1
|
Highly efficient and non-doped red conjugated polymer dot for photostable cell imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Hu J, Wang Y, Li Q, Shao S, Wang L, Jing X, Wang F. Hyperfluorescent polymers enabled by through-space charge transfer polystyrene sensitizers for high-efficiency and full-color electroluminescence. Chem Sci 2021; 12:13083-13091. [PMID: 34745539 PMCID: PMC8513886 DOI: 10.1039/d1sc04389g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 01/05/2023] Open
Abstract
Fluorescent polymers are suffering from low electroluminescence efficiency because triplet excitons formed by electrical excitation are wasted through nonradiative pathways. Here we demonstrate the design of hyperfluorescent polymers by employing through-space charge transfer (TSCT) polystyrenes as sensitizers for triplet exciton utilization and classic fluorescent chromophores as emitters for light emission. The TSCT polystyrene sensitizers not only have high reverse intersystem crossing rates for rapid conversion of triplet excitons into singlet ones, but also possess tunable emission bands to overlap the absorption spectra of fluorescent emitters with different bandgaps, allowing efficient energy transfer from the sensitizers to emitters. The resultant hyperfluorescent polymers exhibit full-color electroluminescence with peaks expanding from 466 to 640 nm, and maximum external quantum efficiencies of 10.3–19.2%, much higher than those of control fluorescent polymers (2.0–3.6%). These findings shed light on the potential of hyperfluorescent polymers in developing high-efficiency solution-processed organic light-emitting diodes and provide new insights to overcome the electroluminescence efficiency limitation for fluorescent polymers. Hyperfluorescent polymers with high efficiency and full-color electroluminescence are developed by using through-space charge transfer polystyrenes as sensitizers for exciton utilization and fluorescent chromophores as emitters for light emission.![]()
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China .,School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yinuo Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China .,School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China .,School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China .,School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
3
|
Wałęsa-Chorab M, Yao C, Tuner G, Skene WG. Electrochemical and Solvent-Mediated Visible-to-Near-Infrared Spectroscopic Switching of Benzoselenadiazole Fluorophores. Chemistry 2020; 26:17416-17427. [PMID: 33259139 DOI: 10.1002/chem.201903291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/12/2020] [Indexed: 11/06/2022]
Abstract
A series of electronic push-pull, pull-pull, and push fluorophores has been prepared from a benzoselenadiazole core so that their spectroscopic, electrochemical, spectro-electrochemical, and spectro-electrofluorescence properties could be examined. The emission wavelengths and fluorescence quantum yields (Φfl ) of the N,N-dimethyl fluorophores were contingent on the solvent polarity and they ranged from 615 to 850 nm in aprotic solvents. The positive solvatochromism and the quenched Φfl in polar solvents were consistent with an intramolecular charge-transfer state (ICT). Meanwhile, a locally excited state (LE) was assigned in nonpolar solvents from the blue-shifted emission and high Φfl . The N,N-dimethylamine fluorophores examined could be both electrochemically oxidized and reduced, whereas the symmetric dinitro pull-pull derivative could be only reversibly reduced. Courtesy of their electrochemical reversibility, the fluorophores could reversibly change color from yellow to blue with an applied potential in addition to switching off their emission. The absorption of the electrochemically generated intermediates of the N,N-dimethyl derivatives spanned 500 nm over the visible and the NIR regions. The colors could be switched for upwards of two hours with applied potential, illustrating their potential use as electroactive materials in electrochromic devices.
