1
|
Liu ZG, He XX, Zhao JH, Xu CM, Qiao Y, Li L, Chou SL. Carbon nanosphere synthesis and applications for rechargeable batteries. Chem Commun (Camb) 2023; 59:4257-4273. [PMID: 36940099 DOI: 10.1039/d3cc00402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Carbon nanospheres (CNSs) have attracted great interest in energy conversion and storage technologies due to their excellent chemical and thermal stability, high electrical conductivity and controllable size structure characteristics. In order to further improve the energy storage properties, many efforts have been made to design suitable nanocarbon spherical materials to improve electrochemical performance. In this overview, we summarize the recent research progress on CNSs, mainly focusing on the synthesis methods and their application as high-performance electrode materials in rechargeable batteries. As for the synthesis methods, hard template methods, soft template methods, the extension of the Stöber method, hydrothermal carbonization, aerosol-assisted synthesis are described in detail. In addition, the use of CNSs as electrodes in energy storage devices (mainly concentrated on lithium-ion batteries (LIBs)), sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are also discussed in detail in this article. Finally, some perspectives on the future research and development of CNSs are provided.
Collapse
Affiliation(s)
- Zheng-Guang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiang-Xi He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jia-Hua Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Chun-Mei Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yun Qiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China. .,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
| |
Collapse
|
2
|
Ahmad M, Nawaz T, Hussain I, Chen X, Imran M, Hussain R, Assiri MA, Ali S, Wu Z. Phosphazene Cyclomatrix Network-Based Polymer: Chemistry, Synthesis, and Applications. ACS OMEGA 2022; 7:28694-28707. [PMID: 36033672 PMCID: PMC9404196 DOI: 10.1021/acsomega.2c01573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphazenes are an inorganic molecular hybrid family with multifunctional properties due to their wide range of organic substitutes. This review intends to propose the basics of the synthetic chemistry of polyphosphazene, describing for researchers outside the field the basic knowledge required to design and prepare polyphosphazenes with desired properties. A special emphasis is placed on recent advances in chemical synthesis, which allow not only the synthesis of polyphosphazenes with controlled molecular weights and polydispersities but also the synthesis of novel branched designs and block copolymers. We also investigated the synthesis of polyphosphazenes using various functional materials. This review aims to assist researchers in synthesizing their specific polyphosphazene material with unique property combinations, with the hope of stimulating further research and even more innovative applications for these highly interesting multifaceted materials.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Tehseen Nawaz
- Department
of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Iftikhar Hussain
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Xi Chen
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia
| | - Riaz Hussain
- Division
of Science and Technology, University of
Education, Lahore 54770, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia
| | - Shafqat Ali
- Department
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, P. R. China
| | - Zhanpeng Wu
- State
Key
Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Song K, Wang Y, Ruan F, Yang W, Fang Z, Zheng D, Li X, Li N, Qiao M, Liu J. Synthesis of a Reactive Template-Induced Core-Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites. Polymers (Basel) 2021; 13:2646. [PMID: 34451186 PMCID: PMC8399606 DOI: 10.3390/polym13162646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
Developing superior properties of epoxy resin composites with high fire resistance, light smoke, and low toxicity has been the focus of the research in the flame-retardant field. In particular, it is essential to decrease the emissions of toxic gases and smoke particles generated during the thermal decomposition of epoxy resin (EP) to satisfy the industrial requirements for environmental protection and safety. Consequently, the PZS@ZIF-67 composite was designed and synthesized by employing the hydroxyl group-containing polyphosphazene (poly(cyclotriphosphazene-co-4,4'-dihydroxydiphenylsulfone), PZS) as both the interfacial compatibility and an in situ template and the ZIF-67 nanocrystal as a nanoscale coating and flame-retardant cooperative. ZIF-67 nanocrystal with multidimensional nanostructures was uniformly wrapped on the surface of PZS microspheres. Subsequently, the acquired PZS@ZIF-67 composite was incorporated into the epoxy resin to prepare composite samples for the study of their fire safety, toxicity suppression, and mechanical performance. Herein, the EP/5% PZS@ZIF-67 passed the V-0 rating in a UL-94 test with a 31.9% limit oxygen index value. More precisely, it is endowed with a decline of 51.08%, 28.26%, and 37.87% of the peak heat release rate, the total heat release, and the total smoke production, respectively. In addition, the unique structure of PZS@ZIF-67 microsphere presented a slight impact on the mechanical properties of EP composites at low loading. The PZS@ZIF-67 possible flame-retardant mechanism was speculated based on the analysis of the condensed phase and the gas phase of EP composites.
