1
|
Suzuki M, Hayashi T, Hikino T, Kishi M, Matsuno T, Wada H, Kuroda K, Shimojima A. Integrated Extrinsic and Intrinsic Self-Healing of Polysiloxane Materials by Cleavable Molecular Cages Encapsulating Fluoride Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303655. [PMID: 37505433 PMCID: PMC10520642 DOI: 10.1002/advs.202303655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Self-healing ability is crucial to increasing the lifetime and reliability of materials. In this study, spatiotemporal control of the healing of a polysiloxane material is achieved using a cleavable cage compound encapsulating a fluoride ion (F- ), which triggeres the dynamic rearrangement of the siloxane (Si-O-Si) networks. A self-healing siloxane-based elastomer is prepared by cross-linking polydimethylsiloxane (PDMS) with a F- -encapsulating cage-type germoxane (Ge-O-Ge) compound. This material can self-heal repeatedly under humid conditions. The F- released by hydrolytic cleavage of the cage framework contributes to rejoining of the cut pieces by promoting the local rearrangement of the siloxane networks. The use of a molecular cage encapsulating a catalyst for dynamic bond rearrangement provides a new concept for designing self-healing polysiloxane materials based on integrated extrinsic and intrinsic mechanisms.
Collapse
Affiliation(s)
- Mai Suzuki
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Taiki Hayashi
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Takuya Hikino
- Department of Advanced Science and EngineeringFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Masafumi Kishi
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Takamichi Matsuno
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| | - Hiroaki Wada
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| | - Kazuyuki Kuroda
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| | - Atsushi Shimojima
- Department of Applied ChemistryFaculty of Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
- Kagami Memorial Research Institute for Materials Science and TechnologyWaseda University2‐8‐26 Nishiwaseda, Shinjuku‐kuTokyo169‐0051Japan
| |
Collapse
|
2
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
3
|
Xiong S, Nanda Kishore M, Zhou W, He Q. Recent advances in selective recognition of fluoride with macrocyclic receptors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Hayashi T, Murase N, Sato N, Fujino K, Sugimura N, Wada H, Kuroda K, Shimojima A. Fluoride Ion-Encapsulated Germoxane Cages Modified with Organosiloxane Chains as Anionic Components of Ionic Liquids. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taiki Hayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Nanako Murase
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Naoto Sato
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Koki Fujino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Natsuhiko Sugimura
- Materials Characterization Central Laboratory, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroaki Wada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
5
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. The Phosphorus Bond, or the Phosphorus-Centered Pnictogen Bond: The Covalently Bound Phosphorus Atom in Molecular Entities and Crystals as a Pnictogen Bond Donor. Molecules 2022; 27:molecules27051487. [PMID: 35268588 PMCID: PMC8911988 DOI: 10.3390/molecules27051487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. In this overview, we provide the reader with a snapshot of the nature, and possible occurrences, of phosphorus-centered pnictogen bonding in illustrative chemical crystal systems drawn from the ICSD (Inorganic Crystal Structure Database) and CSD (Cambridge Structural Database) databases, some of which date back to the latter part of the last century. The illustrative systems discussed are expected to assist as a guide to researchers in rationalizing phosphorus-centered pnictogen bonding in the rational design of molecular complexes, crystals, and materials and their subsequent characterization.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence:
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| |
Collapse
|
6
|
Dankert F, Hänisch C. Siloxane Coordination Revisited: Si−O Bond Character, Reactivity and Magnificent Molecular Shapes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fabian Dankert
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Carsten Hänisch
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| |
Collapse
|
7
|
Hayashi T, Sato N, Wada H, Shimojima A, Kuroda K. Variation of counter quaternary ammonium cations of anionic cage germanoxanes as building blocks of nanoporous materials. Dalton Trans 2021; 50:8497-8505. [PMID: 34047738 DOI: 10.1039/d1dt01122g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double-four ring (D4R)-type cage germanoxanes, having a fluoride anion in the cage, contain organic ammonium cations as counter cations outside the cage, and they are attractive as unique nano-building blocks of anionic porous materials. Although the variety of counter cations directly included in the cage germanoxane synthesis is limited, this study demonstrates that other tetraalkylammonium cations can be introduced by cation exchange in both discrete and cross-linked states. Tetraethylammonium (TEA) of a discrete cage germanoxane was replaced with tetrabutylammonium (TBA) in an organic solvent, which provides another starting material. TEA and TBA cations in cross-linked networks formed by hydrosilylation reactions of dimethylvinylsilylated cage germanoxanes with various oligosiloxanes as linkers were exchanged with tetramethylammonium (TMA) cations. The variation in the pore volume, which depends on the type of introduced counter cations and oligosiloxane linkers, is verified. In terms of bottom-up synthesis of nanoporous materials from cage-type germanoxanes, the selection of both the counter cation and cross-linker is important to vary the porosity.
