1
|
Li M, Yin B, Gao C, Guo J, Zhao C, Jia C, Guo X. Graphene: Preparation, tailoring, and modification. EXPLORATION (BEIJING, CHINA) 2023; 3:20210233. [PMID: 37323621 PMCID: PMC10190957 DOI: 10.1002/exp.20210233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/05/2022] [Indexed: 06/17/2023]
Abstract
Graphene is a 2D material with fruitful electrical properties, which can be efficiently prepared, tailored, and modified for a variety of applications, particularly in the field of optoelectronic devices thanks to its planar hexagonal lattice structure. To date, graphene has been prepared using a variety of bottom-up growth and top-down exfoliation techniques. To prepare high-quality graphene with high yield, a variety of physical exfoliation methods, such as mechanical exfoliation, anode bonding exfoliation, and metal-assisted exfoliation, have been developed. To adjust the properties of graphene, different tailoring processes have been emerged to precisely pattern graphene, such as gas etching and electron beam lithography. Due to the differences in reactivity and thermal stability of different regions, anisotropic tailoring of graphene can be achieved by using gases as the etchant. To meet practical requirements, further chemical functionalization at the edge and basal plane of graphene has been extensively utilized to modify its properties. The integration and application of graphene devices is facilitated by the combination of graphene preparation, tailoring, and modification. This review focuses on several important strategies for graphene preparation, tailoring, and modification that have recently been developed, providing a foundation for its potential applications.
Collapse
Affiliation(s)
- Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Bing Yin
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Chunyan Gao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Jie Guo
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Cong Zhao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| |
Collapse
|
2
|
He M, Zhang S, Zhang J. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chem Rev 2020; 120:12592-12684. [PMID: 33064453 DOI: 10.1021/acs.chemrev.0c00395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) emerge as a promising material to advance carbon nanoelectronics. However, synthesizing or assembling pure metallic/semiconducting SWNTs required for interconnects/integrated circuits, respectively, by a conventional chemical vapor deposition method or by an assembly technique remains challenging. Recent studies have shown significant scientific breakthroughs in controlled SWNT synthesis/assembly and applications in scaled field effect transistors, which are a critical component in functional nanodevices, thereby rendering the horizontal SWNT array an important candidate for innovating nanotechnology. This review provides a comprehensive analysis of the controlled synthesis, surface assembly, characterization techniques, and potential applications of horizontally aligned SWNT arrays. This review begins with the discussion of synthesis of horizontally aligned SWNTs with regulated direction, density, structure, and theoretical models applied to understand the growth results. Several traditional procedures applied for assembling SWNTs on target surface are also briefly discussed. It then discusses the techniques adopted to characterize SWNTs, ranging from electron/probe microscopy to various optical spectroscopy methods. Prototype applications based on the horizontally aligned SWNTs, such as interconnects, field effect transistors, integrated circuits, and even computers, are subsequently described. Finally, this review concludes with challenges and a brief outlook of the future development in this research field.
Collapse
Affiliation(s)
- Maoshuai He
- State Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuchen Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Wang Y, Liu D, Zhang H, Wang J, Du R, Li TT, Qian J, Hu Y, Huang S. Methylation-Induced Reversible Metallic-Semiconducting Transition of Single-Walled Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. NANO LETTERS 2020; 20:496-501. [PMID: 31821006 DOI: 10.1021/acs.nanolett.9b04219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acquirement of aligned semiconducting single-walled carbon nanotube (s-SWNT) arrays is one of the most promising directions to break Moore's Law, thus developing the next-generation electronic devices. Despite that widespread approaches have been developed, it is still a great challenge to facilely prepare s-SWNT arrays with tunable electronic properties. Herein, a different perspective is proposed to produce s-SWNT arrays by implementing reversible methylation reactions on the as-grown aligned SWNT arrays. In this way, the metallic single-walled carbon nanotubes (m-SWNTs) are selectively and reversibly methylated to acquire semiconducting properties, to afford tunable electronic properties of the as-obtained SWNT arrays in a highly controllable and simple manner. Electrical measurements suggest a high fraction of s-SWNTs is attained (>97.5%) after methylation, facilitating its exceptional performance as a field-effect transistor (FET) with an on-off ratio of up to 17543. This method may provide a new way for the preparation of s-SWNT arrays with tunable electronic properties and impressive prospects toward the fabrication of high-performance FETs.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325000 , P.R. China