Collapse
Affiliation(s)
- Kunpeng Song
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Yinjie Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Fang Ruan
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Weiwei Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Zhuqing Fang
- School of Mechatronical Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Dongsen Zheng
- School of Mechatronical Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xueli Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Nianhua Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Meizhuang Qiao
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jiping Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| |
Collapse
|
4
|
Örüm SM. Novel cyclomatrix polyphosphazene nanospheres: preparation, characterization and dual anticancer drug release application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Ni Z, Yu H, Wang L, Shen D, Elshaarani T, Fahad S, Khan A, Haq F, Teng L. Recent research progress on polyphosphazene-based drug delivery systems. J Mater Chem B 2021; 8:1555-1575. [PMID: 32025683 DOI: 10.1039/c9tb02517k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, synthetic polymer materials have become a research hotspot in the field of drug delivery. Compared with natural polymer materials, synthetic polymer materials have more flexible structural adjustability, and can be designed to obtain clinically required delivery vehicles. Polyphosphazenes are one of the most promising biomedical materials in the future due to their controllable degradation properties and structural flexibility. These materials can be designed by controlling the hydrophilic and hydrophobic balance, introducing functional groups or drugs to form different forms of administration, such as nanoparticles, polyphosphazene-drug conjugates, injectable hydrogels, coatings, etc. In addition, the flexible backbone of polyphosphazenes and the flexibility of substitution enable them to meet researchers' design requirements in terms of stereochemistry, nanostructures, and topologies. At present, researchers have achieved a lot of successful practices in the field of targeted delivery of anticancer drugs/proteins/genes, bone tissue engineering repair, cell imaging tracking, photothermal therapy, and immunologic preparations. This review provides a summary of the progress of the recent 10 years of polyphosphazene-based drug delivery systems in terms of of chemical structure and functions.
Collapse
Affiliation(s)
- Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Amin Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Lison Teng
- Biological Surgery and Cancer Center, The First Affiliated Hospital, Zhejiang University, 310003, P. R. China
| |
Collapse
|
6
|
Jiang J, Nie G, Nie P, Li Z, Pan Z, Kou Z, Dou H, Zhang X, Wang J. Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. NANO-MICRO LETTERS 2020; 12:183. [PMID: 34138206 PMCID: PMC7770795 DOI: 10.1007/s40820-020-00521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/12/2020] [Indexed: 05/25/2023]
Abstract
Among the various morphologies of carbon-based materials, hollow carbon nanostructures are of particular interest for energy storage. They have been widely investigated as electrode materials in different types of rechargeable batteries, owing to their high surface areas in association with the high surface-to-volume ratios, controllable pores and pore size distribution, high electrical conductivity, and excellent chemical and mechanical stability, which are beneficial for providing active sites, accelerating electrons/ions transfer, interacting with electrolytes, and giving rise to high specific capacity, rate capability, cycling ability, and overall electrochemical performance. In this overview, we look into the ongoing progresses that are being made with the nanohollow carbon materials, including nanospheres, nanopolyhedrons, and nanofibers, in relation to their applications in the main types of rechargeable batteries. The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and lithium-sulfur batteries are comprehensively reviewed and discussed, together with the challenges being faced and perspectives for them.
Collapse
Affiliation(s)
- Jiangmin Jiang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Guangdi Nie
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ping Nie
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Chemistry, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zongkui Kou
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
| |
Collapse
|
7
|
Mehmood S, Wang L, Yu H, Haq F, Fahad S, Bilal‐ul‐Amin, Alim Uddin M, Haroon M. Recent Progress on the Preparation of Cyclomatrix‐Polyphosphazene Based Micro/Nanospheres and Their Application for Drug Release. ChemistrySelect 2020. [DOI: 10.1002/slct.201904844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Bilal‐ul‐Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
8
|
Wang F, Liu J, Wang D, Yang Z, Yan K, Meng L. One-step synthesis of cross-linked and hollow microporous organic-inorganic hybrid nanoreactors for selective redox reactions. NANOSCALE 2019; 11:15017-15022. [PMID: 31385575 DOI: 10.1039/c9nr04456f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hollow microporous nanostructures (HMNs) are powerful platforms for multiple promising applications, including energy storage, drug/gene delivery, nanoreactors/catalysis, adsorption, and separation. Herein, we report a facile one-step method to synthesize highly cross-linked organic-inorganic hybrid poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) HMNs via a salt-induced liquid-liquid separation process. The size of inner cavities can be properly tuned by modulating the concentration of the NaOH solution. The regulation mechanism of the PZS HMNs was further confirmed by encapsulating water-dispersed Pt nanoclusters into the cavities. Interestingly, the resulting yolk-shell Pt@PZS serves as nanoreactors and exhibits excellent substrate selectivity and recyclability for the catalytic oxidation of 1,3,5-trimethylbenzene.
Collapse
Affiliation(s)
- Fei Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Malkappa K, Ray SS. Thermal Stability, Pyrolysis Behavior, and Fire-Retardant Performance of Melamine Cyanurate@Poly(cyclotriphosphazene- co-4,4'-sulfonyl diphenol) Hybrid Nanosheet-Containing Polyamide 6 Composites. ACS OMEGA 2019; 4:9615-9628. [PMID: 31460052 PMCID: PMC6648528 DOI: 10.1021/acsomega.9b00346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
A novel halogen-free highly cross-linked supramolecular poly(cyclotriphosphazene-co-4,4'-sulfonyl diphenol) (PZS)-functionalized melamine cyanurate (MCA) (MCA@PZS) hybrid nanosheet fire-retardant (FR) was synthesized and thoroughly characterized using scanning electron microscopy, Fourier-transform infrared (FTIR), X-ray diffraction, and X-ray photoelectron spectroscopy analyses. The polyamide 6 (PA6) composites comprising MCA, PZS, and the MCA@PZS hybrids were prepared via the melt-blending technique. The thermogravimetric analysis combined with FTIR and mass spectroscopy revealed that during thermal degradation, the PA6/MCA@PZS composites released less toxic gases and small organic volatile compounds than the neat PA6 and composites containing MCA or PZS solely. Moreover, compared to neat PA6, the PA6 composite with a 5 wt % MCA@PZS hybrid exhibited enhanced fire retardation properties, with a 29.4 and 32.1% decrease in the peak heat and total heat release rates, respectively. Besides, the PA6 composites with MCA@PZS-5% content achieved a V-0 rating in the UL-94 test. Finally, based on the obtained results from gaseous and condensed phases, the possible mechanism responsible for improved FR properties of the PA6/MCA@PZS composites was proposed.
