1
|
Huang J, Xu S, Liu L, Zhang J, Xu J, Zhang L, Zhou X, Huang L, Peng J, Wang J, Gong Z, Chen Y. Targeted treatment of atherosclerosis with protein-polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles. J Drug Target 2023; 31:1111-1127. [PMID: 37962293 DOI: 10.1080/1061186x.2023.2284093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Macrophages are the most abundant cell group in atherosclerosis (AS) lesions and play a vital role in all stages of AS progression. Recent research has shown that reactive oxygen species (ROS) generation from photodynamic therapy (PDT) induces macrophage autophagy to improve abnormal lipid metabolism and inflammatory environment. Especially in macrophage-derived foam cells, which has become a potential strategy for the treatment of AS. In this study, we prepared the conjugate (DB) of dextran (DEX) and bovine serum albumin (BSA). The DB was used as the emulsifier to prepare nanoemulsion loaded with upconversion nanoparticles (UCNPs) and chlorin e6 (Ce6) (UCNPs-Ce6@DB). The DEX modified on the surface of the nanoemulsion can recognise and bind to the scavenger receptor class A (SR-A) highly expressed on macrophages and promote the uptake of macrophage-derived foam cells in AS plates through SR-A-mediated endocytosis. In addition, UCNPs-Ce6@DB-mediated PDT enhanced ROS generation and induced autophagy in macrophage-derived foam cells, enhanced the expression of ABCA1, a protein closely related to cholesterol efflux, and inhibited the secretion of pro-inflammatory cytokines. Ultimately, UCNPs-Ce6@DB was shown to inhibit plaque formation in mouse models of AS. In conclusion, UCNPs-Ce6@DB offers a promising treatment for AS.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Jiangsu, Nanjing, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Pusta A, Tertis M, Crăciunescu I, Turcu R, Mirel S, Cristea C. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials. Pharmaceutics 2023; 15:1872. [PMID: 37514058 PMCID: PMC10383769 DOI: 10.3390/pharmaceutics15071872] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
With the predicted rise in the incidence of cancer, there is an ever-growing need for new cancer treatment strategies. Recently, magnetic nanoparticles have stood out as promising nanostructures for imaging and drug delivery systems as they possess unique properties. Moreover, magnetic nanomaterials functionalized with other compounds can lead to multicomponent nanoparticles with innovative structures and synergetic performance. The incorporation of chemotherapeutic drugs or RNA in magnetic drug delivery systems represents a promising alternative that can increase efficiency and reduce the side effects of anticancer therapy. This review presents a critical overview of the recent literature concerning the advancements in the field of magnetic nanoparticles used in drug delivery, with a focus on their classification, characteristics, synthesis and functionalization methods, limitations, and examples of magnetic drug delivery systems incorporating chemotherapeutics or RNA.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Izabell Crăciunescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Chen Y, Wang J, Xu J, Zhang J, Xu S, Zhang Q, Huang J, Peng J, Xu H, Du Q, Gong Z. Fabrication of a Polysaccharide-Protein/Protein Complex Stabilized Oral Nanoemulsion to Facilitate the Therapeutic Effects of 1,8-Cineole on Atherosclerosis. ACS NANO 2023; 17:9090-9109. [PMID: 37172004 DOI: 10.1021/acsnano.2c12230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Atherosclerosis (AS) is a systemic disease characterized by lipid deposition in the blood vessel wall that urgently requires effective and safe therapeutic drugs for long-term treatment. An essential oil monomer-1,8-cineole (CIN) with ameliorative effects on vascular injuries has considerable potential for preventing the progression of AS because of its antioxidant, anti-inflammation, and cholesterol regulatory effects. However, the high volatility and instability of CIN result in low oral bioavailability and a short half-life, thereby limiting its clinical application. We formulated a nanoemulsion using a polysaccharide-protein/protein complex (dextran-bovine serum albumin/protamine, DEX5k-BSA/PTM) as an emulsifier, with vitamin B12 (VB12) as the ligand to facilitate the transportation across the small intestine. An emulsion preparation