| | - Dayan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325000 , P.R. China
| | - Hongjie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325000 , P.R. China
| | - Jiacheng Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325000 , P.R. China
| | - Ran Du
- Physical Chemistry , Technische Universität Dresden , Bergstrasse 66b , Dresden 01062 , Germany
| | - Ting-Ting Li
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , P.R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325000 , P.R. China
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325000 , P.R. China
| | - Shaoming Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325000 , P.R. China
- School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P.R. China
| |
Collapse
|
5
|
Miao Y, Wu C, Guan L. Enrichment of semiconducting single-walled carbon nanotubes by simple equipment and solar radiation. NANOTECHNOLOGY 2019; 30:06LT01. [PMID: 30524085 DOI: 10.1088/1361-6528/aaf1f6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-purity semiconducting (s-) single-walled carbon nanotubes (SWCNTs) have great potential to replace silicon-based materials for microelectronic devices. However, the enrichment methods of s-SWCNTs usually required complex devices and non-renewable energy. In this study, instead of a traditional heating method, renewable solar was employed to dramatically increase the heating rate and improve the reaction to be simple and more controllable, thereby water was successfully used to selectively etch metallic (m-) SWCNTs. In this work, purified SWCNTs films were wetted by water and then exposed to focused solar radiation, causing the surface temperature of the SWCNT films to reach about 800 °C within 2 s. In this case, the m-SWCNTs could be selectively etched by water rapidly. Finally, s-SWCNTs with a purity of about 95 wt% were obtained in several minutes without any complex devices or non-renewable energy.
Collapse
Affiliation(s)
- Yuming Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
6
|
Bati ASR, Yu L, Batmunkh M, Shapter JG. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. NANOSCALE 2018; 10:22087-22139. [PMID: 30475354 DOI: 10.1039/c8nr07379a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding mechanical, chemical and optoelectronic properties, which makes them promising candidates for use in a wide range of applications. However, as-produced SWCNTs have a wide distribution of various chiral species with different properties (i.e. electronic structures). In order to take full advantage of SWCNT properties, highly purified and well-separated SWCNTs are of great importance. Recent advances have focused on developing new strategies to effectively separate nanotubes into single-chirality and/or semiconducting/metallic species and integrating them into different applications. This review highlights recent progress in this cutting-edge research area alongside the enormous development of their identification and structural characterization techniques. A comprehensive review of advances in both controlled synthesis and post-synthesis separation methods of SWCNTs are presented. The relationship between the unique structure of SWCNTs and their intrinsic properties is also discussed. Finally, important future directions for the development of sorting and purification protocols for SWCNTs are provided.
Collapse
Affiliation(s)
- Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - LePing Yu
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Munkhbayar Batmunkh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
7
|
Tian Y, Jiang H, Laiho P, Kauppinen EI. Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy. Anal Chem 2018; 90:2517-2525. [PMID: 29334731 PMCID: PMC6150638 DOI: 10.1021/acs.analchem.7b03712] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Although it is known that the Raman spectroscopic signature of single-walled carbon nanotubes (SWCNTs) is highly chirality dependent, using Raman spectroscopy with several laser excitations as a tool for quantifying fraction of either metallic or semiconducting nanotubes in a sample has become a widely used analytical method. In this work, using the electron diffraction technique as a basis, we have examined the validity of Raman spectroscopy for quantitative evaluation of metallic fractions (M%) in single-walled carbon nanotube samples. Our results show that quantitative Raman spectroscopic evaluations of M% by using several discrete laser lines, either by using integrated intensities of chirality-associated radial breathing modes (RBMs) or, as has been more commonly utilized in recent studies, by statistically counting the numbers of RBMs can be misrepresentative. Specifically, we have found that the occurrence numbers of certain types of RBMs in Raman spectral mapping depend critically on the diameter distribution, resonant coupling between transition energies and excitation laser energy, and the chirality-dependent Raman scattering cross sections rather than simply on the metallic and semiconducting SWCNT fractions. These dependencies are similar to those observed in the integrated intensities of RBMs. Our findings substantially advance the understanding of the proper use of Raman spectroscopy for carbon nanotube quantification, which is important for carbon nanotube characterization and crucial to guide research in SWCNT growth and their applications.
Collapse
Affiliation(s)
- Ying Tian
- Department
of Physics, Dalian Maritime University, Dalian, Liaoning 116026, China
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| | - Hua Jiang
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| | - Patrik Laiho
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| | - Esko I. Kauppinen
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| |
Collapse
|
8
|
Shi W, Li J, Polsen ES, Oliver CR, Zhao Y, Meshot ER, Barclay M, Fairbrother DH, Hart AJ, Plata DL. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. NANOSCALE 2017; 9:5222-5233. [PMID: 28397885 DOI: 10.1039/c6nr09802a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O2, and this effect was mitigated by high H2 concentrations and not due to water vapor (as confirmed in O2-free water addition experiments), supporting the importance of O2 specifically. Further characterization of the interface between the Fe catalyst and Al2O3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O2 and H2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.
Collapse
Affiliation(s)
- Wenbo Shi
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Khalilov U, Bogaerts A, Xu B, Kato T, Kaneko T, Neyts EC. How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching. NANOSCALE 2017; 9:1653-1661. [PMID: 28074964 DOI: 10.1039/c6nr08005g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC-CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C-C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.
Collapse
Affiliation(s)
- U Khalilov
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - A Bogaerts
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - B Xu
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - T Kato
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - T Kaneko
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - E C Neyts
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
10
|
Yang F, Wang X, Si J, Zhao X, Qi K, Jin C, Zhang Z, Li M, Zhang D, Yang J, Zhang Z, Xu Z, Peng LM, Bai X, Li Y. Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes. ACS NANO 2017; 11:186-193. [PMID: 28114760 DOI: 10.1021/acsnano.6b06890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWNTs) with diameters of 1.0-1.5 nm (with similar bandgap to crystalline silicon) are highly desired for nanoelectronics. Up to date, the highest reported content of s-SWNTs as-grown is ∼97%, which is still far below the daunting requirements of high-end applications. Herein, we report a feasible and green pathway to use H2O vapor to modulate the structure of the intermetallic W6Co7 nanocrystals. By using the resultant W6Co7 nanocatalysts with a high percentage of (1 0 10) planes as structural templates, we realized the direct growth of s-SWNT with the purity of ∼99%, in which ∼97% is (14,4) tubes (diameter 1.29 nm). H2O can also act as an environmentally friendly and facile etchant for eliminating metallic SWNTs, and the content of s-SWNTs was further improved to 99.8% and (14,4) tubes to 98.6%. High purity s-SWNTs with even bandgap determined by their uniform structure can be used for the exquisite applications in different fields.
Collapse
Affiliation(s)
| | | | | | | | - Kuo Qi
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Chuanhong Jin
- School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | | | | | | | | | | | - Zhi Xu
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | | - Xuedong Bai
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | |
Collapse
|
11
|
Zhang R, Zhang Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem Soc Rev 2017; 46:3661-3715. [DOI: 10.1039/c7cs00104e] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the growth mechanism, controlled synthesis, characterization, properties and applications of horizontally aligned carbon nanotube arrays.
Collapse
Affiliation(s)
- Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yingying Zhang
- Department of Chemistry and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
12
|
Li P, Zhang J. Preparation of Horizontal Single-Walled Carbon Nanotubes Arrays. Top Curr Chem (Cham) 2016; 374:85. [DOI: 10.1007/s41061-016-0085-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022]
|
13
|
Ibrahim I, Gemming T, Weber WM, Mikolajick T, Liu Z, Rümmeli MH. Current Progress in the Chemical Vapor Deposition of Type-Selected Horizontally Aligned Single-Walled Carbon Nanotubes. ACS NANO 2016; 10:7248-7266. [PMID: 27427780 DOI: 10.1021/acsnano.6b03744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exciting electrical properties of single-walled carbon nanotubes show promise as a future class of electronic materials, yet the manufacturing challenges remain significant. The key challenges are to determine fabrication approaches for complex and flexible arrangements of nanotube devices that are reliable, rapid, and reproducible. Realizing regular array structures is an important step toward this goal. Considerable efforts have and are being made in this vein, although the progress to date is somewhat modest. However, there are reasons to be optimistic. Positive steps of being able to control not only the spatial location and diameter of the tubes but also their electronic type (chiral control) are being made. Two primary approaches are being exploited to address the challenges. Tube deposition techniques, on the one hand, and direct growth of the desired tube at the target location are being explored. While this review covers both approaches, the emphasis is on recent developments in the direct fabrication of type-selected horizontally aligned single-walled carbon nanotubes by chemical vapor deposition.
Collapse
Affiliation(s)
- Imad Ibrahim
- NaMLab gGmbH , Nöthnitzer Strasse 64, D-01187 Dresden, Germany
| | - Thomas Gemming
- IFW Dresden , P.O. Box 270116, 01171 Dresden, Saxony, Germany
| | - Walter M Weber
- NaMLab gGmbH , Nöthnitzer Strasse 64, D-01187 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology , 01062 Dresden, Saxony, Germany
| | - Thomas Mikolajick
- NaMLab gGmbH , Nöthnitzer Strasse 64, D-01187 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology , 01062 Dresden, Saxony, Germany
- Chair of Nanoelectronic Materials, TU Dresden , D-01062 Dresden, Germany
| | - Zhongfan Liu
- College of Physics Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215006, China
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Mark H Rümmeli
- College of Physics Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215006, China
- IFW Dresden , P.O. Box 270116, 01171 Dresden, Saxony, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| |
Collapse
|
14
|
Liu C, Cheng HM. Controlled Growth of Semiconducting and Metallic Single-Wall Carbon Nanotubes. J Am Chem Soc 2016; 138:6690-8. [DOI: 10.1021/jacs.6b00838] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chang Liu
- Shenyang National Laboratory
for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory
for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
15
|
Islam AE, Rogers JA, Alam MA. Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7908-7937. [PMID: 26540144 DOI: 10.1002/adma.201502918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Indexed: 06/05/2023]
Abstract
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements.
Collapse
Affiliation(s)
- Ahmad E Islam
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- National Research Council, Washington, DC, 20001, USA
| | - John A Rogers
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
| | - Muhammad A Alam
- Department of Electrical and Computer Engineering, Purdue University West Lafayette, IN, 47907, USA
| |
Collapse
|
16
|
Tang L, Li T, Li C, Ling L, Zhang K, Yao Y. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes. NANOSCALE 2015; 7:19699-19704. [PMID: 26553394 DOI: 10.1039/c5nr05616k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, effective techniques for the growth of semiconducting SWNTs (s-SWNTs) with a specific diameter are still a great challenge. Herein, we report a facile strategy for the selective growth of narrow diameter distributed s-SWNTs using CoPt/CeO2 catalysts. The addition of Pt into a Co catalyst dramatically reduces the diameter distributions and even the chirality distributions of the as-grown SWNTs. Oxygen vacancies that are provided by mesoporous CeO2 are responsible for creating an oxidative environment to in situ etch metallic SWNTs (m-SWNTs). Atomic force microscope (AFM) and Raman spectroscopy characterizations indicate a narrow diameter distribution of 1.32 ± 0.03 nm and the selective growth of s-SWNTs to 93%, respectively. In addition, electronic transport measurements also confirm that the Ion/Ioff ratio is mainly in the order of ∼10(3). This work provides an effective strategy for the facile fabrication of narrow diameter distributed s-SWNTs, which will be beneficial to fundamental research and the broad application of SWNTs for future nanoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China. and School of Sciences, Shanghai University, Shanghai 200444, China
| | - Taotao Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chaowei Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China. and School of Sciences, Shanghai University, Shanghai 200444, China
| | - Lin Ling
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| | - Kai Zhang
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yagang Yao
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
17
|
Li S, Sakurai S, Futaba DN, Hata K. Breakdown of metallic single-wall carbon nanotube paths by NiO nanoparticle point etching for high performance thin film transistors. NANOSCALE 2015; 7:1280-1284. [PMID: 25492495 DOI: 10.1039/c4nr06057a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A selective and highly local etching of the metallic single-wall carbon nanotube (SWCNT) was demonstrated by using a NiO nanoparticle (NP) point etching technique. Following the NiO NP point etching at temperatures ranging from 250 to 350 °C, the current on/off ratios of the SWCNT field effect transistors (FETs) increased over 50-fold from ∼10 s to ∼10(4). Furthermore, the unavoidable drop in on-state current due to the reduction in current paths could be minimized to within one order of magnitude. Atomic force microscopy and Raman spectroscopy studies supported the view that the improvement in FET performance was attributed to the efficient and localized etching of metallic SWCNT paths solely around the NiO NPs, resulting in minimal damage to the semiconducting SWCNT networks.