Collapse
Affiliation(s)
- Kuruma Malkappa
- DST-CSIR
National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR
National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- Department
of Applied Chemistry, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| |
Collapse
|
10
|
Arıcı TA, Örüm SM, Demircioğlu YS, Özcan A, Özcan AS. Assessment of adsorption properties of inorganic–organic hybrid cyclomatrix type polyphosphazene microspheres for the removal of Pb(II) ions from aqueous solutions. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1506783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tuğba Alp Arıcı
- Department of Chemical Technology, Emet Vocational School, Dumlupınar University, Kütahya, Turkey
| | - Simge Metinoğlu Örüm
- Department of Chemistry, Faculty of Arts and Science, Mehmet Akif Ersoy University, Burdur, Turkey
| | | | - Adnan Özcan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - A. Safa Özcan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
11
|
Crosslinked Polyphosphazene Nanospheres with Anticancer Quercetin: Synthesis, Spectroscopic, Thermal Properties, and Controlled Drug Release. Macromol Res 2018. [DOI: 10.1007/s13233-018-6092-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Wei W, Lu R, Ye W, Sun J, Zhu Y, Luo J, Liu X. Liquid Marbles Stabilized by Fluorine-Bearing Cyclomatrix Polyphosphazene Particles and Their Application as High-Efficiency Miniature Reactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1707-1715. [PMID: 26854870 DOI: 10.1021/acs.langmuir.5b04697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Increasing attention has been paid to fabricate multifunctional stabilizers of liquid marbles for expanding their application. Here, a kind of hydrophobic cyclomatrix polyphosphazene particles (PZAF) were facilely prepared using a one-step precipitation polycondensation of hexachlorocyclotriphosphazene and 4,4'-(hexafluoroisopropylidene)diphenol, and their ability to stabilize liquid marbles was first investigated. The Ag nanoparticle-decorated PZAF particles (Ag/PZAF) were then fabricated by an in situ reduction of silver nitrate onto PZAF particles and used to construct catalytic liquid marbles. The results revealed that the reduction of methylene blue (MB) in aqueous solution by sodium borohydride could be highly efficiently catalyzed in the catalytic liquid marbles, even with a large volume. An excellent cycle use performance of the catalytic liquid marbles without losing catalytic efficiency was also present. The high catalytic activity is mainly attributed to the uniform immobilization of Ag nanoparticles onto PZAF particles and the adsorption behavior of PZAF particles toward MB, which may play an effect on allowing high catalytic surface area and effective accelerating the mass transfer of MB to the Ag catalytic active sites, respectively. Therefore, the combination of Ag nanoparticles with PZAF particles has been demonstrated clearly to be a facile and effective strategy to obtain the functional stabilizer for preparing the catalytic liquid marbles as promising miniature reactors used in heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Wei Wei
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Rongjie Lu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Weitao Ye
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jianhua Sun
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Ye Zhu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Luo
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
13
|
Li Y, Shi J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3176-205. [PMID: 24687906 DOI: 10.1002/adma.201305319] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/18/2013] [Indexed: 05/20/2023]
Abstract
Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented.
Collapse
Affiliation(s)
- Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | | |
Collapse
|
14
|
Köhler J, Kühl S, Keul H, Möller M, Pich A. Synthesis and characterization of polyamine-based cyclophosphazene hybrid microspheres. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.27028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jens Köhler
- Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52056 Aachen Germany
| | - Sebastian Kühl
- Functional and Interactive Polymers, DWI an der RWTH Aachen e.V.; Forckenbeckstraße 50 52056 Aachen Germany
| | - Helmut Keul
- Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52056 Aachen Germany
| | - Martin Möller
- Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52056 Aachen Germany
- Functional and Interactive Polymers, DWI an der RWTH Aachen e.V.; Forckenbeckstraße 50 52056 Aachen Germany
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 52056 Aachen Germany
- Functional and Interactive Polymers, DWI an der RWTH Aachen e.V.; Forckenbeckstraße 50 52056 Aachen Germany
| |
Collapse
|
15
|
Pan T, Huang X, Wei H, Tang X. Controlled Fabrication of Uniform Hollow Bowl-Shaped Microspheres Based on Polyphosphazene Material. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Xing S, He J, Liu X, Chen H. A symmetry-adapted shell transformation of core–shell nanoparticles for binary nanoassembly. Chem Commun (Camb) 2011; 47:12533-5. [DOI: 10.1039/c1cc14851f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|