7
|
Coates CJ, Belato FA, Halanych KM, Costa-Paiva EM. Structure-Function Relationships of Oxygen Transport Proteins in Marine Invertebrates Enduring Higher Temperatures and Deoxygenation. THE BIOLOGICAL BULLETIN 2022; 243:134-148. [PMID: 36548976 DOI: 10.1086/722472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractPredictions for climate change-to lesser and greater extents-reveal a common scenario in which marine waters are characterized by a deadly trio of stressors: higher temperatures, lower oxygen levels, and acidification. Ectothermic taxa that inhabit coastal waters, such as shellfish, are vulnerable to rapid and prolonged environmental disturbances, such as heatwaves, pollution-induced eutrophication, and dysoxia. Oxygen transport capacity of the hemolymph (blood equivalent) is considered the proximal driver of thermotolerance and respiration in many invertebrates. Moreover, maintaining homeostasis under environmental duress is inextricably linked to the activities of the hemolymph-based oxygen transport or binding proteins. Several protein groups fulfill this role in marine invertebrates: copper-based extracellular hemocyanins, iron-based intracellular hemoglobins and hemerythrins, and giant extracellular hemoglobins. In this brief text, we revisit the distribution and multifunctional properties of oxygen transport proteins, notably hemocyanins, in the context of climate change, and the consequent physiological reprogramming of marine invertebrates.
Collapse
|
8
|
Molinaro C, Bénéfice M, Gorlas A, Da Cunha V, Robert HML, Catchpole R, Gallais L, Forterre P, Baffou G. Life at high temperature observed in vitro upon laser heating of gold nanoparticles. Nat Commun 2022; 13:5342. [PMID: 36097020 PMCID: PMC9468142 DOI: 10.1038/s41467-022-33074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are microorganisms that thrive at high temperature. Studying them can provide valuable information on how life has adapted to extreme conditions. However, high temperature conditions are difficult to achieve on conventional optical microscopes. Some home-made solutions have been proposed, all based on local resistive electric heating, but no simple commercial solution exists. In this article, we introduce the concept of microscale laser heating over the field of view of a microscope to achieve high temperature for the study of thermophiles, while maintaining the user environment in soft conditions. Microscale heating with moderate laser intensities is achieved using a substrate covered with gold nanoparticles, as biocompatible, efficient light absorbers. The influences of possible microscale fluid convection, cell confinement and centrifugal thermophoretic motion are discussed. The method is demonstrated with two species: (i) Geobacillus stearothermophilus, a motile thermophilic bacterium thriving around 65 °C, which we observed to germinate, grow and swim upon microscale heating and (ii) Sulfolobus shibatae, a hyperthermophilic archaeon living at the optimal temperature of 80 °C. This work opens the path toward simple and safe observation of thermophilic microorganisms using current and accessible microscopy tools. Studying microorganisms at high temperatures is challenging on conventional optical microscopes. Here, the authors introduce the concept of microscale laser heating over the full field of view by using gold nanoparticles as light absorbers, and study thermophile species up to 80 °C.
Collapse
|
9
|
A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. Int J Mol Sci 2022; 23:ijms231710116. [PMID: 36077513 PMCID: PMC9456548 DOI: 10.3390/ijms231710116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Thermophilic proteins have various practical applications in theoretical research and in industry. In recent years, the demand for thermophilic proteins on an industrial scale has been increasing; therefore, the engineering of thermophilic proteins has become a hot direction in the field of protein engineering. However, the exact mechanism of thermostability of proteins is not yet known, for engineering thermophilic proteins knowing the basis of thermostability is necessary. In order to understand the basis of the thermostability in proteins, we have made a statistical analysis of the sequences, secondary structures, hydrogen bonds, salt bridges, DHA (Donor-Hydrogen-Accepter) angles, and bond lengths of ten pairs of thermophilic proteins and their non-thermophilic orthologous. Our findings suggest that polar amino acids contribute to thermostability in proteins by forming hydrogen bonds and salt bridges which provide resistance against protein denaturation. Short bond length and a wider DHA angle provide greater bond stability in thermophilic proteins. Moreover, the increased frequency of aromatic amino acids in thermophilic proteins contributes to thermal stability by forming more aromatic interactions. Additionally, the coil, helix, and loop in the secondary structure also contribute to thermostability.
Collapse
|
10
|
Zheng L, Lu H, Zan B, Li S, Liu H, Liu Z, Huang J, Liu Y, Jiang F, Liu Q, Feng Y, Hong L. Loosely-packed dynamical structures with partially-melted surface being the key for thermophilic argonaute proteins achieving high DNA-cleavage activity. Nucleic Acids Res 2022; 50:7529-7544. [PMID: 35766425 PMCID: PMC9303296 DOI: 10.1093/nar/gkac565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Prokaryotic Argonaute proteins (pAgos) widely participate in hosts to defend against the invasion of nucleic acids. Compared with the CRISPR-Cas system, which requires a specific motif on the target and can only use RNA as guide, pAgos exhibit precise endonuclease activity on any arbitrary target sequence and can use both RNA and DNA as guide, thus rendering great potential for genome editing applications. Hitherto, most in-depth studies on the structure-function relationship of pAgos were conducted on thermophilic ones, functioning at ∼60 to 100°C, whose structures were, however, determined experimentally at much lower temperatures (20-33°C). It remains unclear whether these low-temperature structures can represent the true conformations of the thermophilic pAgos under their physiological conditions. The present work studied three pAgos, PfAgo, TtAgo and CbAgo, whose physiological temperatures differ significantly (95, 75 and 37°C). By conducting thorough experimental and simulation studies, we found that thermophilic pAgos (PfAgo and TtAgo) adopt a loosely-packed structure with a partially-melted surface at the physiological temperatures, largely different from the compact crystalline structures determined at moderate temperatures. In contrast, the mesophilic pAgo (CbAgo) assumes a compact crystalline structure at its optimal function temperature. Such a partially-disrupted structure endows thermophilic pAgos with great flexibility both globally and locally at the catalytic sites, which is crucial for them to achieve high DNA-cleavage activity. To further prove this, we incubated thermophilic pAgos with urea to purposely disrupt their structures, and the resulting cleavage activity was significantly enhanced below the physiological temperature, even at human body temperature. Further testing of many thermophilic Agos present in various thermophilic prokaryotes demonstrated that their structures are generally disrupted under physiological conditions. Therefore, our findings suggest that the highly dynamical structure with a partially-melted surface, distinct from the low-temperature crystalline structure, could be a general strategy assumed by thermophilic pAgos to achieve the high DNA-cleavage activity.