Collapse
Affiliation(s)
- Shisheng Li
- Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | |
Collapse
|
18
|
Liu B, Liu J, Li HB, Bhola R, Jackson EA, Scott LT, Page A, Irle S, Morokuma K, Zhou C. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. NANO LETTERS 2015; 15:586-95. [PMID: 25521257 DOI: 10.1021/nl504066f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The inability to synthesize single-wall carbon nanotubes (SWCNTs) possessing uniform electronic properties and chirality represents the major impediment to their widespread applications. Recently, there is growing interest to explore and synthesize well-defined carbon nanostructures, including fullerenes, short nanotubes, and sidewalls of nanotubes, aiming for controlled synthesis of SWCNTs. One noticeable advantage of such processes is that no metal catalysts are used, and the produced nanotubes will be free of metal contamination. Many of these methods, however, suffer shortcomings of either low yield or poor controllability of nanotube uniformity. Here, we report a brand new approach to achieve high-efficiency metal-free growth of nearly pure SWCNT semiconductors, as supported by extensive spectroscopic characterization, electrical transport measurements, and density functional theory calculations. Our strategy combines bottom-up organic chemistry synthesis with vapor phase epitaxy elongation. We identify a strong correlation between the electronic properties of SWCNTs and their diameters in nanotube growth. This study not only provides material platforms for electronic applications of semiconducting SWCNTs but also contributes to fundamental understanding of the growth mechanism and controlled synthesis of SWCNTs.
Collapse
Affiliation(s)
- Bilu Liu
- Department of Electrical Engineering and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Makama AB, Salmiaton A, Abdullah N, Choong TSY, Saion EB. Recent Developments in Purification of Single Wall Carbon Nanotubes. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.815628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Li J, Ke CT, Liu K, Li P, Liang S, Finkelstein G, Wang F, Liu J. Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes. ACS NANO 2014; 8:8564-72. [PMID: 25111952 DOI: 10.1021/nn503265g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The coexistence of semiconducting and metallic single-walled carbon nanotubes (SWNTs) during synthesis is one of the major bottlenecks that prevent their broad application for the next-generation nanoelectronics. Herein, we present more understanding and demonstration of the growth of highly enriched semiconducting SWNTs (s-SWNTs) with a narrow diameter distribution. An important fact discovered in our experiments is that the selective elimination of metallic SWNTs (m-SWNTs) from the mixed arrays grown on quartz is diameter-dependent. Our method emphasizes controlling the diameter distribution of SWNTs in a narrow range where m-SWNTs can be effectively and selectively etched during growth. In order to achieve narrow diameter distribution, uniform and stable Fe-W nanoclusters were used as the catalyst precursors. About 90% of as-prepared SWNTs fall into the diameter range 2.0-3.2 nm. Electrical measurement results on individual SWNTs confirm that the selectivity of s-SWNTs is ∼95%. The present study provides an effective strategy for increasing the purity of s-SWNTs via controlling the diameter distribution of SWNTs and adjusting the etchant concentration. Furthermore, by carefully comparing the chirality distributions of Fe-W-catalyzed and Fe-catalyzed SWNTs under different water vapor concentrations, the relationship between the diameter-dependent and electronic-type-dependent etching mechanisms was investigated.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Chemistry and ‡Department of Physics, Duke University , Durham, North Carolina 27708, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Burgos JC, Balbuena PB. Engineering preferential adsorption of single-walled carbon nanotubes on functionalized ST-cut surfaces of quartz. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12665-12673. [PMID: 25026376 DOI: 10.1021/am5026566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Horizontal alignment during synthesis of single-walled carbon nanotubes has been found experimentally along certain directions of well-defined quartz surfaces. The reasons for such alignment are here examined using first-principles computational analysis, as a function of structure and chemistry of the specific exposed facet, presence and location of OH and H functional groups, and degree of hydration of the surface. It is found that selective functionalization of low-coordinated surface sites may cause exposure of low-coordinated Si atoms that bond strongly to nanotube walls. On the other hand, saturation of low-coordinated oxygen also favors carbon nanotube adhesion to the substrate. As found previously on bare silica surfaces, a chirality preference is confirmed on functionalized surfaces toward zigzag over armchair nanotubes. Magnetization effects on the surface originated by the presence of adsorbed functional groups are found to enhance adsorption of arm-chair nanotubes compared to that on clean surfaces. On the basis of the findings, it is suggested that surfaces may be engineered to favor horizontal adsorption of specific chiralities along preferential directions.