method using a microjet followed by ultraviolet irradiation was developed to obtain the CIN-loaded oral nanoemulsion CIN@DEX5k-BSA/PTM/VB12. The nanoemulsion improved the stability of CIN both in vitro and in vivo, prolonged the retention time in the gastrointestinal tract (GIT), and enhanced the permeability across the mucus layer and intestinal epithelial cells to increase oral bioavailability and plaque accumulation of CIN. Validated in an AS mouse model, CIN@DEX5k-BSA/PTM/VB12 achieved prominent therapeutic efficacy combating AS. This study highlights the advantages of DEX5k-BSA/PTM and VB12 in the development of nanoemulsions for CIN and provides a promising oral nanoplatform for the delivery of essential oils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | |
Collapse
|
4
|
Mondal DK, Jonak S, Paul N, Borah JP. Dextran mediated MnFe 2O 4/ZnS magnetic fluorescence nanocomposites for controlled self-heating properties. RSC Adv 2021; 11:12507-12519. [PMID: 35423807 PMCID: PMC8696989 DOI: 10.1039/d0ra09745d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Dextran mediated MnFe2O4/ZnS opto-magnetic nanocomposites with different concentrations of ZnS were competently synthesized adopting the co-precipitation method. The structural, morphological, magnetic, and optical properties of the nanocomposites were exhaustively characterized by XRD, HRTEM, FTIR, VSM techniques, and PL spectroscopy. XRD spectra demonstrate the existence of the cubic spinel phase of MnFe2O4 and the cubic zinc blend phase of ZnS in the nanocomposites. HRTEM images show the average crystallite size ranges of 15-21 nm for MnFe2O4 and 14-45 nm for ZnS. Investigation of the FTIR spectra reveals the incorporation of ZnS nanoparticles on the surface of MnFe2O4 nanoparticles by dint of biocompatible surfactant dextran. The nanocomposites exhibit both magnetic and photoluminescence properties. Photoluminescence analysis confirmed the redshift of the emission peaks owing to the trap states in the ZnS nanocrystals. The room temperature VSM analysis shows that the saturation magnetization and coercivity of MnFe2O4 nanoparticles initially increase then decrease with the increasing concentration of ZnS in the nanocomposite. The induction heating analysis shows that the presence of dextran enhances the self heating properties of the MnFe2O4/ZnS nanocomposites which can also be controlled by tailoring the concentration of the ZnS nanoparticles. These suggest that MnFe2O4/Dex/ZnS is a decent candidate for hyperthermia applications.
Collapse
Affiliation(s)
- D K Mondal
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - Sarodi Jonak
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - N Paul
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - J P Borah
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| |
Collapse
|
5
|
Kang B, Lim J, Son HY, Choi Y, Kang T, Jung J, Huh YM, Haam S, Lim EK. PEGylated Magnetic Nano-Assemblies as Contrast Agents for Effective T2-Weighted MR Imaging. NANOMATERIALS 2019; 9:nano9030410. [PMID: 30862030 PMCID: PMC6473972 DOI: 10.3390/nano9030410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
We designed a high-sensitivity magnetic resonance imaging contrast agent that could be used to diagnose diseases. First, magnetic nanocrystals were synthesized by a thermal decomposition method on an organic solvent to obtain a high magnetism and methoxy poly(ethylene glycol)-poly(lactic acid) as an amphiphilic polymer using the ring-opening polymerization method to stably disperse the magnetic nanocrystals in an aqueous phase. Subsequently, the magnetic nanoclusters simultaneously self-assembled with methoxy poly(ethylene glycol)-poly(lactic acid) using the nano-emulsion method to form magnetic nanoclusters. Because their shape was similar to a raspberry, they were named PEGylated magnetic nano-assemblies. The PEGylated magnetic nano-assemblies were dispersed stably in the aqueous phase with a uniform size of approximately 65–70 nm for an extended period (0 days: 68.8 ± 5.1 nm, 33 days: 69.2 ± 2.0 nm, and 44 days: 63.2 ± 5.6). They exhibited both enough of a magnetic resonance (MR) contrast effect and biocompatibility. In an in vivo study, the PEGylated magnetic nano-assemblies provided a high contrast effect for magnetic resonance images for a long time after one treatment, thereby improving the diagnostic visibility of the disease site.
Collapse
Affiliation(s)
- Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea.
| | - Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Hye-Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea.
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Juyeon Jung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea.
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea.
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, Korea.
| |
Collapse
|
6
|
Rapid and simple detection of Tamiflu-resistant influenza virus: Development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci Rep 2018; 8:12999. [PMID: 30158601 PMCID: PMC6115449 DOI: 10.1038/s41598-018-31311-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/16/2018] [Indexed: 01/16/2023] Open
Abstract
We have developed a novel oseltamivir derivative (oseltamivir hexylthiol; OHT) that exhibits a higher binding affinity for Tamiflu-resistant virus (Tamiflu resistance) than for the wild-type virus (Tamiflu-susceptible virus; WT) as an antibody. First, OHT-modified gold nanoparticles (OHT-GNPs) are used in a simple colorimetric assay as nanoprobes for the Tamiflu-resistant virus. In the presence of Tamiflu-resistant virus, they show a colorimetric change from deep red to purple because of the OHT-GNP aggregation driven by strong interactions between OHT and neuraminidase (NA) on the surface of the Tamiflu-resistance. Moreover, the color gradually turns purple as the concentration of the Tamiflu-resistant virus increases, allowing the determination of the presence of the virus with the naked eye. Furthermore, an OHT-based lateral flow assay (LFA) has been developed as a rapid and easy detection device for Tamiflu resistance. It shows detection specificity for various virus concentrations of Tamiflu-resistant virus even for the mixture of WT and Tamiflu-resistant viruses, where the limit of detection (LOD) is 5 × 102 ~ 103 PFU per test (=1 × 104 PFU/mL). It has been confirmed that this platform can provide accurate information on whether a virus exhibits Tamiflu resistance, thus supporting the selection of appropriate treatments using point-of-care (POC) diagnostics.
Collapse
|
7
|
Lim EK, Chung BH. Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications. Nat Protoc 2016; 11:236-51. [DOI: 10.1038/nprot.2015.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Cheng J, Tan G, Li W, Li J, Wang Z, Jin Y. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer. RSC Adv 2016. [DOI: 10.1039/c6ra03128e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Core–shell structure magneto-fluorescence chlorin pyropheorbide-a photosensitizer (MFNPs) with good water-dispersity and strong superparamagnetic for photodynamic therapy.
Collapse
Affiliation(s)
- Jianjun Cheng
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Wenting Li
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Jinghua Li
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| |
Collapse
|
9
|
Song S, Ha K, Guk K, Hwang SG, Choi JM, Kang T, Bae P, Jung J, Lim EK. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Adv 2016. [DOI: 10.1039/c6ra06689e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a peptide-functionalized polydiacetylene nanosensor for pH1N1 virus detection with the naked eye.
Collapse
Affiliation(s)
- Sinae Song
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Kab Ha
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Kyeonghye Guk
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Seul-Gee Hwang
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Jong Min Choi
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Taejoon Kang
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Pankee Bae
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Juyeon Jung
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Eun-Kyung Lim
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| |
Collapse
|
10
|
Lee T, Bang D, Park Y, Chang YW, Kang B, Kim J, Suh JS, Huh YM, Haam S. Synthesis of Stable Magnetic Polyaniline Nanohybrids with Pyrene as a Cross-Linker for Simultaneous Diagnosis by Magnetic Resonance Imaging and Photothermal Therapy. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Kim B, Yang J, Lee YH, Kim MH, Heo D, Lee E, Suh JS, Haam S, Huh YM. Compensatory UTE/T2W Imaging of Inflammatory Vascular Wall in Hyperlipidemic Rabbits. PLoS One 2015; 10:e0124572. [PMID: 25978437 PMCID: PMC4433322 DOI: 10.1371/journal.pone.0124572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To obtain compensatory ultra-short echo time (UTE) imaging and T2-weighted (T2W) imaging of Watanabe heritable hyperlipidemic (WHHL) rabbits following dextran-coated magnetic nanocluster (DMNC) injection for the effective in vivo detection of inflammatory vascular wall. METHODS Magnetic nanoparticle was synthesized by thermal decomposition and encapsulated with dextran to prepare DMNC. The contrast enhancement efficiency of DMNC was investigated using UTE (repetition time [TR] = 5.58 and TE = 0.07 ms) and T2W (TR = 4000 and TE = 60 ms) imaging sequences. To confirm the internalization of DMNC into macrophages, DMNC-treated macrophages were visualized by cellular transmission electron microscope (TEM) and magnetic resonance (MR) imaging. WHHL rabbits expressing macrophage-rich plaques were subjected to UTE and T2W imaging before and after intravenous DMNC (120 μmol Fe/kg) treatment. Ex vivo MR imaging of plaques and immunostaining studies were also performed. RESULTS Positive and negative contrast enhancement of DMNC solutions with increasing Fe concentrations were observed in UTE and T2W imaging, respectively. The relative signal intensities of the DMNC solution containing 2.9 mM Fe were calculated as 3.53 and 0.99 in UTE and T2W imaging, respectively. DMNC uptake into the macrophage cytoplasm was visualized by electron microscopy. Cellular MR imaging of DMNC-treated macrophages revealed relative signals of 3.00 in UTE imaging and 0.98 in T2W imaging. In vivo MR images revealed significant brightening and darkening of plaque areas in the WHHL rabbit 24 h after DMNC injection in UTE and T2W imaging, respectively. Ex vivo MR imaging results agreed with these in vivo MR imaging results. Histological analysis showed that DMNCs were localized to areas of inflammatory vascular wall. CONCLUSIONS Using compensatory UTE and T2W imaging in conjunction with DMNC is an effective approach for the noninvasive in vivo imaging of atherosclerotic plaque.
Collapse
Affiliation(s)
- Bongjune Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea
| | - Myeong-Hoon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dan Heo
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Nanomedical National Core Research Center, Yonsei University, Seoul, Republic of Korea
| | - Eugene Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Nanomedical National Core Research Center, Yonsei University, Seoul, Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Nanomedical National Core Research Center, Yonsei University, Seoul, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
- * E-mail: (SH); (YMH)
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- * E-mail: (SH); (YMH)
| |
Collapse
|
12
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
13
|
Kim MH, Kim B, Lim EK, Choi Y, Choi J, Kim E, Jang E, Park HS, Suh JS, Huh YM, Haam S. Magnetic Nanoclusters Engineered by Polymer-Controlled Self-Assembly for the Accurate Diagnosis of Atherosclerotic Plaques via Magnetic Resonance Imaging. Macromol Biosci 2014; 14:943-52. [DOI: 10.1002/mabi.201400029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/03/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Myeong-Hoon Kim
