1
|
Sadanala BD, Trivedi R. Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities. CHEM REC 2024; 24:e202300347. [PMID: 38984727 DOI: 10.1002/tcr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Indexed: 07/11/2024]
Abstract
The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.
Collapse
Affiliation(s)
- Bhavya Deepthi Sadanala
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Present address, Department of Chemistry, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
2
|
Che S, Behura SK, Berry V. Photo-organometallic, Nanoparticle Nucleation on Graphene for Cascaded Doping. ACS NANO 2019; 13:12929-12938. [PMID: 31609585 DOI: 10.1021/acsnano.9b05484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the doping levels in graphene by modifying the electric potential of interfaced nanostructures is important to understand "cascaded-doping"-based applications of graphene. However, graphene does not have active sites for nanoparticle attachment, and covalently adding functional groups on graphene disrupts its planar sp2-hybridization, affecting its cascaded doping. Here we show a hexahepto (η6) photo-organometallic chemistry to interface nanoparticles on graphene while retaining the sp2-hybridized state of carbon atoms. For testing cascaded doping with ethanol interaction, transition metal oxide nanoparticles (TMONs) (Cr2O3/CrO3, MoO3, and WO3) are attached on graphene. Here, the transition metal forms six σ-bonds and π-back-bonds with the benzenoid rings of graphene, while its opposite face binds to three carbonyl groups, which enable nucleation and growth of TMONs. With a radius size ranging from 50 to 100 nm, the TMONs downshift the Fermi level of graphene (-250 mV; p-doping) via interfacial charge transfer. This is consistent with the blue shift of graphene's G and 2D Raman modes with a hole density of 3.78 × 1012 cm-2. With susceptibility to ethanol, CrxO3 nanoparticles on graphene enable cascaded doping from ethanol that adsorbs on CrxO3, leading to doping of graphene to increase the electrical resistance of the TMONs-graphene hybrid. This nanoparticle-on-graphene construct can have several applications in gas/vapor sensing, electrochemical catalysis, and high-energy-density supercapacitors.
Collapse
Affiliation(s)
- Songwei Che
- Department of Chemical Engineering , University of Illinois at Chicago , 945 W. Taylor Street , Chicago , Illinois 60607 , United States
| | - Sanjay K Behura
- Department of Chemical Engineering , University of Illinois at Chicago , 945 W. Taylor Street , Chicago , Illinois 60607 , United States
| | - Vikas Berry
- Department of Chemical Engineering , University of Illinois at Chicago , 945 W. Taylor Street , Chicago , Illinois 60607 , United States
| |
Collapse
|
3
|
Batuecas M, Luo J, Gergelitsová I, Krämer K, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. Catalytic Asymmetric C-H Arylation of (η 6-Arene)Chromium Complexes: Facile Access to Planar-Chiral Phosphines. ACS Catal 2019; 9:5268-5278. [PMID: 32064145 PMCID: PMC7011738 DOI: 10.1021/acscatal.9b00918] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Indexed: 12/20/2022]
Abstract
A catalytic asymmetric direct C-H arylation of (η6-arene)chromium complexes to obtain planar-chiral compounds is reported. The use of the hemilabile ligand H8-BINAP(O) is key to providing high enantioselectivity in this transformation. We show that this methodology opens the door to the synthesis of a variety of planar-chiral chromium derivatives which can be easily transformed into planar chiral mono- or diphosphines. Mechanistic studies, including synthesis and characterization of Pd and Ag complexes and their detection in the reaction mixture, suggest a Pd-catalyzed/Ag-promoted catalytic system where Ag carries out the C-H activation step.