Collapse
Affiliation(s)
- Juan C Burgos
- Department of Chemical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
| | | |
Collapse
|
22
|
Luo D, Yang F, Wang X, Sun H, Gao D, Li R, Yang J, Li Y. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2809-2742. [PMID: 24678038 DOI: 10.1002/smll.201400007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/27/2014] [Indexed: 06/03/2023]
Abstract
A one-step anisotropic etching method is developed to specifically obtain armchair-edged graphene directly from graphite flakes on various substrates. The armchair edge structure of the produced graphene is verified by the atomic resolution images obtained from the fluid mode peakforce tapping AFM and the relatively high intensity of D band in the Raman spectra.
Collapse
Affiliation(s)
- Da Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Li J, Liu K, Liang S, Zhou W, Pierce M, Wang F, Peng L, Liu J. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS NANO 2014; 8:554-562. [PMID: 24295396 DOI: 10.1021/nn405105y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) are highly desired for future electronic applications due to the excellent electrical, mechanical, and thermal properties. However, the density and the selectivity in the growth of aligned semiconducting nanotubes do not coexist previously: when the selectivity is high, the density is low and vice versa. In the present work, we found that random carbon nanotubes (CNTs) in the catalyst area block the growth of aligned SWNTs along the lattice structure on the quartz surface, thus significantly reducing the density of nanotubes during growth. More interestingly, it was shown that the random CNTs can be selectively removed through appropriate treatments using water vapor as an in situ etchant while the aligned SWNTs survive even after long-time water vapor treatment. To obtain high-density semiconducting SWNT arrays, we designed an improved multiple-cycle growth method, which included the treatment of SWNTs with water vapor after each growth cycle without cooling the system. Using this method, we have successfully obtained dense semiconducting SWNTs (∼10 SWNTs/μm) over large areas and with high uniformity.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu B, Wang C, Liu J, Che Y, Zhou C. Aligned carbon nanotubes: from controlled synthesis to electronic applications. NANOSCALE 2013; 5:9483-9502. [PMID: 23969970 DOI: 10.1039/c3nr02595k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Single-wall carbon nanotubes (SWNTs) possess superior geometrical, electronic, chemical, thermal, and mechanical properties and are very attractive for applications in electronic devices and circuits. To make this a reality, the nanotube orientation, density, diameter, electronic property, and even chirality should be well controlled. This Feature article focuses on recent achievements researchers have made on the controlled growth of horizontally aligned SWNTs and SWNT arrays on substrates and their electronic applications. Principles and strategies to control the morphology, structure, and properties of SWNTs are reviewed in detail. Furthermore, electrical properties of field-effect transistors fabricated on both individual SWNTs and aligned SWNT arrays are discussed. State-of-the-art electronic devices and circuits based on aligned SWNTs and SWNT arrays are also highlighted.
Collapse
Affiliation(s)
- Bilu Liu
- Department of Electrical Engineering and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.
| | | | | | | | | |
Collapse
|
25
|
Hu Y, Chen Y, Li P, Zhang J. Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1306-1311. [PMID: 23505123 DOI: 10.1002/smll.201202940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/07/2013] [Indexed: 06/01/2023]
Abstract
Semiconducting single-walled carbon nanotube (s-SWNT) arrays are produced via a procedure analogous to a surfactant-assisted decontamination process. Aligned individual SWNT arrays grow on a quartz surface as a mixture of metallic SWNTs (m-SWNTs) and s-SWNTs. They are immersed in a sodium dodecyl sulfate (SDS) solution, and the SDS molecules selectively adsorb onto m-SWNTs. This SDS coating minimizes the interaction between m-SWNTs and the substrate, thus the m-SWNTs are easily washed off during ultrasonication while the s-SWNT arrays remain on the substrate. The percentage of s-SWNTs in the arrays can be higher than 90%.
Collapse
Affiliation(s)
- Yue Hu
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
26
|
Conjugated polymer-controlled selective dispersion of single-walled carbon nanotubes and fabrication of network transistors. Macromol Res 2013. [DOI: 10.1007/s13233-013-1148-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Che Y, Wang C, Liu J, Liu B, Lin X, Parker J, Beasley C, Wong HSP, Zhou C. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS NANO 2012; 6:7454-7462. [PMID: 22849386 DOI: 10.1021/nn302720n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.
Collapse
Affiliation(s)
- Yuchi Che
- Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhou W, Zhan S, Ding L, Liu J. General Rules for Selective Growth of Enriched Semiconducting Single Walled Carbon Nanotubes with Water Vapor as in Situ Etchant. J Am Chem Soc 2012; 134:14019-26. [DOI: 10.1021/ja3038992] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiwei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shutong Zhan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Lei Ding
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jie Liu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
|