Collapse
Affiliation(s)
- Monika Wałęsa-Chorab
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada.,Current address: Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Chengzhang Yao
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Georges Tuner
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - William G Skene
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
4
|
Medeiros IR, Corrêa JR, Barbosa ALA, Krüger R, Balaguez RA, Lopes TO, de Oliveira HCB, Alves D, Neto BAD. Fluorescent Benzoselenadiazoles: Synthesis, Characterization, and Quantification of Intracellular Lipid Droplets and Multicellular Model Staining. J Org Chem 2020; 85:10561-10573. [PMID: 32806092 DOI: 10.1021/acs.joc.0c01031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we described the synthesis of 10 new fluorescent 2,1,3-benzoselenadiazole small-molecule derivatives and their chemical- and photocharacterizations. The new derivatives could, for the first time, be successfully applied as selective live cell imaging probes (at nanomolar concentrations) and stained lipid-based structures preferentially. Density functional theory (DFT) calculations were used to help in understanding the photophysical data and the intramolecular charge-transfer (ICT) processes of the synthesized dyes. Some derivatives showed impressive cellular responses, allowing them to be tested as probes in a complex multicellular model (i.e., Caenorhabditis elegans). When compared with the commercially available dye, the new fluorescent compounds showed far better results both at the cellular level and inside the live worm. Inside the multicellular complex model, the tested probes also showed selectivity, a feature not observed when the commercial dye was used to carry out the bioimaging experiments.
Collapse
Affiliation(s)
- Ingryd R Medeiros
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - José R Corrêa
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - Ana L A Barbosa
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - Roberta Krüger
- LASOL-CCQFA, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Renata A Balaguez
- LASOL-CCQFA, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Thiago O Lopes
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - Heibbe C B de Oliveira
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil.,Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Quı́mica, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Diego Alves
- LASOL-CCQFA, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| |
Collapse
|
5
|
Krüger R, Iepsen B, Larroza AME, Fronza MG, Silveira CH, Bevilacqua AC, Köhler MH, Piquini PC, Lenardão EJ, Savegnago L, Iglesias BA, Alves D. Symmetrical and Unsymmetrical 4,7-Bis-arylvinyl-benzo-2,1,3-chalcogenodiazoles: Synthesis, Photophysical and Electrochemical Properties and Biomolecular Interaction Studies. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roberta Krüger
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Bruna Iepsen
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Allya M. E. Larroza
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Mariana G. Fronza
- Programa de Pós-Graduação em Biotecnologia (PPGB); Universidade Federal de Pelotas UFPel; Pelotas RS Brazil
| | - Carolina H. Silveira
- Departament of Chemistry; Laboratório de Bioinorgânica e Materiais Porfirínicos; Universidade Federal de Santa Maria, UFSM; 97105-900 Santa Maria - RS Brazil
| | - Andressa C. Bevilacqua
- Departamento de Física; Universidade Federal de Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Mateus H. Köhler
- Departamento de Física; Universidade Federal de Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Paulo C. Piquini
- Departamento de Física; Universidade Federal de Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Eder J. Lenardão
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia (PPGB); Universidade Federal de Pelotas UFPel; Pelotas RS Brazil
| | - Bernardo A. Iglesias
- Departament of Chemistry; Laboratório de Bioinorgânica e Materiais Porfirínicos; Universidade Federal de Santa Maria, UFSM; 97105-900 Santa Maria - RS Brazil
| | - Diego Alves
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| |
Collapse
|
6
|
Managing intramolecular energy transfer in well-defined polyfluorenes grafting one/two orange emissive groups on central or terminal fluorene unit. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Balaguez RA, Krüger R, Iepsen B, Schumacher RF, Oliboni RS, Barcellos T, Junqueira HC, Baptista MS, Iglesias BA, Alves D. Bisarylselanylbenzo-2,1,3-selenadiazoles: Synthesis, Photophysical, Electrochemical and Singlet-Oxygen-Generation Properties. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Renata A. Balaguez
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Roberta Krüger
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Bruna Iepsen
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Ricardo F. Schumacher
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Robson S. Oliboni
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products; Universidade de Caxias do Sul; Caxias do Sul RS Brazil
| | - Helena C. Junqueira
- Departament of Biochemistry; Institute of Chemistry; University of São Paulo USP; São Paulo Brazil
| | - Maurício S. Baptista
- Departament of Biochemistry; Institute of Chemistry; University of São Paulo USP; São Paulo Brazil
| | - Bernardo A. Iglesias
- Departament of Chemistry; Laboratório de Bioinorgânica e Materiais Porfirínicos; Universidade Federal de Santa Maria; UFSM; 97105-900 Santa Maria - RS Brazil
| | - Diego Alves
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| |
Collapse
|
8
|
Kahveci Z, