1
|
Green synthesis and characterization of Ag and Ag/Fe3O4 nanocomposites for antimicrobial effect and rhodamine- B dye degradation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Catalytic Activity of Hybrid Iron Oxide Silver Nanoparticles in Methyl Methacrylate Polymerization. Catalysts 2020. [DOI: 10.3390/catal10040422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the challenges in the preparation of poly(methyl methacrylate) (PMMA) is to develop new catalytic systems with improved efficiency. A hybrid iron oxide silver catalyst holds promise in solving this issue. Catalysts were prepared at room temperature by a two-step technique. First, iron oxide nanoparticles were prepared by the reduction of FeCl3 using sodium borohydride (NaBH4) at room temperature. Second, magnetic nanoparticles doped with a series of Ag nanoparticles (Ag, Ag/3 –amino propyltriethoxysilane (APTES) and Ag/poly(ethyleneimine) (PEI)). The prepared catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and Fourier-transform infrared spectroscopy (FTIR). The catalytic activity of Fe, Ag/Fe, PEI–Ag/Fe, and APTES–Ag/Fe in methyl methacrylate (MMA) polymerization was investigated in the presence of O2, N2, NaHSO3, and benzoyl peroxide in bulk or solution conditions. The produced polymer was characterized by gel permeation chromatography (GPC) and proton nuclear magnetic resonance spectroscopy (1HNMR). The structures of PEI–Ag/Fe and APTES–Ag/Fe are assumed. The conversion efficiency was 100%, 100%, 97.6%, and 99.1% using Fe, Ag/Fe, PEI–Ag/Fe, and APTES–Ag/Fe catalysts at the optimum conditions, respectively. Hybrid iron oxide silver nanoparticles are promising catalysts for PMMA preparation.
Collapse
|
4
|
Khabarov YG, Babkin IM, Kuzyakov NY, Veshnyakov VA, Plakhin VA, Orlov AS, Chukhchin DG, Varakin EA. One-step synthesis of a magnetoactive compound. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Liu Y, Cui T, Wu T, Li Y, Tong G. Excellent microwave-absorbing properties of elliptical Fe₃O₄ nanorings made by a rapid microwave-assisted hydrothermal approach. NANOTECHNOLOGY 2016; 27:165707. [PMID: 26962718 DOI: 10.1088/0957-4484/27/16/165707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High-quality elliptical polycrystalline Fe3O4 nanorings (NRs) with continuously tunable size have been synthesized in large amounts via a rapid microwave-assisted hydrothermal approach. The surface-protected glucose reducing/etching/Ostwald ripening mechanism is responsible for the formation of NRs. Ring size can be modulated by selecting iron glycolate nanosheets with various sizes as precursors. The size-dependent magnetic behavior of the NRs was observed. Our research gives insights into the understanding of the microwave absorption mechanism of elliptical Fe3O4 NRs. Owing to their large specific surface area, shape anisotropy, and closed ring-like configuration, elliptical polycrystalline Fe3O4 NRs exhibited significantly enhanced microwave absorption performance compared with Fe3O4 circular NRs, nanosheets, microspheres, nanospindles, and nanotubes. An optimal reflection loss value of -41.59 dB is achieved at 5.84 GHz and R(L) values (≤-20 dB) are observed at 3.2-10.4 GHz. Some new mechanisms including multiple scattering, oscillation resonance absorption, microantenna radiation, and interference are also crucial to the enhanced absorption properties of NRs. These findings indicate that ring-like nanostructures are a promising structure for devising new and effective microwave absorbers.