Collapse
Affiliation(s)
- Taiki Hayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | | | | | | | | |
Collapse
|
8
|
Muya JT, Donald KJ, Ceulemans A, Parish C. A comparison of the chemical bonding and reactivity of Si 8H 8O 12 and Ge 8H 8O 12: A theoretical study. J Chem Phys 2021; 154:164305. [PMID: 33940821 DOI: 10.1063/5.0046059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have analyzed the chemical bonding and reactivity in the cubic molecule octahydridosilsesquioxane, Si8H8O12, and its counterpart Ge8H8O12 by means of ab initio quantum chemical methods and group theory. Density functional theory and MP2 methods combined with the basis sets 6-311+G(d) and 6-311++G(2d,p) were used for geometry optimization and vibrational frequency analysis. The geometries of Si8H8O12 and Ge8H8O12 are unstable under Oh symmetry and distort to the rare Th molecular symmetry. The energy gained from this pseudo-Jahn-Teller distortion ranges from 0.78 to 6.14 kcal mol-1 depending on methodological treatment. The Fukui functions and the molecular electrostatic potential were both used as DFT-based reactivity descriptors. Our study shows that Si8H8O12 and Ge8H8O12 are both hard amphoteric molecules. The cavity within each cage is acidic and able to encapsulate hard small bases such as F-. The exterior of the cages is basic and can form stable exohedral complexes with hard acids, as in the case of H+. The insertion of F- in Si8H8O12 and Ge8H8O12 cages gives the most stable endohedral complexes of the series studied, characterized by formation energies of -3.50 and -3.45 eV at CAM-B3LYP/6-311+G(d) and -3.61 and -3.68 eV at the MP2/6-311++G(d,p) level, respectively. The calculated formation energies of the exohedral and endohedral complexes align with the DFT reactivity descriptor analysis.
Collapse
Affiliation(s)
- Jules Tshishimbi Muya
- Department of Chemistry, Faculty of Sciences, University of Kinshasa, Kinshasa, DR Congo and Research Center for Theoretical Chemistry and Physics in Central Africa, Faculty of Science, University of Kinshasa, Kinshasa, DR Congo
| | - Kelling J Donald
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, USA
| | | | - Carol Parish
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, USA
| |
Collapse
|
9
|
Laird M, Totée C, Gaveau P, Silly G, Van der Lee A, Carcel C, Unno M, Bartlett JR, Wong Chi Man M. Functionalised polyhedral oligomeric silsesquioxane with encapsulated fluoride - first observation of fluxional SiF interactions in POSS. Dalton Trans 2021; 50:81-89. [PMID: 33216075 DOI: 10.1039/d0dt03057k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a styryl functionalised POSS incorporating an encapsulated fluoride ion within a (SiO1.5)8 cage (T8-F) is reported. It was characterised by single crystal XRD, MALDI-MS, FTIR, solution (29Si, 19F, 13C, 1H) and solid state (29Si, 19F) NMR. In the absence of 1H decoupling, the 29Si solution NMR spectrum exhibited a triplet of doublets. In contrast, 1H, 19F and 1H/19F double-decoupling resulted in two, three and one signal, respectively, being consistent with a single Si site whose 29Si NMR signal is modulated by both the proximal aromatic-ring protons and fluoride. The associated SiF coupling constant (2.5 Hz) is substantially lower than expected for a covalent Si-F bond and arises from a fluxional SiF covalent effect in which the F- interacts equivalently with all eight Si atoms. Additional variable temperature NMR studies demonstrated a threshold at -5 °C below which no SiF interactions are observed, and above which an increasing SiF covalent character occurs.
Collapse
Affiliation(s)
- Mathilde Laird
- ICGM Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Laird M, Gaveau P, Trens P, Carcel C, Unno M, Bartlett JR, Wong Chi Man M. Post-synthesis modification of functionalised polyhedral oligomeric silsesquioxanes with encapsulated fluoride – enhancing reactivity of T 8-F POSS for materials synthesis. NEW J CHEM 2021. [DOI: 10.1039/d0nj06008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The first successful approach for modifying poorly reactive POSS containing F− (T8-F) and incorporating intact T8-F within a nanohybrid material is described.
Collapse
Affiliation(s)
| | | | | | | | - Masafumi Unno
- Department of Chemistry and Chemical Biology
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515
- Japan
| | | | | |
Collapse
|
11
|
Temnikov MN, Muzafarov AM. Polyphenylsilsesquioxanes. New structures-new properties. RSC Adv 2020; 10:43129-43152. [PMID: 35514902 PMCID: PMC9058125 DOI: 10.1039/d0ra07854a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022] Open
Abstract
The review describes the synthesis and properties of various forms of polyphenylsilsesquioxane (PPSQ). Among the forms described, we present the well-known ladder (l-PPSQ) and polyhedral (p-PPSQ) forms, from the first studies to the latest achievements. The practical prospects of these compounds and the possibility of their modification are estimated. These PPSQ have a regular polycyclic structure, which allowed us to compare them with random polycyclic analogs (r-PPSQ). The last part of the review describes the acyclic PPSQ (a-PPSQ) obtained recently. The methods for their synthesis and modification are presented. Modification of (a-PPSQ) allows two new forms of PPSQ to be obtained. The first one is a hyperbranched PPSQ. The second one is a globular PPSQ or a nanogel as it is called by the authors. Both forms are of great interest because their physicochemical properties differ greatly from the known ones (l-PPSQ, p-PPSQ, r-PPSQ). The areas of practical application of the new PPSQ forms are predicted. The review describes the synthesis and properties of various forms of polyphenylsilsesquioxane (PPSQ).![]()
Collapse
Affiliation(s)
- Maxim N Temnikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia
| | - Aziz M Muzafarov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia .,Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences ul. Profsoyuznaya 70 Moscow 117393 Russia
| |
Collapse
|
12
|
Hou M, Zhu Y, Li Q, Scheiner S. Tuning the Competition between Hydrogen and Tetrel Bonds by a Magnesium Bond. Chemphyschem 2020; 21:212-219. [DOI: 10.1002/cphc.201901076] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/04/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Mingchang Hou
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Yifan Zhu
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State University Logan UT 84322-0300 USA
| |
Collapse
|
13
|
Unravelling the Importance of H bonds, σ–hole and π–hole-Directed Intermolecular Interactions in Nature. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00144-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Hou M, Li Q, Scheiner S. The ability of a tetrel bond to transition a neutral amino acid into a zwitterion. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Sato N, Hayashi T, Tochigi K, Wada H, Shimojima A, Kuroda K. Synthesis of Organosilyl-Functionalized Cage-Type Germanoxanes Containing Fluoride Ions. Chemistry 2019; 25:7860-7865. [PMID: 30817031 DOI: 10.1002/chem.201900439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 11/10/2022]
Abstract
Eight corners of a double-four ring cage-type germanoxane, containing a fluoride ion, were successfully silylated by the combination of chlorosilanes and silazanes. Three different silyl groups, trimethylsilyl, dimethylsilyl, and dimethylvinylsilyl, were attached on the corners of germanoxane cage. The solubility and reactivity of the cage modified with dimethylvinylsilyl groups were significantly increased, allowing for further reaction. Hydrosilylation reaction between dimethylvinylsilylated cage geramanoxanes and dimethylsilylated cage siloxanes afforded porous solids. Functionalization of the corners of germanoxanes with silyl groups should provide valuable building blocks in various functional materials.
Collapse
Affiliation(s)
- Naoto Sato
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Taiki Hayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kazuma Tochigi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hiroaki Wada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| |
Collapse
|
16
|
Heeley E, El Aziz Y, Ellingford C, Jetybayeva A, Wan C, Crabb E, Taylor PG, Bassindale A. Self-assembly of fluoride-encapsulated polyhedral oligomeric silsesquioxane (POSS) nanocrystals. CrystEngComm 2019. [DOI: 10.1039/c8ce01750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly and crystal packing of a unique series of nanocrystalline fluoride ion-encapsulated polyhedral oligomeric silsesquioxane (F-POSS) compounds, with substituted electron-withdrawing group (EWG) perfluorinated alkyl chain arms of varying lengths, were investigated.
Collapse
Affiliation(s)
- Ellen Heeley
- Faculty of Science, Technology, Engineering and Mathematics
- Open University
- Milton Keynes
- UK
| | - Youssef El Aziz
- Faculty of Science, Technology, Engineering and Mathematics
- Open University
- Milton Keynes
- UK
| | - Christopher Ellingford
- International Institute of Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | - Albina Jetybayeva
- Faculty of Science, Technology, Engineering and Mathematics
- Open University
- Milton Keynes
- UK
| | - Chaoying Wan
- International Institute of Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | - Eleanor Crabb
- Faculty of Science, Technology, Engineering and Mathematics
- Open University
- Milton Keynes
- UK
| | - Peter G. Taylor
- Faculty of Science, Technology, Engineering and Mathematics
- Open University
- Milton Keynes
- UK
| | - Alan Bassindale
- Faculty of Science, Technology, Engineering and Mathematics
- Open University
- Milton Keynes
- UK
| |
Collapse
|
17
|
Zhang J, Hou Y, Ma Y, Szostak M. Synthesis of Amides by Mild Palladium-Catalyzed Aminocarbonylation of Arylsilanes with Amines Enabled by Copper(II) Fluoride. J Org Chem 2018; 84:338-345. [DOI: 10.1021/acs.joc.8b02874] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yanyan Hou
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
18
|
Esrafili MD, Mousavian P. Strong Tetrel Bonds: Theoretical Aspects and Experimental Evidence. Molecules 2018; 23:E2642. [PMID: 30326582 PMCID: PMC6222713 DOI: 10.3390/molecules23102642] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, noncovalent interactions involving group-14 elements of the periodic table acting as a Lewis acid center (or tetrel-bonding interactions) have attracted considerable attention due to their potential applications in supramolecular chemistry, material science and so on. The aim of the present study is to characterize the geometry, strength and bonding properties of strong tetrel-bond interactions in some charge-assisted tetrel-bonded complexes. Ab initio calculations are performed, and the results are supported by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches. The interaction energies of the anionic tetrel-bonded complexes formed between XF₃M molecule (X=F, CN; M=Si, Ge and Sn) and A- anions (A-=F-, Cl-, Br-, CN-, NC- and N₃-) vary between -16.35 and -96.30 kcal/mol. The M atom in these complexes is generally characterized by pentavalency, i.e., is hypervalent. Moreover, the QTAIM analysis confirms that the anionic tetrel-bonding interaction in these systems could be classified as a strong interaction with some covalent character. On the other hand, it is found that the tetrel-bond interactions in cationic tetrel-bonded [p-NH₃(C₆H₄)MH₃]⁺···Z and [p-NH₃(C₆F₄)MH₃]⁺···Z complexes (M=Si, Ge, Sn and Z=NH₃, NH₂CH₃, NH₂OH and NH₂NH₂) are characterized by a strong orbital interaction between the filled lone-pair orbital of the Lewis base and empty BD*M-C orbital of the Lewis base. The substitution of the F atoms in the benzene ring provides a strong orbital interaction, and hence improved tetrel-bond interaction. For all charge-assisted tetrel-bonded complexes, it is seen that the formation of tetrel-bond interaction is accompanied bysignificant electron density redistribution over the interacting subunits. Finally, we provide some experimental evidence for the existence of such charge-assisted tetrel-bond interactions in crystalline phase.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh 5513864596, Iran.
