1
|
Nakahata M, Sumiya A, Ikemoto Y, Nakamura T, Dudin A, Schwieger J, Yamamoto A, Sakai S, Kaufmann S, Tanaka M. Hyperconfined bio-inspired Polymers in Integrative Flow-Through Systems for Highly Selective Removal of Heavy Metal Ions. Nat Commun 2024; 15:5824. [PMID: 38992009 PMCID: PMC11239941 DOI: 10.1038/s41467-024-49869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.
Collapse
Affiliation(s)
- Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan.
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan.
| | - Ai Sumiya
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, Hyogo, 679-5198, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Anastasia Dudin
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Julius Schwieger
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, 351-0198, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Roydeva A, Milanova A. LC-MS/MS determination of N-acetyl-l-cysteine in chicken plasma. Biomed Chromatogr 2024; 38:e5854. [PMID: 38432679 DOI: 10.1002/bmc.5854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
N-acetyl-l-cysteine (NAC) shows beneficial effects in cases of aflatoxicosis and heat stress in poultry but little is known about its pharmacokinetics in chickens. Therefore, the study aimed to develop and validate a sensitive LC-MS/MS analytical method for quantitative analysis of NAC in chicken plasma. A split calibration curve approach was used for determination of NAC in chicken plasma. Standard curves for low (0.05-2.5 μg/ml) and high (2.5-100 μg/ml) ranges of concentrations were prepared. The standard curves for low (r2 = 0.9987) and high (r2 = 0.9899) concentrations were linear within the tested range. The limits of detection (LOD) and of quantification (LOQ) for the standard at low concentrations were 0.093 and 0.28 μg/ml, respectively. The accuracy was from 97.35 to 101.33%. The values of LOD and LOQ for the standard at high concentrations were 0.76 and 2.30 μg/ml, respectively. The accuracy was between 99.77 and 112.14%. The intra- and inter-day precisions for all concentrations from both standards did not exceed 8.57% and 10.69%, respectively. The recovery for all concentrations was between 92.45 and 105.52%. The validated method for determination of NAC in chicken plasma can be applied in future pharmacokinetic studies in chickens without dilution of samples and their repeated analysis.
Collapse
Affiliation(s)
- Albena Roydeva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
3
|
Wen S, Wang L. Cadmium neurotoxicity and therapeutic strategies. J Biochem Mol Toxicol 2024; 38:e23670. [PMID: 38432689 DOI: 10.1002/jbt.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
- Veterinarian Clinical Diagnosis Study Group, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
4
|
Weissenfeld F, Wesenberg L, Nakahata M, Müller M, Tanaka M. Modulation of wetting of stimulus responsive polymer brushes by lipid vesicles: experiments and simulations. SOFT MATTER 2023; 19:2491-2504. [PMID: 36942886 DOI: 10.1039/d2sm01673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interactions between vesicle and substrate have been studied by simulation and experiment. We grafted polyacrylic acid brushes containing cysteine side chains at a defined area density on planar lipid membranes. Specular X-ray reflectivity data indicated that the addition of Cd2+ ions induces the compaction of the polymer brush layer and modulates the adhesion of lipid vesicles. Using microinterferometry imaging, we determined the onset level, [CdCl2] = 0.25 mM, at which the wetting of the vesicle emerges. The characteristics of the interactions between vesicle and brush were quantitatively evaluated by the shape of the vesicle near the substrate and height fluctuations of the membrane in contact with brushes. To analyze these experiments, we have systematically studied the shape and adhesion of axially symmetric vesicles for finite-range membrane-substrate interaction, i.e., a relevant experimental characteristic, through simulations. The wetting of vesicles sensitively depends on the interaction range and the approximate estimates of the capillary length change significantly, depending on the adhesion strength. We found, however, that the local transversality condition that relates the maximal curvature at the edge of the adhesion zone to the adhesion strength remains rather accurate even for a finite interaction range as long as the vesicle is large compared to the interaction range.
Collapse
Affiliation(s)
- Felix Weissenfeld
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany.
| | - Lucia Wesenberg
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 560-8531 Osaka, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-8531 Osaka, Japan
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany.
- Center for Advanced Study, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan
| |
Collapse
|
5
|
Luo H, Gu R, Ouyang H, Wang L, Shi S, Ji Y, Bao B, Liao G, Xu B. Cadmium exposure induces osteoporosis through cellular senescence, associated with activation of NF-κB pathway and mitochondrial dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118043. [PMID: 34479166 DOI: 10.1016/j.envpol.2021.118043] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a heavy metal toxicant as a common pollutant derived from many agricultural and industrial sources. The absorption of Cd takes place primarily through Cd-contaminated food and water and, to a significant extent, via inhalation of Cd-contaminated air and cigarette smoking. Epidemiological data suggest that occupational or environmental exposure to Cd increases the health risk for osteoporosis and spontaneous fracture such as itai-itai disease. However, the direct effects and underlying mechanism(s) of Cd exposure on bone damage are largely unknown. We used primary bone marrow-derived mesenchymal stromal cells (BMMSCs) and found that Cd significantly induced BMMSC cellular senescence through over-activation of NF-κB signaling pathway. Increased cell senescence was determined by production of senescence-associated secretory phenotype (SASP), cell cycle arrest and upregulation of p21/p53/p16INK4a protein expression. Additionally, Cd impaired osteogenic differentiation and increased adipogenesis of BMMSCs, and significantly induced cellular senescence-associated defects such as mitochondrial dysfunction and DNA damage. Sprague-Dawley (SD) rats were chronically exposed to Cd to verify that Cd significantly increased adipocyte number, and decreased mineralization tissues of bone marrow in vivo. Interestingly, we observed that Cd exposure remarkably retarded bone repair and regeneration after operation of skull defect. Notably, pretreatment of melatonin is able to partially prevent Cd-induced some senescence-associated defects of BMMSCs including mitochondrial dysfunction and DNA damage. Although Cd activated mammalian target of rapamycin (mTOR) pathway, rapamycin only partially ameliorated Cd-induced cell apoptosis rather than cellular senescence phenotypes of BMMSCs. In addition, a selective NF-κB inhibitor moderately alleviated Cd-caused the senescence-related defects of the BMMSCs. The study shed light on the action and mechanism of Cd on osteoporosis and bone ageing, and may provide a novel option to ameliorate the harmful effects of Cd exposure.
Collapse
Affiliation(s)
- Huigen Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renjie Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanwei Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuna Ji
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baicheng Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baoshan Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Fazary AE, Awwad NS, Ibrahium HA, Shati AA, Alfaifi MY, Ju YH. Protonation Equilibria of N-Acetylcysteine. ACS OMEGA 2020; 5:19598-19605. [PMID: 32803054 PMCID: PMC7424727 DOI: 10.1021/acsomega.0c02080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/20/2020] [Indexed: 05/14/2023]
Abstract
The acid base protonation equilibria of N-acetylcysteine (Nac) and its equilibrium constants in water solutions were determined by the Hyperquad 2008 software assessment from the pH potentiometry data, which provides a diversity of statistics presentations. The effect of a number of organic solvents on the acid base protonation processes was also examined. The solution equilibria of N-acetylcysteine (Nac) were studied at T = 298.15 K in water (w 1) + organic liquid mixtures [100 w 2 = 0, 20, 40, 60, and 80%] with an ionic strength of I = 0.16 mol·dm-3 NaNO3. Also, the organic solvent's influence was studied based on the Kamlet-Taft linear solvation energy relationship. The experimental results were compared with theoretical ones obtained via the Gaussian 09 calculation computer program. The protonation equilibria of Nac were found to be important in the progress of separation systems in aqueous and non-aqueous ionic solutions. Nac showed a likely good metal dibasic chelating bioligand as the DFT calculations proved two binding sites. Spectrophotometry evaluation was also done for N-acetylcysteine bioligands at various pH values in water solutions then its absorbance ratio was measured.
Collapse
Affiliation(s)
- Ahmed E. Fazary
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 22311, Egypt
- . Phone: +2-106-358-2851
| | - Nasser S. Awwad
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology
Department, Faculty of Science, King Khalid
University, Abha 9004, Kingdom of Saudi Arabia
- Department
of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11381, Egypt
| | - Ali A. Shati
- Department
of Biology, Faculty of Science, King Khalid
University, Abha 9004, Kingdom of Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department
of Biology, Faculty of Science, King Khalid
University, Abha 9004, Kingdom of Saudi Arabia
| | - Yi-Hsu Ju
- Graduate
Institute of Applied Science and Technology, Department of Chemical
Engineering, Taiwan Building Technology Center, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
7
|
Mlejnek P, Dolezel P, Maier V, Kikalova K, Skoupa N. N-acetylcysteine dual and antagonistic effect on cadmium cytotoxicity in human leukemia cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103213. [PMID: 31288199 DOI: 10.1016/j.etap.2019.103213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/15/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Although cadmium (Cd2+) is unable to form reactive oxygen species (ROS) directly, many of its adverse effects are connected to increased ROS generation resulting in cell death. In support of this supposition, a large number of studies have shown protective effects of antioxidants such as N-acetylcysteine (NAC) against cadmium induced cytotoxicity. Here, we describe the cytotoxic effects of Cd2+ on human leukemia U937 and K562 cells that were not mediated by oxidative stress. Surprisingly, we observed that addition of low concentrations of NAC can drastically potentiate cadmium cytotoxicity solely via ROS production. However, all adverse effects of the metal were prevented by NAC at high concentrations. Detailed analysis indicated that the protective effect of NAC was mediated by its ability to form stable complex with cadmium [Cd(NAC)2]. In conclusion, NAC exhibits dual and antagonistic effects on Cd2+ cytotoxicity in human leukemia cells.
Collapse
Affiliation(s)
- P Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| | - P Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - V Maier
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - K Kikalova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - N Skoupa
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| |
Collapse
|
8
|
Moyano P, García JM, Anadon MJ, Lobo M, García J, Frejo MT, Sola E, Pelayo A, Pino JD. Manganese induced ROS and AChE variants alteration leads to SN56 basal forebrain cholinergic neuronal loss after acute and long-term treatment. Food Chem Toxicol 2019; 125:583-594. [PMID: 30738988 DOI: 10.1016/j.fct.2019.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 01/16/2023]
Abstract
Manganese (Mn) induces cognitive disorders and basal forebrain (BF) cholinergic neuronal loss, involved on learning and memory regulation, which could be the cause of such cognitive disorders. However, the mechanisms through which it induces these effects are unknown. We hypothesized that Mn could induce BF cholinergic neuronal loss through oxidative stress generation, cholinergic transmission and AChE variants alteration that could explain Mn cognitive disorders. This study shows that Mn impaired cholinergic transmission in SN56 cholinergic neurons from BF through alteration of AChE and ChAT activity and CHT expression. Moreover, Mn induces, after acute and long-term exposure, AChE variants alteration and oxidative stress generation that leaded to lipid peroxidation and protein oxidation. Finally, Mn induces cell death on SN56 cholinergic neurons and this effect is independent of cholinergic transmission alteration, but was mediated partially by oxidative stress generation and AChE variants alteration. Our results provide new understanding of the mechanisms contributing to the harmful effects of Mn on cholinergic neurons and their possible involvement in cognitive disorders induced by Mn.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - José Manuel García
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption. Toxicology 2018; 394:54-62. [DOI: 10.1016/j.tox.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
10
|
Wu CL, Huang LY, Chang CL. Linking arsenite- and cadmium-generated oxidative stress to microsatellite instability in vitro and in vivo. Free Radic Biol Med 2017; 112:12-23. [PMID: 28690196 DOI: 10.1016/j.freeradbiomed.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 11/27/2022]
Abstract
Mismatch repair (MMR) corrects replicative errors and minimizes DNA damage that occurs frequently in microsatellites. MMR deficiency is manifested as microsatellite instability (MSI), which contributes to hypermutability and cancer pathogenesis. Genomic instability, including MSI and chromosomal instability, appears to be responsible for the carcinogenesis of arsenic and cadmium, common contaminants in our environment. However, few studies have addressed arsenic- or cadmium-induced MSI, especially its potential link with arsenic- or cadmium-generated oxidative stress, due to the lack of quantifiable MSI assays and cost-effective animal models. Here, using a dual-fluorescent reporter, we demonstrate that sub-lethal doses of cadmium or arsenite, but not arsenate, increased the MSI frequency in human colorectal cancer cells. Arsenite- and cadmium-induced MSI occurred concomitantly with increased levels of reactive species and oxidative DNA damage, and with decreased levels of MMR proteins. However, N-acetyl-l-cysteine (NAC) suppressed arsenite- and cadmium-induced MSI and oxidative stress while restoring the levels of MMR proteins in the cells. Similarly, MSI was induced separately by arsenite and cadmium, and suppressed by NAC, in zebrafish in a fluorescinated PCR-based assay with newly-developed microsatellite markers and inter-segmental comparisons. Of five selected antioxidants examined, differential effects were exerted on the MSI induction and cytotoxicity of both arsenite and cadmium. Compared to MMR-proficient cells, MMR-deficient cells were more resistant to arsenic-mediated and cadmium-mediated cytotoxicity. Our findings demonstrate a novel linkage between arsenite-generated and cadmium-generated oxidative stress and MSI induction. Our findings also caution that antioxidants must be individually validated before being used for preventing arsenite- and cadmium-induced MSI that is associated with cancer development.
Collapse
Affiliation(s)
- Chang-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Li-Yan Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Christina L Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
11
|
Al-Jibori SA, Al-Bayati MM, Gergees HM, Wagner C, Hogarth G. Cadmium(II) thiosaccharinate (tsac) complexes: Crystal structures of [Cd(tsac)2(abtH)2] (abtH = 2-aminobenzothiazole), [Cd(tsac)2(bimsH)2] (bimsH = 2-mercaptobenzimidazole) and [Cd(μ-tsac)(tsac)(κ2-aapH)]2 (aapH = 2-acetylaminopyridine). Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Cardiano P, Foti C, Giuffrè O. On the interaction of N -acetylcysteine with Pb 2+ , Zn 2+ , Cd 2+ and Hg 2+. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
|
14
|
Chen S, Ren Q, Zhang J, Ye Y, Zhang Z, Xu Y, Guo M, Ji H, Xu C, Gu C, Gao W, Huang S, Chen L. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain. Neuropathol Appl Neurobiol 2015; 40:759-77. [PMID: 24299490 DOI: 10.1111/nan.12103] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/27/2013] [Indexed: 01/24/2023]
Abstract
AIMS This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). METHODS NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signalling pathway in brain neurones were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. RESULTS Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. CONCLUSIONS NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Sujuan Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Han G, Ferranco A, Feng X, Chen Z, Kraatz H. Synthesis, Characterization of Some Ferrocenoyl Cysteine and Histidine Conjugates, and Their Interactions with Some Metal Ions. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guo‐Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Annaleizle Ferranco
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, http://www.utsc.utoronto.ca/~bkraatz/
| | - Xiao‐Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Heinz‐Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, http://www.utsc.utoronto.ca/~bkraatz/
| |
Collapse
|
16
|
Morris TT, Keir JL, Boshart SJ, Lobanov VP, Ruhland AM, Bahl N, Gailer J. Mobilization of Cd from human serum albumin by small molecular weight thiols. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 958:16-21. [DOI: 10.1016/j.jchromb.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
|
17
|
Haya L, Mainar AM, Pardo JI, Urieta JS. A new generation of cysteine derivatives with three active antioxidant centers: improving reactivity and stability. Phys Chem Chem Phys 2014; 16:1409-14. [PMID: 24296833 DOI: 10.1039/c3cp53913j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of new antioxidants with enhanced activity constitutes a very active research field as it can contribute to the improvement of human health. Although the antioxidant activity occurs through different mechanisms, usually most of the antioxidant molecules present a unique active center which is able to react following a specific way. To overcome this weakness and in the belief that the coupling of different antioxidant groups is a good strategy to obtain multipotent antioxidants, the effect of introducing different N-protective groups on the cysteine core is evaluated by using DFT. As a result, in this work we present a multicenter antioxidant, N-(9-fluorenylmethyloxycarbonyl)cysteine methyl ester 8, able to fight efficiently through different mechanisms against free radicals independently of their nature. This antioxidant appears to be the first one of a promising new class of multipotent antioxidants with three operative centers: C(α) that is a good hydrogen donor, the Fmoc group that is a good electron donor and the all-around thiol group. Besides, its neutral radical shows a high stability due to the captodative effect in such a way that the subsequent toxic effects would be avoided. Then, its experimental radical-trapping antioxidant activity postulates compound 8 as a prototype of antioxidants more versatile and efficient than N-acetylcysteine, ascorbic acid or Trolox.