Collapse
Affiliation(s)
- Lirong Zheng
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Zan
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Li
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Liu
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Liu
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Jiang
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Liu
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Doan LC, Dahanayake JN, Mitchell-Koch KR, Singh AK, Vinh NQ. Probing Adaptation of Hydration and Protein Dynamics to Temperature. ACS OMEGA 2022; 7:22020-22031. [PMID: 35785325 PMCID: PMC9245114 DOI: 10.1021/acsomega.2c02843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended time scale from femto- to nanosecond. The dielectric spectra reveal several relaxations corresponding to the orientational polarization mechanism, including the dynamics of loosely bound, tightly bound, and bulk water, as well as collective vibrational modes of protein in an aqueous environment. The dynamics of loosely bound and bulk water follow non-Arrhenius behavior; however, the dynamics of water molecules in the tightly bound layer obeys the Arrhenius-type relation. Combining molecular simulations and effective-medium approximation, we have determined the number of water molecules in the tightly bound hydration layer and studied the dynamics of protein as a function of temperature. The results provide the important impact of water on the biochemical functions of proteins.
Collapse
Affiliation(s)
- Luan C. Doan
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jayangika N. Dahanayake
- Department
of Chemistry, Faculty of Science, University
of Kelaniya, Kelaniya 11600, Sri Lanka
| | | | - Abhishek K. Singh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nguyen Q. Vinh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Isolation and thermo-acclimation of thermophilic bacteria in hyperthermophilic fermentation system. Bioprocess Biosyst Eng 2021; 45:75-85. [PMID: 34564754 DOI: 10.1007/s00449-021-02640-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Hyperthermophilic microorganisms play a key role in the hyper-thermophilic composting (HTC) technique. However, little information is available about the hyperthermophilic microorganisms prevalent in HTC systems, except for the Calditerricola satsumensis, Calditerricola yamamurae, and Thermaerobacter. To obtain effective hyper-thermophilic microorganisms, a continuous thermo-acclimation of the suitable thermophilic microorganisms was demonstrated in this study. Bacillus thermoamylovorans with high-temperature endurance (70 °C) were newly isolated from sludge composting, and an adequate slow heating rate (2 °C per cycle) was applied to further improve its thermostability. Finally, a strain with a maximum growth temperature of 80 °C was obtained. Moreover, structural and hydrophobic changes in cell proteins, the special amino acid content ratio, and the membrane permeability of the thermophilic bacterium after thermo-acclimation were evaluated for improved thermostability. In addition, the acclimated hyperthermophilic bacterium was further inoculated into the HTC system, and an excellent performance with a maximum operating temperature of 82 °C was observed.
Collapse
|
13
|
Boucher L, Somani S, Negron C, Ma W, Jacobs S, Chan W, Malia T, Obmolova G, Teplyakov A, Gilliland GL, Luo J. Surface salt bridges contribute to the extreme thermal stability of an FN3-like domain from a thermophilic bacterium. Proteins 2021; 90:270-281. [PMID: 34405904 DOI: 10.1002/prot.26218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/08/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022]
Abstract
This study uses differential scanning calorimetry, X-ray crystallography, and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5°C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25, and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22°C. Crystal structures of the wild type (WT) and a thermally destabilized (∆Tm -19.7°C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the WT were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins.
Collapse
Affiliation(s)
- Lauren Boucher
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Sandeep Somani
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Wenting Ma
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Steven Jacobs
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Winnie Chan
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Thomas Malia
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Galina Obmolova
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Alexey Teplyakov
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Gary L Gilliland
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Jinquan Luo
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
14
|
Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophys J 2021; 120:3732-3746. [PMID: 34302792 DOI: 10.1016/j.bpj.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
Collapse
Affiliation(s)
- Aparna Vilas Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Ticino, Switzerland; Facoltà di Informatica, Istituto di Scienze Computationali, Università della Svizzera Italiana, Lugano, Ticino, Switzerland
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
15
|
Iorio A, Roche J, Engilberge S, Coquelle N, Girard E, Sterpone F, Madern D. Biochemical, structural and dynamical studies reveal strong differences in the thermal-dependent allosteric behavior of two extremophilic lactate dehydrogenases. J Struct Biol 2021; 213:107769. [PMID: 34229075 DOI: 10.1016/j.jsb.2021.107769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022]
Abstract
In this work, we combined biochemical and structural investigations with molecular dynamics (MD) simulations to analyze the very different thermal-dependent allosteric behavior of two lactate dehydrogenases (LDH) from thermophilic bacteria. We found that the enzyme from Petrotoga mobilis (P. mob) necessitates an absolute requirement of the allosteric effector (fructose 1, 6-bisphosphate) to ensure functionality. In contrast, even without allosteric effector, the LDH from Thermus thermophilus (T. the) is functional when the temperature is raised. We report the crystal structure of P. mob LDH in the Apo state solved at 1.9 Å resolution. We used this structure and the one from T. the, obtained previously, as a starting point for MD simulations at various temperatures. We found clear differences between the thermal dynamics, which accounts for the behavior of the two enzymes. Our work demonstrates that, within an allosteric enzyme, some areas act as local gatekeepers of signal transmission, allowing the enzyme to populate either the T-inactive or the R-active states with different degrees of stringency.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Nicolas Coquelle
- Large Scale Structures Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| | | |
Collapse
|
16
|
Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Caldicellulosiruptor bescii To Grow on Crystalline Cellulose without Affecting Protein Glycosylation or Growth on Soluble Substrates. Appl Environ Microbiol 2020; 86:AEM.00909-20. [PMID: 32769195 DOI: 10.1128/aem.00909-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCE Caldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.
