1
|
Tariq B, Mansha A, Asim S, Kausar A. Effect of Substituents on Solubility, Medicinal, Absorption, Emission and Cationic/Anionic Detection Properties of Anthraquinone Derivatives. J Fluoresc 2024; 34:1527-1544. [PMID: 37646872 DOI: 10.1007/s10895-023-03410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Anthraquinones constitute an important class of compounds with wide applications. The solubility of derivatives at 298.15 K was discussed in ethanol-water solution and at atmospheric pressure, the solubility of 1-amino-4-hydroxy-9,10-anthraquinone (AHAQ) in binary solvents (ethanol-water combinations) was determined. Colour strength and fastening properties depend upon the kind and position of a hydrophobic group connected to the phenoxy ring of Anthraquinone moiety. There is a continuing interest in the creation of novel anthraquinone derivatives with biological activities since they have demonstrated potential for treating multiple sclerosis. For this purpose, by utilizing voltammetric and absorption studies, interactions of various derivatives with calf thymus DNA (ct-DNA) and the cationic surfactant cetyltrimethylammoniumbromide (CTAB) were examined. Here prominent Hydrophobic interaction and electron transfer resulting in binding to CTAB micelles were observed. The polarity index of the media was assessed and associated with the electrochemical parameters. The medicinal behaviour of Anthraquinone derivatives was a result of electron transfer reactions with DNA. UV-Visible and fluorescence properties were due to the transitions between n* and π* orbitals. Large absorption band with low dichroic ratio was characteristic of various derivatives of Anthraquinone. Presence of -NH group proves various derivatives remarkable calorimetric and anionic sensors.
Collapse
Affiliation(s)
- Bushra Tariq
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan.
| | - Abida Kausar
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
2
|
Kongsak C, Chiangraeng N, Rithchumpon P, Nimmanpipug P, Meepowpan P, Tuntulani T, Thavornyutikarn P. Turn-on fluorogenic sensors based on an anthraquinone signaling unit for the detection of Zn(II) and Cd(II) ions. Org Biomol Chem 2023; 21:7367-7381. [PMID: 37655509 DOI: 10.1039/d3ob01223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Turn-on fluorescent chemosensors based on an anthraquinone moiety, N,N'-(9,10-dioxo-9,10-dihydroanthracene-1,8-diyl)bis(2-(bis(pyridin-2-ylmethyl)amino)acetamide) (1) and N,N'-(9,10-dioxo-9,10-dihydroanthracene-2,6-diyl)bis(2-(bis(pyridin-2-ylmethyl)amino)acetamide) (2), have been successfully synthesized with the overall yields of 61% and 90%, respectively. The structures of both chemosensors 1 and 2 were elucidated using several spectroscopic techniques such as 1H NMR, 13C NMR, 2D-NMR, FTIR and HRMS. The target chemosensor 1 is a promising tool for the detection of trace levels of d10 metal ions, such as Zn(II) and Cd(II) ions, by exhibiting a significant fluorescence enhancement via a turn-on photoinduced electron transfer (PET) mechanism with a rapid and highly reproducible signal, and low detection limit values of 0.408 μM and 0.246 μM, for Zn(II) and Cd(II), respectively.
Collapse
Affiliation(s)
- Chawanakorn Kongsak
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Graduate School, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand
| | - Natthiti Chiangraeng
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan Bangkok 10330, Thailand
| | - Praput Thavornyutikarn
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Ruthenium(II) Complexes with (3-Polyamino)phenanthrolines: Synthesis and Application in Sensing of Cu(II) Ions. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work deals with the development of water-soluble optical sensors based on ruthenium(II) tris(diimine) complexes that exhibit high molar absorptivity and are emissive in aqueous media. Palladium-catalyzed arylation of polyamines with 3-bromo-1,10-phenanthroline (Brphen) and [Ru(bpy)2(Brphen)](PF6)2 (bpy = 2,2’-bipyridine) was explored to prepare Ru2+ complexes with 1,10-phenanthrolines (phen) substituted by linear polyamines (PAs) at position 3 of the heterocycle ([Ru(bpy)2(phen⎼PA)](PF6)2). The most convenient synthetic pathway leading to the target molecular probes includes the preparation of phen⎼PA ligands, followed by ruthenium complexation using cis-Ru(bpy)2Cl2. Complexes bearing a polyamine chain directly linked to phenanthroline core are emissive in aqueous media and their quantum yields are comparable to that of parent [Ru(bpy)3](PF6)2. Their structure can be easily adapted for detection of various analytes by modification of amine groups. As an example, we prepared the emissive complex Ru(N2P2phen) which is suitable for the dual channel (spectrophotometry and luminescence (ON–OFF probe)) selective detection of Cu2+ ions at the physiological pH levels with limits of detection (LOD) by spectrophotometry and fluorescence spectroscopy equal to 9 and 6 μM, respectively, that is lower than the action level in drinking water for copper as prescribed by the US Environmental Protection Agency.