| | - Parisasadat Mousavian
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh 5513864596, Iran.
| |
Collapse
|
19
|
|
20
|
Stefanowska K, Franczyk A, Szyling J, Salamon K, Marciniec B, Walkowiak J. An effective hydrosilylation of alkynes in supercritical CO2 – A green approach to alkenyl silanes. J Catal 2017. [DOI: 10.1016/j.jcat.2017.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Bilyachenko AN, Kulakova AN, Levitsky MM, Petrov AA, Korlyukov AA, Shul’pina LS, Khrustalev VN, Dorovatovskii PV, Vologzhanina AV, Tsareva US, Golub IE, Gulyaeva ES, Shubina ES, Shul’pin GB. Unusual Tri-, Hexa-, and Nonanuclear Cu(II) Cage Methylsilsesquioxanes: Synthesis, Structures, and Catalytic Activity in Oxidations with Peroxides. Inorg Chem 2017; 56:4093-4103. [DOI: 10.1021/acs.inorgchem.7b00061] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey N. Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- People’s Friendship University of Russia, Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Alena N. Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- People’s Friendship University of Russia, Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Mikhail M. Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Artem A. Petrov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Alexander A. Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov str., 1, 117997 Moscow, Russia
| | - Lidia S. Shul’pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Victor N. Khrustalev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- People’s Friendship University of Russia, Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Ulyana S. Tsareva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Igor E. Golub
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- People’s Friendship University of Russia, Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Ekaterina S. Gulyaeva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Elena S. Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Georgiy B. Shul’pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ulitsa Kosygina, dom 4, Moscow 119991, Russia
- Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| |
Collapse
|
22
|
El Aziz Y, Taylor PG, Bassindale AR, Coles SJ, Pitak MB. Synthesis and Structures of Novel Molecular Ionic Compounds Based on Encapsulation of Anions and Cations. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Youssef El Aziz
- Department of Life, Health & Chemical Science, Faculty of Science, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Peter G. Taylor
- Department of Life, Health & Chemical Science, Faculty of Science, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Alan R. Bassindale
- Department of Life, Health & Chemical Science, Faculty of Science, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Simon J. Coles
- U.K.
National Crystallography Service, Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Mateusz B. Pitak
- U.K.
National Crystallography Service, Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
23
|
Dar AA, Bhat GA, Murugavel R. Dimensionality Alteration and Intra- versus Inter-SBU Void Encapsulation in Zinc Phosphate Frameworks. Inorg Chem 2016; 55:5180-90. [PMID: 27159770 DOI: 10.1021/acs.inorgchem.5b02949] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
4,4'-Bipyridine-N-oxide (BIPYMO, 1), a less commonly employed coordination polymer linker, has been used as a ditopic spacer to bridge double-four-ring (D4R) zinc phosphate clusters to form novel framework coordination polymers. Zinc phosphate framework compounds [Zn4(X-dipp)4(BIPYMO)2]n·2MeOH [X = H (2), Cl (3), Br (4), I (5); dipp = 2,6-diisopropylphenyl phosphate] have been obtained by treating a methanol solution of zinc acetate with X-dippH2 and BIPYMO (in a 1:1:1 molar ratio) at ambient conditions. Framework phosphates 2-5 can also be obtained by treating the preformed D4R cubanes [Zn(X-dipp)(DMSO)]4 with required quantities of BIPYMO in methanol. Single-crystal X-ray diffraction studies reveal that these framework solids are two-dimensional (2D) networks as opposed to the diamondoid networks obtained when the parent unoxidized 4,4'-bipyridine is used as the linker (Inorg. Chem. 2014, 53, 8959). The two types of voids (viz., smaller intra-D4R and larger inter-D4R) present in these framework solids can be utilized for different types of encapsulation processes. For example, the in situ generated 2D framework 2 encapsulates fluoride ions accompanied by a change in the dimensionality of the framework to yield {[(nC4H9)4N][F@(Zn4(dipp)4(BIPYMO)2)]}n (6). The three-dimensional framework 6 represents the first structurally characterized example of a fluoride-ion-encapsulated polymeric coordination compound or a metal-organic framework. The possibility of utilizing inter-D4R voids as hosts for small organic molecules has been explored by treating in situ generated 2 with a series of organic molecules of appropriate size. Framework 2 has been found to be a selective host for benzil and not for other structurally similar molecules such as benzoquinone, benzidine, anthracene, naphthalene, α-pyridoin, etc. The benzil-occluded isolated framework [benzil@{Zn4(dipp)4(BIPYMO)2}]n (7) has been isolated as single crystals, and its crystal structure determination revealed the binding of benzil molecules to the framework through strong π-π interactions.