Collapse
Affiliation(s)
- María Batuecas
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Junfei Luo
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Ivana Gergelitsová
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Katrina Krämer
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Daniel Whitaker
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | | | - Igor Larrosa
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
4
|
Dewangan S, Mishra S, Mawatwal S, Dhiman R, Parida R, Giri S, Wölper C, Chatterjee S. Synthesis of Ferrocene Tethered Heteroaromatic Compounds Using Solid Supported Reaction Method, their Cytotoxic Evaluation and Fluorescence Behavior. ChemistrySelect 2019. [DOI: 10.1002/slct.201901088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Smriti Dewangan
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Sasmita Mishra
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Shradha Mawatwal
- Department of Life ScienceNational Institute of Technology Rourkela Orissa-769008 India
| | - Rohan Dhiman
- Department of Life ScienceNational Institute of Technology Rourkela Orissa-769008 India
| | - Rakesh Parida
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Santanab Giri
- Department of Applied SciencesHaldia Institute of Technology, ICARE Complex Haldia-721657, W.B India
| | - Christoph Wölper
- Department for X-Ray DiffractionInstitut für Anorganische Chemie, Universität Duisburg-Essen D-45117 Essen Germany
| | - Saurav Chatterjee
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| |
Collapse
|
5
|
Sierra MA, Casarrubios L, de la Torre MC. Bio-Organometallic Derivatives of Antibacterial Drugs. Chemistry 2019; 25:7232-7242. [PMID: 30730065 DOI: 10.1002/chem.201805985] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Overuse and misuse of antibacterial drugs has resulted in bacteria resistance and in an increase in mortality rates due to bacterial infections. Therefore, there is an imperative necessity of new antibacterial drugs. Bio-organometallic derivatives of antibacterial agents offer an opportunity to discover new active antibacterial drugs. These compounds are well-characterized products and, in several examples, their antibacterial activities have been studied. Both inhibition of the antibacterial activity and strong increase in the antibiotic activity of the parent drug have been found. The synthesis of the main classes of bio-organometallic derivatives of these drugs, as well as examples of the use of structure-activity relation (SAR) studies to increase the activity and to understand the mode of action of bio-organometallic antimicrobial peptides (BOAMPs) and platensimicyn bio-organometallic mimics is presented in this article.
Collapse
Affiliation(s)
- Miguel A Sierra
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| | - María C de la Torre
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Orgánica General, Juan de la Cierva 3, 28006, Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040, Madrid, Spain
| |
Collapse
|
6
|
Ghosh A, Barik T, Dewangan S, Majhi PK, Sasamori T, Mobin SM, Giri S, Chatterjee S. Selective functionalization of ferrocenyl compounds using a novel solvent free synthetic method for the preparation of bioactive unsymmetrical ferrocenyl derivatives. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Avishek Ghosh
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Tulasi Barik
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Smriti Dewangan
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Paresh Kumar Majhi
- Graduate School of Natural SciencesNagoya City University Nagoya Aichi 467‐8501 Japan
| | - Takahiro Sasamori
- Graduate School of Natural SciencesNagoya City University Nagoya Aichi 467‐8501 Japan
| | - Shaikh M. Mobin
- Schools of Basic ScienceIndian Institute of Technology Indore MP 452017 India
| | - Santanab Giri
- Theoretical Chemistry Laboratory, Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Saurav Chatterjee
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| |
Collapse
|
7
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
8
|
Che S, Jasuja K, Behura SK, Nguyen P, Sreeprasad TS, Berry V. Retained Carrier-Mobility and Enhanced Plasmonic-Photovoltaics of Graphene via ring-centered η 6 Functionalization and Nanointerfacing. NANO LETTERS 2017; 17:4381-4389. [PMID: 28586228 DOI: 10.1021/acs.nanolett.7b01458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Binding graphene with auxiliary nanoparticles for plasmonics, photovoltaics, and/or optoelectronics, while retaining the trigonal-planar bonding of sp2 hybridized carbons to maintain its carrier-mobility, has remained a challenge. The conventional nanoparticle-incorporation route for graphene is to create nucleation/attachment sites via "carbon-centered" covalent functionalization, which changes the local hybridization of carbon atoms from trigonal-planar sp2 to tetrahedral sp3. This disrupts the lattice planarity of graphene, thus dramatically deteriorating its mobility and innate superior properties. Here, we show large-area, vapor-phase, "ring-centered" hexahapto (η6) functionalization of graphene to create nucleation-sites for silver nanoparticles (AgNPs) without disrupting its sp2 character. This is achieved by the grafting of chromium tricarbonyl [Cr(CO)3] with all six carbon atoms (sigma-bonding) in the benzenoid ring on graphene to form an (η6-graphene)Cr(CO)3 complex. This nondestructive functionalization preserves the lattice continuum with a retention in charge carrier mobility (9% increase at 10 K); with AgNPs attached on graphene/n-Si solar cells, we report an ∼11-fold plasmonic-enhancement in the power conversion efficiency (1.24%).