Collapse
|
4
|
Abel AS, Zenkov IS, Averin AD, Cheprakov AV, Bessmertnykh-Lemeune AG, Orlinson BS, Beletskaya IP. Tuning the Luminescent Properties of Ruthenium(II) Amino-1,10-Phenanthroline Complexes by Varying the Position of the Amino Group on the Heterocycle. Chempluschem 2020; 84:498-503. [PMID: 31943904 DOI: 10.1002/cplu.201900206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Indexed: 01/29/2023]
Abstract
Eight 1,10-phenanthrolines bearing one or two 2-(1-adamantyloxy)ethylamino substituents attached to different positions of the heterocyclic core were prepared according to SN Ar or palladium-catalyzed amination reactions. Their reaction with cis-Ru(bpy)2 Cl2 (bpy=2,2'-bipyridine) was investigated and Ru(bpy)2 (L)(PF6 )2 (phen=1,10-phenanthroline) (L=amino-substituted 1,10-phenanthroline) complexes were obtained in good yields. The electronic structure and emissive properties of these complexes are strongly dependent on the position of the amino substituent in the heterocycle. Emission bands of the complexes bearing 2- and 4-substituted 1,10-phenanthroline ligands are red-shifted (up to 56 nm) and less intense compared to that of the parent [Ru(phen)(bpy)2 ](PF6 )2 . In contrast, the introduction of the substituent in 3- or 5-position of 1,10-phenanthroline ring induces only small decrease of luminescence and the brightness of the complex with the 3-substituted ligand is comparable to that of the parent complex.
Collapse
Affiliation(s)
- Anton S Abel
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | - Ilya S Zenkov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | - Alexei D Averin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia.,Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Andrey V Cheprakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | | | - Boris S Orlinson
- Volgograd State Technical University, Prosp. Lenina, 28, Volgograd, 400131, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia.,Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Pr. 31, Moscow, 119071, Russia
| |
Collapse
|
5
|
Abel AS, Averin AD, Cheprakov AV, Roznyatovsky VA, Denat F, Bessmertnykh-Lemeune A, Beletskaya IP. 6-Polyamino-substituted quinolines: synthesis and multiple metal (Cu II, Hg II and Zn II) monitoring in aqueous media. Org Biomol Chem 2019; 17:4243-4260. [PMID: 30860543 DOI: 10.1039/c9ob00259f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective palladium-catalyzed arylation of polyamines with 6-bromoquinoline has been explored to prepare chelators for the detection of metal cations in aqueous media. The introduction of a single aromatic moiety into non-protected polyamine molecules was achieved using the commercially available Pd(dba)2/BINAP precatalyst to afford nitrogen chelators, in which the aromatic signalling unit is directly attached to the polyamine residue. Water-soluble receptors were then synthesized using N-alkylation of these polyamines by hydrophilic coordinating residues. By combining rich photophysical properties of the 6-aminoquinoline unit with a high coordination affinity of chelating polyamines and a hydrophilic character of carboxamido-substituted phosphonic acid diesters in a single molecular device, we synthesized chemosensor 5 for selective double-channel (UV-vis and fluorescence spectroscopies) detection of CuII ions in aqueous media at physiological levels. This receptor is suitable for the analysis of drinking water and fabrication of paper test strips for the naked-eye detection of CuII ions under UV-light. By increasing the number of donor sites we also obtained chemosensor 6 which is efficient for the detection of HgII ions. Moreover, chemosensor 6 is also suitable for multiple detection of metal ions because it chelates not only HgII but also CuII and ZnII ions displaying different responses of emission in the presence of these three cations.
Collapse
Affiliation(s)
- Anton S Abel
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Synthesis of polymacrocyclic compounds via Pd-catalyzed amination and evaluation of their derivatives as metal detectors. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
A mini-review is dedicated to the application of Pd(0)-catalyzed amination reactions for the synthesis of polymacrocyclic compounds of various architectures. Such molecules comprise diazacrown ether moieties or structural fragments of tri- and tetraazamacrocycles, polyamine or polyoxadiamine chains of different length and aromatic spacers. Polymacrocyclic compounds thus formed possess an increased number of coordination sites and are suitable for testing as potential receptors of metal cations. Some of these macrocyclic compounds were decorated with the exocyclic dansyl fluorophore group or were coupled with porphyrin units to form polymacrocyclic conjugates. Fluorescent spectra of these compounds were studied in the presence of various metal perchlorates and several macrocycles were found to act as chemosensors or molecular probes for such cations like Cu(II), Al(III), Cr(III).