- Department of Chemical and Biomolecular Engineering; College of Engineering, Yonsei University; Seoul 120-749 Republic of Korea
| | - Bongjune Kim
- Department of Chemical and Biomolecular Engineering; College of Engineering, Yonsei University; Seoul 120-749 Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon 305-806 Republic of Korea
| | - Yuna Choi
- Department of Radiology; College of Medicine, Yonsei University; Seoul 120-752 Republic of Korea
| | - Jihye Choi
- Department of Chemical and Biomolecular Engineering; College of Engineering, Yonsei University; Seoul 120-749 Republic of Korea
| | - Eunjung Kim
- Department of Chemical and Biomolecular Engineering; College of Engineering, Yonsei University; Seoul 120-749 Republic of Korea
| | - Eunji Jang
- Department of Chemical and Biomolecular Engineering; College of Engineering, Yonsei University; Seoul 120-749 Republic of Korea
| | - Hyo Seon Park
- Department of Architectural Engineering; Yonsei University; Seoul 120-749 Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology; College of Medicine, Yonsei University; Seoul 120-752 Republic of Korea
| | - Yong-Min Huh
- Department of Radiology; College of Medicine, Yonsei University; Seoul 120-752 Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering; College of Engineering, Yonsei University; Seoul 120-749 Republic of Korea
| |
Collapse
|
14
|
Kostopoulou A, Brintakis K, Vasilakaki M, Trohidou KN, Douvalis AP, Lascialfari A, Manna L, Lappas A. Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters. NANOSCALE 2014; 6:3764-76. [PMID: 24573414 DOI: 10.1039/c3nr06103e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Controlled assembly of single-crystal, colloidal maghemite nanoparticles is facilitated via a high-temperature polyol-based pathway. Structural characterization shows that size-tunable nanoclusters of 50 and 86 nm diameters (D), with high dispersibility in aqueous media, are composed of ∼13 nm (d) crystallographically oriented nanoparticles. The interaction effects are examined against the increasing volume fraction, φ, of the inorganic magnetic phase that goes from individual colloidal nanoparticles (φ = 0.47) to clusters (φ = 0.72). The frozen-liquid dispersions of the latter exhibit weak ferrimagnetic behaviour at 300 K. Comparative Mössbauer spectroscopic studies imply that intra-cluster interactions come into play. New insight emerges from the clusters' temperature-dependent ac susceptibility that displays two maxima in χ''(T), with strong frequency dispersion. Scaling-law analysis together with the observed memory effects suggests that a superspin-glass state settles-in at TB ∼ 160-200 K, while at lower-temperatures, surface spin-glass freezing is established at Tf ∼ 40-70 K. In such nanoparticle-assembled systems, with increased φ, Monte Carlo simulations corroborate the role of the inter-particle dipolar interactions and that of the constituent nanoparticles' surface spin disorder in the emerging spin-glass dynamics.
Collapse
Affiliation(s)
- A Kostopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion 71110, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kostopoulou A, Velu SKP, Thangavel K, Orsini F, Brintakis K, Psycharakis S, Ranella A, Bordonali L, Lappas A, Lascialfari A. Colloidal assemblies of oriented maghemite nanocrystals and their NMR relaxometric properties. Dalton Trans 2014; 43:8395-404. [DOI: 10.1039/c4dt00024b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1H-NMR relaxometric experiments over an extended frequency range show that ferrimagnetic colloidal nanoclusters exhibit enhanced transverse relaxivity, r2.
Collapse
Affiliation(s)
- Athanasia Kostopoulou
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology – Hellas
- 71110 Heraklion, Greece
| | - Sabareesh K. P. Velu
- Dipartimento di Fisica
- Università degli studi di Milano and INSTM
- I-20133 Milano, Italy
| | - Kalaivani Thangavel
- Dipartimento di Fisica
- Università degli studi di Milano and INSTM
- I-20133 Milano, Italy
| | - Francesco Orsini
- Dipartimento di Fisica
- Università degli studi di Milano and INSTM
- I-20133 Milano, Italy
| | - Konstantinos Brintakis
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology – Hellas
- 71110 Heraklion, Greece
- Department of Physics
- Aristotle University of Thessaloniki
| | - Stylianos Psycharakis
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology – Hellas
- 71110 Heraklion, Greece
- Department of Medicine
- University of Crete
| | - Anthi Ranella