Collapse
|
17
|
Jana K, Mehra R, Dehury B, Blundell TL, Kepp KP. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics. Proteins 2020; 88:1233-1250. [PMID: 32368818 DOI: 10.1002/prot.25897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein thermostability is important to evolution, diseases, and industrial applications. Proteins use diverse molecular strategies to achieve stability at high temperature, yet reducing the entropy of unfolding seems required. We investigated five small α-proteins and five β-proteins with known, distinct structures and thermostability (Tm ) using multi-seed molecular dynamics simulations at 300, 350, and 400 K. The proteins displayed diverse changes in hydrogen bonding, solvent exposure, and secondary structure with no simple relationship to Tm . Our dynamics were in good agreement with experimental B-factors at 300 K and insensitive to force-field choice. Despite the very distinct structures, the native-state (300 + 350 K) free-energy landscapes (FELs) were significantly broader for the two most thermostable proteins and smallest for the three least stable proteins in both the α- and β-group and with both force fields studied independently (tailed t-test, 95% confidence level). Our results suggest that entropic ensembles stabilize proteins at high temperature due to reduced entropy of unfolding, viz., ΔG = ΔH - TΔS. Supporting this mechanism, the most thermostable proteins were also the least kinetically stable, consistent with broader FELs, typified by villin headpiece and confirmed by specific comparison to a mesophilic ortholog of Thermus thermophilus apo-pyrophosphate phosphohydrolase. We propose that molecular strategies of protein thermostabilization, although diverse, tend to converge toward highest possible entropy in the native state consistent with the functional requirements. We speculate that this tendency may explain why many proteins are not optimally structured and why molten-globule states resemble native proteins so much.
Collapse
Affiliation(s)
| | | | - Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
18
|
Santiago Á, Razo-Hernández RS, Pastor N. Revealing the Structural Contributions to Thermal Adaptation of the TATA-Box Binding Protein: Molecular Dynamics and QSPR Analyses. J Chem Inf Model 2020; 60:866-879. [PMID: 31917925 DOI: 10.1021/acs.jcim.9b00824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The TATA-box binding protein (TBP) is an important element of the transcription machinery in archaea and eukaryotic organisms. TBP is expressed in organisms adapted to different temperatures, indicating a robust structure, and experimental studies have shown that the mid-unfolding temperature (Tm) of TBP is directly correlated with the optimal growth temperature (OGT) of the organism. To understand which are the relevant structural requirements for its stability, we present the first structural and dynamic computational study of TBPs, combining molecular dynamics (MD) simulations and a quantitative structure-property relationship (QSPR) over a set of TBPs of organisms adapted to different temperatures. We found that the main structural properties of TBP used to adapt to high temperatures are an increase in the ease of desolvation of charged residues at the surface, an increase in the local resiliency, the presence of Leu clusters in the protein core, and an increase in the loss of hydrophobic packing in the N-terminal subdomain. In view of our results, we consider that TBP is a good model to study thermal adaptation, and our analysis opens the possibility of performing protein engineering on TBPs to study transcription at high or low temperatures.
Collapse
Affiliation(s)
- Ángel Santiago
- Laboratorio de Dinámica de Proteínas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas , Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Col. Chamilpa , Cuernavaca , Morelos 62209 , México
| | - Rodrigo Said Razo-Hernández
- Laboratorio de Dinámica de Proteínas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas , Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Col. Chamilpa , Cuernavaca , Morelos 62209 , México
| | - Nina Pastor
- Laboratorio de Dinámica de Proteínas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas , Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Col. Chamilpa , Cuernavaca , Morelos 62209 , México.,Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología , Universidad Nacional Autónoma de México , Av. Universidad 2001, Col. Chamilpa , Cuernavaca , Morelos 62210 , México
| |
Collapse
|
19
|
Timr S, Madern D, Sterpone F. Protein thermal stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:239-272. [PMID: 32145947 DOI: 10.1016/bs.pmbts.2019.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins, in general, fold to a well-organized three-dimensional structure in order to function. The stability of this functional shape can be perturbed by external environmental conditions, such as temperature. Understanding the molecular factors underlying the resistance of proteins to the thermal stress has important consequences. First of all, it can aid the design of thermostable enzymes able to perform efficient catalysis in the high-temperature regime. Second, it is an essential brick of knowledge required to decipher the evolutionary pathways of life adaptation on Earth. Thanks to the development of atomistic simulations and ad hoc enhanced sampling techniques, it is now possible to investigate this problem in silico, and therefore provide support to experiments. After having described the methodological aspects, the chapter proposes an extended discussion on two problems. First, we focus on thermophilic proteins, a perfect model to address the issue of thermal stability and molecular evolution. Second, we discuss the issue of how protein thermal stability is affected by crowded in vivo-like conditions.
Collapse
Affiliation(s)
- Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
20
|
Maffucci I, Laage D, Stirnemann G, Sterpone F. Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes. Phys Chem Chem Phys 2020; 22:18361-18373. [DOI: 10.1039/d0cp02738c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The thermal resistance of two homolog enzymes is investigated, with an emphasis on their local stability and flexibility, and on the possible implications regarding their reactivity.
Collapse
Affiliation(s)
- Irene Maffucci
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Damien Laage
- PASTEUR
- Département de chimie
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| |
Collapse
|
21
|
Hait S, Mallik S, Basu S, Kundu S. Finding the generalized molecular principles of protein thermal stability. Proteins 2019; 88:788-808. [PMID: 31872464 DOI: 10.1002/prot.25866] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 11/09/2022]
Abstract
Are there any generalized molecular principles of thermal adaptation? Here, integrating the concepts of structural bioinformatics, sequence analysis, and classical knot theory, we develop a robust computational framework that seeks for mechanisms of thermal adaptation by comparing orthologous mesophilic-thermophilic and mesophilic-hyperthermophilic proteins of remarkable structural and topological similarities, and still leads us to context-independent results. A comprehensive analysis of 4741 high-resolution, non-redundant X-ray crystallographic structures collected from 11 hyperthermophilic, 32 thermophilic and 53 mesophilic prokaryotes unravels at least five "nearly universal" signatures of thermal adaptation, irrespective of the enormous sequence, structure, and functional diversity of the proteins compared. A careful investigation further extracts a set of amino acid changes that can potentially enhance protein thermal stability, and remarkably, these mutations are overrepresented in protein crystallization experiments, in disorder-to-order transitions and in engineered thermostable variants of existing mesophilic proteins. These results could be helpful to find a precise, global picture of thermal adaptation.
Collapse
Affiliation(s)
- Suman Hait
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Saurav Mallik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| |
Collapse
|
22
|
Matsuura Y, Joti Y, Bagautdinov B, Yutani K. Evaluating the strengths of salt bridges in the CutA1 protein using molecular dynamic simulations: a comparison of different force fields. FEBS Open Bio 2019; 9:1939-1956. [PMID: 31509647 PMCID: PMC6823277 DOI: 10.1002/2211-5463.12731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 11/15/2022] Open
Abstract
Ion–ion interactions (salt bridges) between favorable pairs of charged residues are important for the conformational stability of proteins. Molecular dynamic (MD) simulations are useful for elucidating the interactions among charged residues fluctuating in solution. However, the quality of MD results depends strongly on the force fields used. In this study, we compared the strengths of salt bridges among force fields by performing MD simulations using the CutA1 protein (trimer) from the hyperthermophile Pyrococcus horikoshii (PhCutA1), which has an unusually large proportion of charged residues. The force fields Chemistry at HARvard Macromolecular Mechanics (Charmm)27, Assisted Model Building and Energy Refinement (Amber)99sb, Amber14sb, GROningen Molecular Simulation (Gromos)43a1, and Gromos53a6 were used in combination with two different water models, tip3p (for Charmm27, Amber99sb, and Amber14sb) and simple point charge/extended (for Amber99sb, Gromos43a1, and Gromos53a6), yielding a total of six combinations. The RMSDs of all Cα atoms of PhCutA1 were similar among force fields, except for Charmm27, during 400‐ns MD simulations at 300 K; however, the radius of gyration (Rg) was greater for Amber99sb and shorter for Gromos43a1. The average strengths of salt bridges for each positively charged residue did not differ greatly among force fields, but the strengths at specific sites within the structure depended sensitively on the force field used. In the case of the Gromos group, positively charged residues could engage in favorable interactions with many more charged residues than in the other force fields, especially in loop regions; consequently, the apparent strength at each site was lower.
Collapse
Affiliation(s)
| | - Yasumasa Joti
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | | | | |
Collapse
|
23
|
Ellis-Guardiola K, Rui H, Beckner RL, Srivastava P, Sukumar N, Roux B, Lewis JC. Crystal Structure and Conformational Dynamics of Pyrococcus furiosus Prolyl Oligopeptidase. Biochemistry 2019; 58:1616-1626. [PMID: 30786206 PMCID: PMC6714975 DOI: 10.1021/acs.biochem.9b00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes in the prolyl oligopeptidase family possess unique structures and substrate specificities that are important for their biological activity and for potential biocatalytic applications. The crystal structures of Pyrococcus furiosus ( Pfu) prolyl oligopeptidase (POP) and the corresponding S477C mutant were determined to 1.9 and 2.2 Å resolution, respectively. The wild type enzyme crystallized in an open conformation, indicating that this state is readily accessible, and it contained bound chloride ions and a prolylproline ligand. These structures were used as starting points for molecular dynamics simulations of Pfu POP conformational dynamics. The simulations showed that large-scale domain opening and closing occurred spontaneously, providing facile substrate access to the active site. Movement of the loop containing the catalytically essential histidine into a conformation similar to those found in structures with fully formed catalytic triads also occurred. This movement was modulated by chloride binding, providing a rationale for experimentally observed activation of POP peptidase catalysis by chloride. Thus, the structures and simulations reported in this study, combined with existing biochemical data, provide a number of insights into POP catalysis.
Collapse
Affiliation(s)
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ryan L. Beckner
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Poonam Srivastava
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Narayanasami Sukumar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
24
|
Attri P, Han J, Choi S, Choi EH, Bogaerts A, Lee W. CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep 2018; 8:10218. [PMID: 29977069 PMCID: PMC6033864 DOI: 10.1038/s41598-018-28600-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.
Collapse
Affiliation(s)
- Pankaj Attri
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jeongmin Han
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Sooho Choi
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea.
| |
Collapse
|
25
|
Ion-ion interactions in the denatured state contribute to the stabilization of CutA1 proteins. Sci Rep 2018; 8:7613. [PMID: 29769700 PMCID: PMC5955972 DOI: 10.1038/s41598-018-25825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
In order to elucidate features of the denatured state ensembles that exist in equilibrium with the native state under physiological conditions, we performed 1.4-μs molecular dynamics (MD) simulations at 400 K and 450 K using the monomer subunits of three CutA1 mutants from Escherichia coli: an SH-free mutant (Ec0SH) with denaturation temperature (Td) = 85.6 °C, a hydrophobic mutant (Ec0VV) with Td = 113.3 °C, and an ionic mutant (Ec0VV_6) with Td = 136.8 °C. The occupancy of salt bridges by the six substituted charged residues in Ec0VV_6 was 140.1% at 300 K and 89.5% at 450 K, indicating that even in the denatured state, salt bridge occupancy was high, approximately 60% of that at 300 K. From these results, we can infer that proteins from hyperthermophiles with a high ratio of charged residues are stabilized by a decrease in conformational entropy due to ion–ion interactions in the denatured state. The mechanism must be comparable to the stabilization conferred by disulfide bonds within a protein. This suggests that introduction of charged residues, to promote formation of salt bridges in the denatured state, would be a simple way to rationally design stability-enhanced mutants.
Collapse
|
26
|
Abstract
Inspired by Somero's corresponding state principle that relates protein enhanced thermal stability with mechanical rigidity, we deployed state of the art computational techniques (based on atomistic steered molecular dynamics and Hamiltonian-replica exchange simulations) to study the in silico realization of mechanical and thermal unfolding of two homologous Csp proteins that have evolved to thrive in different thermal environments. By complementing recent single-molecule experiments, we unambiguously show that, for these homologues whose structures are very similar, the increased thermal resistance of the thermophilic variant is not associated with an increased mechanical stability. Our approach provides microscopic insights that are otherwise inaccessible to experimental techniques, and explains why the protein weak spots for thermal and mechanical denaturation are distinct.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University , 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University , 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
27
|
Sawle L, Huihui J, Ghosh K. All-Atom Simulations Reveal Protein Charge Decoration in the Folded and Unfolded Ensemble Is Key in Thermophilic Adaptation. J Chem Theory Comput 2017; 13:5065-5075. [DOI: 10.1021/acs.jctc.7b00545] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas Sawle
- Department of Physics and
Astronomy, University of Denver, Denver, Colorado 80208, United States
| | - Jonathan Huihui
- Department of Physics and
Astronomy, University of Denver, Denver, Colorado 80208, United States
| | - Kingshuk Ghosh
- Department of Physics and
Astronomy, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
28
|
Critical structural fluctuations of proteins upon thermal unfolding challenge the Lindemann criterion. Proc Natl Acad Sci U S A 2017; 114:9361-9366. [PMID: 28808004 DOI: 10.1073/pnas.1707357114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Internal subnanosecond timescale motions are key for the function of proteins, and are coupled to the surrounding solvent environment. These fast fluctuations guide protein conformational changes, yet their role for protein stability, and for unfolding, remains elusive. Here, in analogy with the Lindemann criterion for the melting of solids, we demonstrate a common scaling of structural fluctuations of lysozyme protein embedded in different environments as the thermal unfolding transition is approached. By combining elastic incoherent neutron scattering and advanced molecular simulations, we show that, although different solvents modify the protein melting temperature, a unique dynamical regime is attained in proximity of thermal unfolding in all solvents that we tested. This solvation shell-independent dynamical regime arises from an equivalent sampling of the energy landscape at the respective melting temperatures. Thus, we propose that a threshold for the conformational entropy provided by structural fluctuations of proteins exists, beyond which thermal unfolding is triggered.
Collapse
|
29
|
Stiefler-Jensen D, Schwarz-Linnet T, de Lichtenberg C, Nguyen TTTN, Rand KD, Huang L, She Q, Teilum K. The extraordinary thermal stability of EstA from S. islandicus is independent of post translational modifications. Protein Sci 2017; 26:1819-1827. [PMID: 28681456 DOI: 10.1002/pro.3220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Enzymes from thermophilic and hyper-thermophilic organisms have an intrinsic high stability. Understanding the mechanisms behind their high stability will be important knowledge for the engineering of novel enzymes with high stability. Lysine methylation of proteins is prevalent in Sulfolobus, a genus of hyperthermophilic and acidophilic archaea. Both unspecific and temperature dependent lysine methylations are seen, but the significance of this post-translational modification has not been investigated. Here, we test the effect of eliminating in vivo lysine methylation on the stability of an esterase (EstA). The enzyme was purified from the native host S. islandicus as well as expressed as a recombinant protein in E. coli, a mesophilic host that does not code for any machinery for in vivo lysine methylation. We find that lysine mono methylation indeed has a positive effect on the stability of EstA, but the effect is small. The effect of the lysine methylation on protein stability is secondary to that of protein expression in E. coli, as the E. coli recombinant enzyme is compromised both on stability and activity. We conclude that these differences are not attributed to any covalent difference between the protein expressed in hyperthermophilic versus mesophilic hosts.
Collapse
Affiliation(s)
| | - Troels Schwarz-Linnet
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| | - Casper de Lichtenberg
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| | - Tam T T N Nguyen
- Department of Pharmacology, University of Copenhagen, København, Denmark
| | - Kasper D Rand
- Department of Pharmacology, University of Copenhagen, København, Denmark
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qunxin She
- Archaea Centre, Department of Biology, University of Copenhagen, København, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| |
Collapse
|
30
|
Pica A, Graziano G. Shedding light on the extra thermal stability of thermophilic proteins. Biopolymers 2017; 105:856-63. [PMID: 27449333 DOI: 10.1002/bip.22923] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022]
Abstract
An entropic stabilization mechanism has recently gained attention and credibility as the physical ground for the extra thermal stability of globular proteins from thermophilic microorganisms. An empirical result, obtained from the analysis of thermodynamic data for a large set of proteins, strengthens the general reliability of the theoretical approach originally devised to rationalize the occurrence of cold denaturation [Graziano, PCCP 2014, 16, 21755-21767]. It is shown that this theoretical approach can readily account for the entropic stabilization mechanism. On decreasing the conformational entropy gain associated with denaturation, the thermal stability of a model globular protein increases markedly.
Collapse
Affiliation(s)
- Andrea Pica
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, Napoli, 80126, Italy
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via Port'Arsa 11, Benevento, 82100, Italy.
| |
Collapse
|
31
|
Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 2016; 42:117-128. [PMID: 28040640 DOI: 10.1016/j.sbi.2016.12.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022]
Abstract
The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design.