Collapse
|
7
|
Overview of the chemosensor ligands used for selective detection of anions and metal ions (Zn2+, Cu2+, Ni2+, Co2+, Fe2+, Hg2+). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
|
9
|
Sornosa-Ten A, Jewula P, Fodor T, Brandès S, Sladkov V, Rousselin Y, Stern C, Chambron JC, Meyer M. Effects of preorganization in the chelation of UO22+by hydroxamate ligands: cyclic PIPO−vs.linear NMA−. NEW J CHEM 2018. [DOI: 10.1039/c8nj00166a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thanks to preorganization, 1,2-PIPOH, the six-membered ring cyclic hydroxamic acid, binds uranyl six times more strongly than its linear, methyl-substituted homolog (NMAH).
Collapse
Affiliation(s)
- Alejandra Sornosa-Ten
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Pawel Jewula
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Tamas Fodor
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Vladimir Sladkov
- Institut de Physique Nucléaire d'Orsay (IPNO)
- UMR 8608
- CNRS
- Université Paris Sud
- 91406 Orsay Cedex
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Christine Stern
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Jean-Claude Chambron
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| |
Collapse
|
10
|
Averin AD, Yakushev AA, Maloshitskaya OA, Surby SA, Koifman OI, Beletskaya IP. Synthesis of porphyrin-diazacrown ether and porphyrin-cryptand conjugates for fluorescence detection of copper(II) ions. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1908-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Patil A, Lande DN, Nalkar A, Gejji SP, Chakrovorty D, Gonnade R, Moniz T, Rangel M, Pereira E, Salunke-Gawali S. Binding selectivity of vitamin K3 based chemosensors towards nickel(II) and copper(II) metal ions. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Lukashev NV, Grabovyi GA, Erzunov DA, Kazantsev AV, Latyshev GV, Averin AD, Beletskaya IP. Pd- and Cu-catalyzed approaches in the syntheses of new cholane aminoanthraquinone pincer-like ligands. Beilstein J Org Chem 2017; 13:564-570. [PMID: 28405236 PMCID: PMC5372750 DOI: 10.3762/bjoc.13.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 02/05/2023] Open
Abstract
Cu- and Pd-catalyzed arylation of aminocholanes has been described for the first time. While this Cu-catalyzed protocol provides high yields in reactions of aminocholanes with iodoarenes, Pd catalysis was found to be preferable for the reactions of aminocholanes with dichloroanthraquinones. UV-vis titration of bis(cholanylamino)anthraquinones with a series of cations demonstrated their high binding affinity to Cu2+, Al3+, and Cr3+.
Collapse
Affiliation(s)
- Nikolay V Lukashev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia
| | - Gennadii A Grabovyi
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia
| | - Dmitry A Erzunov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia
| | - Alexey V Kazantsev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia
| | - Gennadij V Latyshev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia
| | - Alexei D Averin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia
| |
Collapse
|
13
|
Bhattacharyya B, Kundu A, Guchhait N, Dhara K. Anthraimidazoledione Based Reversible and Reusable Selective Chemosensors for Fluoride Ion: Naked-Eye, Colorimetric and Fluorescence "ON-OFF". J Fluoresc 2017; 27:1041-1049. [PMID: 28185038 DOI: 10.1007/s10895-017-2038-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/03/2017] [Indexed: 01/23/2023]
Abstract
Novel anthraimidazoledione-based compounds (1-3) are synthesized as selective colorimetric and fluorescent sensors for fluoride ion. The binding properties of the probes (1-3) are studied with different anions in acetonitrile solvent. Spectral red shifts in the absorption spectra and 'turn-off' emission are observed when fluoride is added to 1-3. The striking green to orange color change in the ambient light is thought to be due to the deprotonation of the N-H proton of the imidazole moiety of the probes by the basic F- ion. Interestingly, in all three cases the nonfluorescent probe-F- solutions, on treatment with copper perchlorate, show distinct color change from orange to golden yellow with resumption of fluorescence intensity. Furthermore, the reversibility of sensors (1-3) for the detection of F- ion is tested for four cycles indicating that "ON-OFF-ON" mechanism is operative. Test strip based on sensor 2 acts as a reusable cost-effective F- sensor.