Collapse
Affiliation(s)
- Yun Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | | | | | | | | |
Collapse
|
6
|
Singh G, Chan H, Udayabhaskararao T, Gelman E, Peddis D, Baskin A, Leitus G, Král P, Klajn R. Magnetic field-induced self-assembly of iron oxide nanocubes. Faraday Discuss 2015; 181:403-21. [DOI: 10.1039/c4fd00265b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Self-assembly of inorganic nanoparticles has been studied extensively for particles having different sizes and compositions. However, relatively little attention has been devoted to how the shape and surface chemistry of magnetic nanoparticles affects their self-assembly properties. Here, we undertook a combined experiment–theory study aimed at better understanding of the self-assembly of cubic magnetite (Fe3O4) particles. We demonstrated that, depending on the experimental parameters, such as the direction of the magnetic field and nanoparticle density, a variety of superstructures can be obtained, including one-dimensional filaments and helices, as well as C-shaped assemblies described here for the first time. Furthermore, we functionalized the surfaces of the magnetic nanocubes with light-sensitive ligands. Using these modified nanoparticles, we were able to achieve orthogonal control of self-assembly using a magnetic field and light.
Collapse
Affiliation(s)
- Gurvinder Singh
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot 76100
- Israel
- Department of Materials Science and Engineering
| | - Henry Chan
- Department of Chemistry
- University of Illinois
- Chicago
- USA
| | - T. Udayabhaskararao
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Elijah Gelman
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Davide Peddis
- Institute of Structure of Matter
- National Research Council (CNR)
- Roma
- Italy
| | - Artem Baskin
- Department of Chemistry
- University of Illinois
- Chicago
- USA
| | - Gregory Leitus
- Chemical Research Support
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Petr Král
- Department of Chemistry
- University of Illinois
- Chicago
- USA
- Department of Physics
| | - Rafal Klajn
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
7
|
|
8
|
Hill LJ, Pyun J. Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6022-32. [PMID: 24467583 DOI: 10.1021/am405786u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this Spotlight on Applications, we describe our recent progress in the preparation of hierarchical one-dimensional (1-D) materials constructed from polymer-coated ferromagnetic cobalt nanoparticles. We begin with a general discussion of nanoparticles capable of 1-D self-organization to form 1-D assemblies, which we term colloidal polymers. The need for efficient, highly directional interactions prompted our investigation with polymer-coated ferromagnetic nanoparticles, which spontaneously form linear assemblies through coupling of north and south magnetic poles present in these single-domain ferromagnetic nanoparticles. These highly directional N-S interactions and the resulting formation of 1-D assemblies can be understood in the context of traditional polymer-forming reactions. The dipolar assembly of these ferromagnetic nanoparticles into chains and binary assemblies while dispersed in organic media has been investigated as a key foundation to form novel magnetic materials and heterostructured nanocomposites. These studies enabled the fabrication of magnetic nanoactuating systems resembling "artificial cilia and flagella". We then discuss our recent efforts to prepare cobalt oxide nanowires using various nanoparticle conversion reactions through a process termed colloidal polymerization. A series of novel functional "colloidal monomers" based on dipolar cobalt nanoparticles were also prepared, incorporating noble metal or semiconductor nanoinclusions to form heterostructured cobalt oxide nanocomposites.
Collapse
Affiliation(s)
- Lawrence J Hill
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | | |
Collapse
|
9
|
Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine 2014; 9:1641-53. [PMID: 24729700 PMCID: PMC3976208 DOI: 10.2147/ijn.s48979] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.
Collapse
Affiliation(s)
- Elizabeth Bull
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London
| | - Seyed Yazdan Madani
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London
| | - Roosey Sheth
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London
| | - Amelia Seifalian
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London
| | - Mark Green
- Department of Physics, King's College London, Strand Campus, London, UK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London ; Royal Free London National Health Service Foundation Trust Hospital, London, UK
| |
Collapse
|
10
|
Chen Z, Xu W, Zhang Z, Geng Z, Tao T, Yang R, Liu R, Xie W, Wang Z. Template-free synthesis and magnetic properties of hollow Cu/Fe3O4 heterodimer sub-microcactus. CrystEngComm 2014. [DOI: 10.1039/c3ce42331j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Zhou S, Chen Q, Hu X, Zhao T. Bifunctional luminescent superparamagnetic nanocomposites of CdSe/CdS-Fe3O4 synthesized via a facile method. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16783b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Wang L, Lou Z, Wang R, Fei T, Zhang T. Ring-like PdO–NiO with lamellar structure for gas sensor application. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16509k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|