Collapse
Affiliation(s)
- Aijaz A Dar
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Gulzar A Bhat
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Bauzá A, Mooibroek TJ, Frontera A. Tetrel Bonding Interactions. CHEM REC 2016; 16:473-87. [DOI: 10.1002/tcr.201500256] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Antonio Bauzá
- Departament de Química; Universitat de les Illes Balears; Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Tiddo J. Mooibroek
- School of Chemistry; The University of Bristol; Cantock's Close BS8 1TS Bristol UK
| | - Antonio Frontera
- Departament de Química; Universitat de les Illes Balears; Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| |
Collapse
|
25
|
Affiliation(s)
- Melissa Coates Ford
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, United States
| | - P. Shing Ho
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, United States
| |
Collapse
|
26
|
The Bright Future of Unconventional σ/π-Hole Interactions. Chemphyschem 2015; 16:2496-517. [DOI: 10.1002/cphc.201500314] [Citation(s) in RCA: 475] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 01/25/2023]
|
27
|
Azofra LM, Scheiner S. Complexes containing CO2and SO2. Mixed dimers, trimers and tetramers. Phys Chem Chem Phys 2014; 16:5142-9. [DOI: 10.1039/c3cp55489a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two stable minima for the 1 : 1 heterodimer of CO2 : SO2, both bound by about 2 kcal mol−1. Binding is dominated by charge transfer from O lone pairs of SO2to CO π* antibonding orbitals.
Collapse
Affiliation(s)
- Luis Miguel Azofra
- Instituto de Química Médica
- CSIC
- Juan de la Cierva
- Madrid, Spain
- Department of Chemistry and Biochemistry
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan, USA
| |
Collapse
|
28
|
Bauzá A, Mooibroek TJ, Frontera A. Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angew Chem Int Ed Engl 2013; 52:12317-21. [DOI: 10.1002/anie.201306501] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/29/2013] [Indexed: 11/11/2022]
|
29
|
Bauzá A, Mooibroek TJ, Frontera A. Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306501] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Fabritz S, Hörner S, Avrutina O, Kolmar H. Bioconjugation on cube-octameric silsesquioxanes. Org Biomol Chem 2013; 11:2224-36. [DOI: 10.1039/c2ob26807h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
El Aziz Y, Bassindale AR, Taylor PG, Horton PN, Stephenson RA, Hursthouse MB. Facile Synthesis of Novel Functionalized Silsesquioxane Nanostructures Containing an Encapsulated Fluoride Anion. Organometallics 2012. [DOI: 10.1021/om300277g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youssef El Aziz
- Department of Chemistry, Open University, Walton Hall, Milton
Keynes MK7 6AA, U.K
| | - Alan R. Bassindale
- Department of Chemistry, Open University, Walton Hall, Milton
Keynes MK7 6AA, U.K
| | - Peter G. Taylor
- Department of Chemistry, Open University, Walton Hall, Milton
Keynes MK7 6AA, U.K
| | - Peter N. Horton
- EPSRC National Crystallography Service, University of Southampton, Highfield,
Southampton SO17 1BJ, U.K
| | - Richard A. Stephenson
- EPSRC National Crystallography Service, University of Southampton, Highfield,
Southampton SO17 1BJ, U.K
| | - Michael B. Hursthouse
- EPSRC National Crystallography Service, University of Southampton, Highfield,
Southampton SO17 1BJ, U.K
| |
Collapse
|
32
|
Wu J, Zhao H, Li N, Luo Q, He C, Guan N, Xiang S. Fluorine-free crystallization of triclinic AlPO4-34. CrystEngComm 2012. [DOI: 10.1039/c2ce26335a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|