Collapse
Affiliation(s)
- Bhaswati Bhattacharyya
- Department of Chemistry, Government Girls' General Degree College, Kolkata, -700013, India
| | - Arijit Kundu
- Department of Chemistry, Maulana Azad College, Kolkata, -700013, India
| | - Nikhil Guchhait
- Department of Chemistry, University College of Science & Technology, Kolkata, -700009, India.
| | - Kaliprasanna Dhara
- Department of Chemistry, University College of Science & Technology, Kolkata, -700009, India.
| |
Collapse
|
14
|
Ermakova E, Raitman O, Shokurov A, Kalinina M, Selector S, Tsivadze A, Arslanov V, Meyer M, Bessmertnykh-Lemeune A, Guilard R. A metal-responsive interdigitated bilayer for selective quantification of mercury(ii) traces by surface plasmon resonance. Analyst 2016; 141:1912-7. [DOI: 10.1039/c5an02523k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative design of reusable SPR chips allowing the quantitative and selective determination of mercury(ii) at the ppt level is reported.
Collapse
Affiliation(s)
- Elizaveta Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Oleg Raitman
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Alexander Shokurov
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Maria Kalinina
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Sofiya Selector
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Aslan Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Vladimir Arslanov
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon
| | - Roger Guilard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon
| |
Collapse
|
15
|
Abel AS, Averin AD, Beletskaya IP. Oxaazamacrocycles incorporating the quinoline moiety: synthesis and the study of their binding properties towards metal cations. NEW J CHEM 2016. [DOI: 10.1039/c5nj03231h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen- and oxygen-containing macrocycles with an endocyclic quinoline moiety synthesized via Pd(0)-catalyzed amination were found to be prospective fluorescent chemosensors for Cu(ii).
Collapse
Affiliation(s)
- Anton S. Abel
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russia
| | - Alexei D. Averin
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russia
| | | |
Collapse
|
16
|
Stacey OJ, Ward BD, Amoroso AJ, Pope SJA. Near-IR luminescent lanthanide complexes with 1,8-diaminoanthraquinone-based chromophoric ligands. Dalton Trans 2016; 45:6674-81. [DOI: 10.1039/c5dt04351d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,8-Anthraquinone derivatives can act as low energy, visible light sensitizers for near-IR emitting lanthanides.
Collapse
|
17
|
Arslanov V, Ermakova E, Michalak J, Bessmertnykh-Lemeune A, Meyer M, Raitman O, Vysotskij V, Guilard R, Tsivadze A. Design and evaluation of sensory systems based on amphiphilic anthraquinones molecular receptors. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Jewula P, Berthet JC, Chambron JC, Rousselin Y, Thuéry P, Meyer M. Synthesis and Structural Study of Tetravalent (Zr4+, Hf4+, Ce4+, Th4+, U4+) Metal Complexes with Cyclic Hydroxamic Acids. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Laha JK, Satyanarayana Tummalapalli KS, Gupta A. Mechanistic Insights into the Palladium-Catalyzed Domino Synthesis of 10,11-Dihydro-5H-dibenzo[b,e][1,4]diazepines. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
|
21
|
Uglov AN, Bessmertnykh-Lemeune A, Guilard R, Averin AD, Beletskaya IP. Optical methods for the detection of heavy metal ions. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n03abeh004414] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Ranyuk E, Ermakova EV, Bovigny L, Meyer M, Bessmertnykh-Lemeune A, Guilard R, Rousselin Y, Tsivadze AY, Arslanov VV. Towards sensory Langmuir monolayers consisting of macrocyclic pentaaminoanthraquinone. NEW J CHEM 2014. [DOI: 10.1039/c3nj01121f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Palladium-Catalyzed Domino DoubleN-Arylations (Inter- and Intramolecular) of 1,2-Diamino(hetero)arenes witho,o′-Dihalo(hetero)arenes for the Synthesis of Phenazines and Pyridoquinoxalines. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Naphthyl-imidazo-anthraquinones as novel colorimetric and fluorimetric chemosensors for ion sensing. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Ermakova E, Michalak J, Meyer M, Arslanov V, Tsivadze A, Guilard R, Bessmertnykh-Lemeune A. Colorimetric Hg2+ Sensing in Water: From Molecules toward Low-Cost Solid Devices. Org Lett 2013; 15:662-5. [DOI: 10.1021/ol303499v] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elizaveta Ermakova
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, 21078 Dijon Cedex, France, and Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Julien Michalak
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, 21078 Dijon Cedex, France, and Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Michel Meyer
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, 21078 Dijon Cedex, France, and Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Vladimir Arslanov
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, 21078 Dijon Cedex, France, and Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Aslan Tsivadze
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, 21078 Dijon Cedex, France, and Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Roger Guilard
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, 21078 Dijon Cedex, France, and Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, 21078 Dijon Cedex, France, and Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia
| |
Collapse
|