Collapse
|
32
|
Khan S, Farooq U, Kurnikova M. Exploring Protein Stability by Comparative Molecular Dynamics Simulations of Homologous Hyperthermophilic, Mesophilic, and Psychrophilic Proteins. J Chem Inf Model 2016; 56:2129-2139. [DOI: 10.1021/acs.jcim.6b00305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Khan
- Department
of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Maria Kurnikova
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
33
|
Abstract
![]()
We review how major cell behaviors,
such as bacterial growth laws,
are derived from the physical chemistry of the cell’s proteins.
On one hand, cell actions depend on the individual biological functionalities
of their many genes and proteins. On the other hand, the common physics
among proteins can be as important as the unique biology that distinguishes
them. For example, bacterial growth rates depend strongly on temperature.
This dependence can be explained by the folding stabilities across
a cell’s proteome. Such modeling explains how thermophilic
and mesophilic organisms differ, and how oxidative damage of highly
charged proteins can lead to unfolding and aggregation in aging cells.
Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2–3 times per hour. These time scales
can be explained by protein dynamics (the rates of synthesis and degradation,
folding, and diffusional transport). It rationalizes how bacterial
growth is slowed down by added salt. In the same way that the behaviors
of inanimate materials can be expressed in terms of the statistical
distributions of atoms and molecules, some cell behaviors can be expressed
in terms of distributions of protein properties, giving insights into
the microscopic basis of growth laws in simple cells.
Collapse
Affiliation(s)
- Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver , Denver, Colorado 80209, United States
| | - Adam M R de Graff
- Laufer Center for Physical and Quantitative Biology and Departments of Chemistry and Physics and Astronomy, Stony Brook University , Stony Brook, New York 11794, United States
| | - Lucas Sawle
- Department of Physics and Astronomy, University of Denver , Denver, Colorado 80209, United States
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology and Departments of Chemistry and Physics and Astronomy, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
34
|
Katava M, Kalimeri M, Stirnemann G, Sterpone F. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J Phys Chem B 2016; 120:2721-30. [DOI: 10.1021/acs.jpcb.6b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Katava
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Department
of Physics, Tampere University of Technology, Tampere, Finland
| | - Guillaume Stirnemann
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
35
|
Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins. J Mol Graph Model 2016; 64:85-93. [DOI: 10.1016/j.jmgm.2016.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/03/2016] [Indexed: 11/21/2022]
|
36
|
Stirnemann G, Sterpone F. Recovering Protein Thermal Stability Using All-Atom Hamiltonian Replica-Exchange Simulations in Explicit Solvent. J Chem Theory Comput 2015; 11:5573-7. [DOI: 10.1021/acs.jctc.5b00954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie
Théorique, Institut de Biologie Physico-Chimique, Univ. Paris
Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie
Théorique, Institut de Biologie Physico-Chimique, Univ. Paris
Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
37
|
Chen A, Li Y, Nie J, McNeil B, Jeffrey L, Yang Y, Bai Z. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Enzyme Microb Technol 2015. [DOI: 10.1016/j.enzmictec.2015.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Chakraborty D, Taly A, Sterpone F. Stay Wet, Stay Stable? How Internal Water Helps the Stability of Thermophilic Proteins. J Phys Chem B 2015; 119:12760-70. [PMID: 26335353 DOI: 10.1021/acs.jpcb.5b05791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a systematic computational investigation of the internal hydration of a set of homologous proteins of different stability content and molecular complexities. The goal of the study is to verify whether structural water can be part of the molecular mechanisms ensuring enhanced stability in thermophilic enzymes. Our free-energy calculations show that internal hydration in the thermophilic variants is generally more favorable, and that the cumulated effect of wetting multiple sites results in a meaningful contribution to stability. Moreover, thanks to a more effective capability to retain internal water, some thermophilic proteins benefit by a systematic gain from internal wetting up to their optimal working temperature. Our work supports the idea that internal wetting can be viewed as an alternative molecular variable to be tuned for increasing protein stability.
Collapse
Affiliation(s)
- Debashree Chakraborty
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
39
|
Singh B, Bulusu G, Mitra A. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations. J Phys Chem B 2015; 119:392-409. [PMID: 25495458 DOI: 10.1021/jp5079554] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Improving the thermostability of industrial enzymes is an important protein engineering challenge. Point mutations, induced to increase thermostability, affect the structure and dynamics of the target protein in several ways and thus can also affect its activity. There appears to be no general rules for improving the thermostabilty of enzymes without adversely affecting their enzymatic activity. We report MD simulations, of wild type Bacillus subtilis lipase (WT) and its six progressively thermostable mutants (2M, 3M, 4M, 6M, 9M, and 12M), performed at different temperatures, to address this issue. Less thermostable mutants (LTMs), 2M to 6M, show WT-like dynamics at all simulation temperatures. However, the two more thermostable mutants (MTMs) show the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. They show a deep and rugged free-energy landscape, confining them within a near-native conformational space by conserving noncovalent interactions, and thus protecting them from possible aggregation. In contrast, the LTMs having marginally higher thermostabilities than WT show greater probabilities of accessing non-native conformations, which, due to aggregation, have reduced possibilities of reverting to their respective native states under refolding conditions. Our analysis indicates the possibility of nonadditive effects of point mutations on the conformational stability of LTMs.