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology – Hellas
- 71110 Heraklion, Greece
| | - Lorenzo Bordonali
- Dipartimento di Fisica
- Università degli studi di Pavia and INSTM
- Pavia, Italy
| | - Alexandros Lappas
- Institute of Electronic Structure and Laser
- Foundation for Research and Technology – Hellas
- 71110 Heraklion, Greece
| | | |
Collapse
|
16
|
Lim EK, Sajomsang W, Choi Y, Jang E, Lee H, Kang B, Kim E, Haam S, Suh JS, Chung SJ, Huh YM. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. NANOSCALE RESEARCH LETTERS 2013; 8:467. [PMID: 24206754 PMCID: PMC4226245 DOI: 10.1186/1556-276x-8-467] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/27/2013] [Indexed: 05/04/2023]
Abstract
Smart drug delivery systems that are triggered by environmental conditions have been developed to enhance cancer therapeutic efficacy while limiting unwanted effects. Because cancer exhibits abnormally high local acidities compared to normal tissues (pH 7.4) due to Warburg effects, pH-sensitive systems have been researched for effective cancer therapy. Chitosan-based intelligent theragnosis nanocomposites, N-naphthyl-O-dimethymaleoyl chitosan-based drug-loaded magnetic nanoparticles (NChitosan-DMNPs), were developed in this study. NChitosan-DMNPs are capable of pH-sensitive drug release with MR-guided images because doxorubicin (DOX) and magnetic nanocrystals (MNCs) are encapsulated into the designed N-naphthyl-O-dimethymaleoyl chitosan (N-nap-O-MalCS). This system exhibits rapid DOX release as acidity increases, high stability under high pH conditions, and sufficient capacity for diagnosing and monitoring therapeutic responses. These results demonstrate that NChitosan-DMNPs have potential as theragnosis nanocomposites for effective cancer therapy.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
| | - Warayuth Sajomsang
- Nanodelivery System Laboratory (NDS), National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
- BioNanotechnology Research Center, KRIBB, Yuseong, Daejeon 305-806, Republic of Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
| | - Eunji Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Hwunjae Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
| | - Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Eunjung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Seungjoo Haam
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
| | - Sang Jeon Chung
- BioNanotechnology Research Center, KRIBB, Yuseong, Daejeon 305-806, Republic of Korea
- Department of Chemistry, Dongguk University, Seoul 100-715, South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
| |
Collapse
|
17
|
Thorat N, Otari S, Patil R, Khot V, Prasad A, Ningthoujam R, Pawar S. Enhanced colloidal stability of polymer coated La0.7Sr0.3MnO3 nanoparticles in physiological media for hyperthermia application. Colloids Surf B Biointerfaces 2013; 111:264-9. [DOI: 10.1016/j.colsurfb.2013.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/10/2013] [Accepted: 06/10/2013] [Indexed: 11/28/2022]
|
18
|
Yoo H, Moon SK, Hwang T, Kim YS, Kim JH, Choi SW, Kim JH. Multifunctional magnetic nanoparticles modified with polyethylenimine and folic acid for biomedical theranostics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5962-5967. [PMID: 23650947 DOI: 10.1021/la3051302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper describes the preparation of magnetic nanoparticles modified with polyethylenimine (PEI)-folic acid (PF) conjugate and their potential biomedical applications. Magnetic nanoparticles modified with (3-(2-aminoethylamino)propyltrimethoxysilane) (AEAPS) were first prepared using a ligand exchange method to provide biocompatibility and hydrophilicity, and further conjugated with PF to carry gene and enhance specific uptake into cancer cells. We demonstrated the feasibility of the multifunctional magnetic nanoparticles as contrast agents in magnetic resonance imaging (MRI) and as gene carriers for gene delivery. In vitro results revealed that the cytotoxicity of the multifunctional magnetic nanoparticles was lower compared to that of pristine magnetic nanoparticles. Furthermore, we demonstrated the specific uptake of the magnetic nanoparticles modified with PF to KB cells using WI-38 cells as comparison by confocal microscopy. The PF-modified magnetic nanoparticles can potentially be employed as theranostic nanoplatforms for targeted gene delivery to cancer cells and simultaneous magnetic resonance imaging.