Collapse
Affiliation(s)
- Luisa Haya
- Aragon Institute for Engineering Research (I3A), Universidad de Zaragoza C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | | | | | | |
Collapse
|
18
|
Luczak MW, Zhitkovich A. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II). Free Radic Biol Med 2013; 65:262-269. [PMID: 23792775 PMCID: PMC3823631 DOI: 10.1016/j.freeradbiomed.2013.06.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 12/20/2022]
Abstract
The antioxidant N-acetylcysteine (NAC) is widely used for the assessment of the role of reactive oxygen species (ROS) in various biological processes and adverse drug reactions. NAC has been found to effectively inhibit the toxicity of carcinogenic metals, which was attributed to its potent ROS-suppressive properties. However, the absence of redox activity among some metals and findings from genetic models suggested a more diverse, smaller role of oxidative stress in metal toxicity. Here, we examined mechanisms of chemoprotection by NAC against Cd(II), Co(II), and Cr(VI) in human cells. We found that NAC displayed a broad-spectrum chemoprotective activity against all three metals, including suppression of cytotoxicity, apoptosis, p53 activation, and HSP72 and HIF-1α upregulation. Cytoprotection by NAC was independent of cellular glutathione. NAC strongly inhibited the uptake of all three metals in histologically different types of human cells, explaining its high chemoprotective potential. A loss of Cr(VI) accumulation by cells was caused by NAC-mediated extracellular reduction of chromate to membrane-impermeative Cr(III). Suppression of Co(II) uptake resulted from a rapid formation of Co(II)-NAC conjugates that were unable to enter cells. Our results demonstrate that NAC acts through more than one mechanism in preventing metal toxicity and its chemoprotective activity can be completely ROS-independent. Good clinical safety and effectiveness in Co(II) sequestration suggest that NAC could be useful in the prevention of tissue accumulation and toxic effects of Co ions released by cobalt-chromium hip prostheses.
Collapse
Affiliation(s)
- Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
19
|
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta Gen Subj 2013; 1830:4117-29. [PMID: 23618697 DOI: 10.1016/j.bbagen.2013.04.016] [Citation(s) in RCA: 544] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been used as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and psychiatric disorders. SCOPE OF REVIEW The mechanisms underlying the therapeutic and clinical applications of NAC are complex and still unclear. The present review is focused on the chemistry of NAC and its interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap between its recognized biological activities and chemistry. MAJOR CONCLUSIONS The antioxidative activity of NAC as of other thiols can be attributed to its fast reactions with OH, NO2, CO3(-) and thiyl radicals as well as to restitution of impaired targets in vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and peroxynitrite, which cast some doubt on the importance of these reactions under physiological conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in proteins thus altering their structures and disrupting their ligand bonding, competition with larger reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for GSH synthesis. GENERAL SIGNIFICANCE The outlined reactions only partially explain the diverse biological effects of NAC, and further studies are required for determining its ability to cross the cell membrane and the blood-brain barrier as well as elucidating its reactions with components of cell signaling pathways.
Collapse
|
20
|
Kwan DCH, Prole DL, Yellen G. Structural changes during HCN channel gating defined by high affinity metal bridges. ACTA ACUST UNITED AC 2012; 140:279-91. [PMID: 22930802 PMCID: PMC3434101 DOI: 10.1085/jgp.201210838] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide–sensitive nonselective cation (HCN) channels are activated by membrane hyperpolarization, in contrast to the vast majority of other voltage-gated channels that are activated by depolarization. The structural basis for this unique characteristic of HCN channels is unknown. Interactions between the S4–S5 linker and post-S6/C-linker region have been implicated previously in the gating mechanism of HCN channels. We therefore introduced pairs of cysteines into these regions within the sea urchin HCN channel and performed a Cd2+-bridging scan to resolve their spatial relationship. We show that high affinity metal bridges between the S4–S5 linker and post-S6/C-linker region can induce either a lock-open or lock-closed phenotype, depending on the position of the bridged cysteine pair. This suggests that interactions between these regions can occur in both the open and closed states, and that these regions move relative to each other during gating. Concatenated constructs reveal that interactions of the S4–S5 linker and post-S6/C-linker can occur between neighboring subunits. A structural model based on these interactions suggests a mechanism for HCN channel gating. We propose that during voltage-dependent activation the voltage sensors, together with the S4–S5 linkers, drive movement of the lower ends of the S5 helices around the central axis of the channel. This facilitates a movement of the pore-lining S6 helices, which results in opening of the channel. This mechanism may underlie the unique voltage dependence of HCN channel gating.
Collapse
Affiliation(s)
- Daniel C H Kwan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|