Collapse
Affiliation(s)
- Bipin Singh
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology Hyderabad (IIIT-H) , Gachibowli, Hyderabad, 500032, India
| | | | | |
Collapse
|
40
|
Kalimeri M, Derreumaux P, Sterpone F. Are coarse-grained models apt to detect protein thermal stability? The case of OPEP force field. JOURNAL OF NON-CRYSTALLINE SOLIDS 2015; 407:494-501. [PMID: 28100926 PMCID: PMC5238951 DOI: 10.1016/j.jnoncrysol.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present the first investigation of the kinetic and thermodynamic stability of two homologous thermophilic and mesophilic proteins based on the coarse-grained model OPEP. The object of our investigation is a pair of G-domains of relatively large size, 200 amino acids each, with an experimental stability gap of about 40 K. The OPEP force field is able to maintain stable the fold of these relatively large proteins within the hundrend-nanosecond time scale without including external constraints. This makes possible to characterize the conformational landscape of the folded protein as well as to explore the unfolding. In agreement with all-atom simulations used as a reference, we show that the conformational landscape of the thermophilic protein is characterized by a larger number of substates with slower dynamics on the network of states and more resilient to temperature increase. Moreover, we verify the stability gap between the two proteins using replica-exchange simulations and estimate a difference between the melting temperatures of about 23 K, in fair agreement with experiment. The detailed investigation of the unfolding thermodynamics, allows to gain insight into the mechanism underlying the enhanced stability of the thermophile relating it to a smaller heat capacity of unfolding.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005, Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, France
- Corresponding author.
| |
Collapse
|
41
|
Kalimeri M, Girard E, Madern D, Sterpone F. Interface matters: the stiffness route to stability of a thermophilic tetrameric malate dehydrogenase. PLoS One 2014; 9:e113895. [PMID: 25437494 PMCID: PMC4250060 DOI: 10.1371/journal.pone.0113895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/01/2014] [Indexed: 11/19/2022] Open
Abstract
In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Girard
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
- Commissariat à l'Energie Atomique et aux énergies alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Dominique Madern
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
- Commissariat à l'Energie Atomique et aux énergies alternatives, Institut de Biologie Structurale, Grenoble, France
- * E-mail: (FS); (DM)
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (FS); (DM)
| |
Collapse
|
42
|
Oteri F, Baaden M, Lojou E, Sacquin-Mora S. Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. J Phys Chem B 2014; 118:13800-11. [DOI: 10.1021/jp5089965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesco Oteri
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elisabeth Lojou
- Bioénergétique
et Ingénierie des Protéines, Institut de Microbiologie
de la Méditerranée, CNRS, Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex, France
| | - Sophie Sacquin-Mora
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
43
|
Frappier V, Najmanovich R. Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering. Protein Sci 2014; 24:474-83. [PMID: 25367089 DOI: 10.1002/pro.2592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/10/2022]
Abstract
We recently introduced ENCoM, an elastic network atomic contact model, as the first coarse-grained normal mode analysis method that accounts for the nature of amino acids and can predict the effect of mutations on thermostability based on changes vibrational entropy. In this proof-of-concept article, we use pairs of mesophile and thermophile homolog proteins with identical structures to determine if a measure of vibrational entropy based on normal mode analysis can discriminate thermophile from mesophile proteins. We observe that in around 60% of cases, thermophile proteins are more rigid at equivalent temperatures than their mesophile counterpart and this difference can guide the design of proteins to increase their thermostability through series of mutations. We observe that mutations separating thermophile proteins from their mesophile orthologs contribute independently to a decrease in vibrational entropy and discuss the application and implications of this methodology to protein engineering.
Collapse
Affiliation(s)
- Vincent Frappier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke, J1H 5N4, Quebec, Canada
| | | |
Collapse
|
44
|
Rahaman O, Kalimeri M, Melchionna S, Hénin J, Sterpone F. Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains. J Phys Chem B 2014; 119:8939-49. [PMID: 25317828 DOI: 10.1021/jp507571u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we address the question of whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologous G domains of different stability: the mesophilic G domain of the elongation factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-1α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time scale, we show that both proteins host water molecules in internal cavities and that these molecules exchange with the external solution in the nanosecond time scale. The hydration free energy of these sites evaluated via extensive calculations is found to be favorable for both systems, with the hyperthermophilic protein offering a slightly more favorable environment to host water molecules. We estimate that, under ambient conditions, the free energy gain due to internal hydration is about 1.3 kcal/mol in favor of the hyperthermophilic variant. However, we also find that, at the high working temperature of the hyperthermophile, the cavities are rather dehydrated, meaning that under extreme conditions other molecular factors secure the stability of the protein. Interestingly, we detect a clear correlation between the hydration of internal cavities and the protein conformational landscape. The emerging picture is that internal hydration is an effective observable to probe the conformational landscape of proteins. In the specific context of our investigation, the analysis confirms that the hyperthermophilic G domain is characterized by multiple states and it has a more flexible structure than its mesophilic homologue.
Collapse
Affiliation(s)
- Obaidur Rahaman
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Simone Melchionna
- ‡CNR-IPCF, Consiglio Nazionale delle Ricerche, Physics Dept., Univ. La Sapienza, P.le A. Moro 2, 00185, Rome, Italy
| | - Jérôme Hénin
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
45
|
Sterpone F, Melchionna S, Tuffery P, Pasquali S, Mousseau N, Cragnolini T, Chebaro Y, St-Pierre JF, Kalimeri M, Barducci A, Laurin Y, Tek A, Baaden M, Nguyen PH, Derreumaux P. The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chem Soc Rev 2014; 43:4871-93. [PMID: 24759934 PMCID: PMC4426487 DOI: 10.1039/c4cs00048j] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows the study of single protein properties, DNA-RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the ongoing developments.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Molecular basis of thermal stability in truncated (2/2) hemoglobins. Biochim Biophys Acta Gen Subj 2014; 1840:2281-8. [PMID: 24704259 DOI: 10.1016/j.bbagen.2014.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures. METHODS We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position. RESULTS The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible. CONCLUSIONS This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability. GENERAL SIGNIFICANCE These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins.