Collapse
Affiliation(s)
- Hyunhee Yoo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Lim EK, Kim B, Choi Y, Ro Y, Cho EJ, Lee JH, Ryu SH, Suh JS, Haam S, Huh YM. Aptamer-conjugated magnetic nanoparticles enable efficient targeted detection of integrin αvβ3 via magnetic resonance imaging. J Biomed Mater Res A 2013; 102:49-59. [PMID: 23568770 DOI: 10.1002/jbm.a.34678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 12/17/2022]
Abstract
An understanding of neovascularization and/or angiogenesis in cancer is acutely required for effective cancer therapy due to concerns about tumor growth and metastasis. In particular, integrin αvβ3 is closely associated with cell migration and invasion during angiogenesis. Hence, we developed aptamer(αvβ3)-conjugated magnetic nanoparticles (Apt(αvβ3)-MNPs) to enable precise detection of integrin-expressing cancer cells using magnetic resonance imaging. Apt(αvβ3)-MNPs exhibited not only cytocompatibility, but also an efficient targeting ability with high magnetic sensitivity through in vitro/in vivo studies. The results of this study demonstrate that Apt(αvβ3)-MNPs have the potential to be used for accurate tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee T, Lim EK, Lee J, Kang B, Choi J, Park HS, Suh JS, Huh YM, Haam S. Efficient CD44-targeted magnetic resonance imaging (MRI) of breast cancer cells using hyaluronic acid (HA)-modified MnFe2O4 nanocrystals. NANOSCALE RESEARCH LETTERS 2013; 8:149. [PMID: 23547716 PMCID: PMC3621698 DOI: 10.1186/1556-276x-8-149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/31/2013] [Indexed: 05/14/2023]
Abstract
Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis.
Collapse
Affiliation(s)
- Taeksu Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Eun-Kyung Lim
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 120-752, South Korea
| | - Jaemin Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Jihye Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Hyo Seon Park
- Department of Architectural Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 120-752, South Korea
- Severance Biomedical Science Institute, Seoul, 120-752, South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 120-752, South Korea
- Severance Biomedical Science Institute, Seoul, 120-752, South Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 120-752, South Korea
| |
Collapse
|
21
|
Kim B, Yang J, Lim EK, Park J, Suh JS, Park HS, Huh YM, Haam S. Double-ligand modulation for engineering magnetic nanoclusters. NANOSCALE RESEARCH LETTERS 2013; 8:104. [PMID: 23433032 PMCID: PMC3614429 DOI: 10.1186/1556-276x-8-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/10/2012] [Indexed: 05/20/2023]
Abstract
Magnetic nanoclusters (MNCs) are agglomerated individual magnetic nanoparticles (MNPs) that show great promise in increasing magnetic resonance imaging (MRI) sensitivity. Here, we report an effective strategy to engineer MNCs based on double-ligand modulation to enhance MRI sensitivity. The oleic acid-coated individual MNPs self-assembled and then were enveloped by polysorbate 80, using a nanoemulsion method to prepare MNCs. By modulating the amounts of the two ligands, and thus the size and magnetic content of the resultant MNCs, we were able to enormously improve MRI sensitivity.
Collapse
Affiliation(s)
- Bongjune Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Eun-Kyung Lim
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Joseph Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Hyo Seon Park
- Department of Architectural Engineering, College of Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| |
Collapse
|
22
|
Kim E, Lee K, Huh YM, Haam S. Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy. J Mater Chem B 2013; 1:729-739. [DOI: 10.1039/c2tb00294a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Park J, Bang D, Kim E, Yang J, Lim EK, Choi J, Kang B, Suh JS, Park HS, Huh YM, Haam S. Effect of Ligand Structure on MnO Nanoparticles for EnhancedT1Magnetic Resonance Imaging of Inflammatory Macrophages. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201201026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Lim EK, Jang E, Kim J, Lee T, Kim E, Park HS, Suh JS, Huh YM, Haam S. Self-fabricated dextran-coated gold nanoparticles using pyrenyl dextran as a reducible stabilizer and their application as CT imaging agents for atherosclerosis. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32277c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|