Collapse
Affiliation(s)
- Songwei Che
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - Kabeer Jasuja
- Department of Chemical Engineering, Indian Institute of Technology , Gandhinagar, Palaj, Gujarat 382355, India
| | - Sanjay K Behura
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - Phong Nguyen
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - T S Sreeprasad
- Center for Materials & Sensor Characterization, College of Engineering, and the Polymer Institute, The University of Toledo , Toledo, Ohio 43606, United States
| | - Vikas Berry
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Iglesias BA, Back DF, Hörner M, Crespan ER, Broch F. The first supramolecular-assembling structure of [PbII {O2N(C6H4)NNN(O)Ph}2] through metal–η6arene π-interactions: Synthesis and X-ray characterization of aryl-substituted triazenide lead(II) complex. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Patra M, Ingram K, Pierroz V, Ferrari S, Spingler B, Gasser RB, Keiser J, Gasser G. [(η6-Praziquantel)Cr(CO)3] Derivatives with Remarkable In Vitro Anti-schistosomal Activity. Chemistry 2013; 19:2232-5. [PMID: 23296750 DOI: 10.1002/chem.201204291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Malay Patra
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Deepthi SB, Trivedi R, Giribabu L, Sujitha P, Kumar CG. Effect of amide-triazole linkers on the electrochemical and biological properties of ferrocene-carbohydrate conjugates. Dalton Trans 2013; 42:1180-90. [DOI: 10.1039/c2dt31927f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Albada HB, Chiriac AI, Wenzel M, Penkova M, Bandow JE, Sahl HG, Metzler-Nolte N. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups. Beilstein J Org Chem 2012; 8:1753-64. [PMID: 23209509 PMCID: PMC3511009 DOI: 10.3762/bjoc.8.200] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/06/2012] [Indexed: 11/23/2022] Open
Abstract
A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO) and ruthenocene (RcCO) was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2–6 µM for RcCO-W(RW)2 and 1–11 µM for (RW)3 were determined. Interestingly, W(RW)2-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW)2- and (RW)3-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW)2-peptide versus killing kinetics of the (RW)3 derivative showed faster reduction of the colony forming units for the RcCO-W(RW)2-peptide, although MIC values indicated higher activity for the (RW)3-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW)3 and 250 µg/mL for RcCO-W(RW)2. In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7) showed that the (RW)3-peptide had an IC50 value of ~140 µM and the RcW(RW)2 one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to a membrane-based mode of action for these two peptides, each having different kinetic parameters.
Collapse
Affiliation(s)
- H Bauke Albada
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Patra M, Gasser G, Metzler-Nolte N. Small organometallic compounds as antibacterial agents. Dalton Trans 2012; 41:6350-8. [PMID: 22411216 DOI: 10.1039/c2dt12460b] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The emergence of bacterial resistance to commercial antibiotics is an issue of global importance. During the last two decades, the number of antibacterial agents that have been discovered and introduced into the market has steadily declined and failed to meet the challenges posed by rapidly increasing resistance of the pathogens against common antibacterial drugs. The development of new classes of compounds to control the virulence of the pathogens is therefore urgently required. This perspective describes the historical development in brief and recent advances on the preparation of small organometallic compounds as new classes of antibacterial agents with potential for clinical development.
Collapse
Affiliation(s)
- Malay Patra
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
14
|
Patra M, Gasser G, Wenzel M, Merz K, Bandow JE, Metzler-Nolte N. Sandwich and Half-Sandwich Derivatives of Platensimycin: Synthesis and Biological Evaluation. Organometallics 2012. [DOI: 10.1021/om201146c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Malay Patra
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| | - Gilles Gasser
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich,
Switzerland
| | - Michaela Wenzel
- Lehrstuhl für
Biologie
der Mikroorganismen, Fakultät
für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstrasse
150, D-44801 Bochum, Germany
| | - Klaus Merz
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| | - Julia E. Bandow
- Lehrstuhl für
Biologie
der Mikroorganismen, Fakultät
für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstrasse
150, D-44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| |
Collapse
|