Collapse
|
47
|
Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β-fructofuranosidase. Appl Microbiol Biotechnol 2014; 98:6667-77. [PMID: 24633372 DOI: 10.1007/s00253-014-5645-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
A β-fructofuranosidase from Microbacterium saccharophilum K-1 (formerly known as Arthrobacter sp. K-1) is useful for producing the sweetener lactosucrose (4(G)-β-D-galactosylsucrose). Thermostability of the β-fructofuranosidase was enhanced by random mutagenesis and saturation mutagenesis. Clones with enhanced thermostability included mutations at residues Thr47, Ser200, Phe447, Phe470, and Pro500. In the highest stability mutant, T47S/S200T/F447P/F470Y/P500S, the half-life at 60 °C was 182 min, 16.5-fold longer than the wild-type enzyme. A comparison of the crystal structures of the full-length wild-type enzyme and three mutants showed that various mechanisms appear to be involved in thermostability enhancement. In particular, the replacement of Phe447 with Val or Pro induced a conformational change in an adjacent residue His477, which results in the formation of a new hydrogen bond in the enzyme. Although the thermostabilization mechanisms of the five residue mutations were explicable on the basis of the crystal structures, it appears to be difficult to predict which amino acid residues should be modified to obtain thermostabilized enzymes.
Collapse
|
48
|
Szamborska-Gbur A, Rymarczyk G, Orłowski M, Kuzynowski T, Jakób M, Dziedzic-Letka A, Górecki A, Dobryszycki P, Ożyhar A. The molecular basis of conformational instability of the ecdysone receptor DNA binding domain studied by in silico and in vitro experiments. PLoS One 2014; 9:e86052. [PMID: 24465866 PMCID: PMC3900457 DOI: 10.1371/journal.pone.0086052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, regulates gene expression associated with molting and metamorphosis in insects. The DNA binding domains (DBDs) of the Usp and EcR play an important role in their DNA-dependent heterodimerization. Analysis of the crystal structure of the UspDBD/EcRDBD heterocomplex from Drosophila melanogaster on the hsp27 gene response element, suggested an appreciable similarity between both DBDs. However, the chemical denaturation experiments showed a categorically lower stability for the EcRDBD in contrast to the UspDBD. The aim of our study was an elucidation of the molecular basis of this intriguing instability. Toward this end, we mapped the EcRDBD amino acid sequence positions which have an impact on the stability of the EcRDBD. The computational protein design and in vitro analyses of the EcRDBD mutants indicate that non-conserved residues within the α-helix 2, forming the EcRDBD hydrophobic core, represent a specific structural element that contributes to instability. In particular, the L58 appears to be a key residue which differentiates the hydrophobic cores of UspDBD and EcRDBD and is the main reason for the low stability of the EcRDBD. Our results might serve as a benchmark for further studies of the intricate nature of the EcR molecule.
Collapse
Affiliation(s)
| | - Grzegorz Rymarczyk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Tomasz Kuzynowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Agnieszka Dziedzic-Letka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
- * E-mail:
| |
Collapse
|
49
|
Balasco N, Esposito L, De Simone A, Vitagliano L. Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms. Protein Sci 2014; 22:1016-23. [PMID: 23661276 DOI: 10.1002/pro.2279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
It has been recently discovered that the connection of secondary structure elements (ββ-unit, βα- and αβ-units) in proteins follows quite stringent principles regarding the chirality and the orientation of the structural units (Koga et al., Nature 2012;491:222-227). By exploiting these rules, a number of protein scaffolds endowed with a remarkable thermal stability have been designed (Koga et al., Nature 2012;491:222-227). By using structural databases of proteins isolated from either mesophilic or thermophilic organisms, we here investigate the influence of supersecondary associations on the thermal stability of natural proteins. Our results suggest that β-hairpins of proteins from thermophilic organisms are very frequently characterized by shortenings of the loops. Interestingly, this shortening leads to states that display a very strong preference for the most common connectivity of the strands observed in native protein hairpins. The abundance of selective states in these proteins suggests that they may achieve a high stability by adopting a strategy aimed to reduce the possible conformations of the unfolded ensemble. In this scenario, our data indicate that the shortening is effective if it increases the adherence to these rules. We also show that this mechanism may operate in the stabilization of well-known protein folds (thioredoxin and RNase A). These findings suggest that future investigations aimed at defining mechanism of protein stabilization should also consider these effects.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, I-80134, Italy
| | | | | | | |
Collapse
|
50
|
Vaidehi N, Bhattacharya S, Larsen AB. Structure and dynamics of G-protein coupled receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:37-54. [PMID: 24158800 DOI: 10.1007/978-94-007-7423-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell-to-cell communication. They also form the largest superfamily of drug targets. Hence detailed studies of the three dimensional structure and dynamics are critical to understanding the functional role of GPCRs in signal transduction pathways, and for drug design. In this chapter we compare the features of the crystal structures of various biogenic amine receptors, such as β1 and β2 adrenergic receptors, dopamine D3 receptor, M2 and M3 muscarinic acetylcholine receptors. This analysis revealed that conserved residues are located facing the inside of the transmembrane domain in these GPCRs improving the efficiency of packing of these structures. The NMR structure of the chemokine receptor CXCR1 without any ligand bound, shows significant dynamics of the transmembrane domain, especially the helical kink angle on the transmembrane helix6. The activation mechanism of the β2-adrenergic receptor has been studied using multiscale computational methods. The results of these studies showed that the receptor without any ligand bound, samples conformations that resemble some of the structural characteristics of the active state of the receptor. Ligand binding stabilizes some of the conformations already sampled by the apo receptor. This was later observed in the NMR study of the dynamics of human β2-adrenergic receptor. The dynamic nature of GPCRs leads to a challenge in obtaining purified receptors for biophysical studies. Deriving thermostable mutants of GPCRs has been a successful strategy to reduce the conformational heterogeneity and stabilize the receptors. This has lead to several crystal structures of GPCRs. However, the cause of how these mutations lead to thermostability is not clear. Computational studies are beginning to shed some insight into the possible structural basis for the thermostability. Molecular Dynamics simulations studying the conformational ensemble of thermostable mutants have shown that the stability could arise from both enthalpic and entropic factors. There are regions of high stress in the wild type GPCR that gets relieved upon mutation conferring thermostability.
Collapse
Affiliation(s)
- Nagarajan Vaidehi
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500, E. Duarte Road, Duarte, CA, 91010, USA,
| | | | | |
Collapse
|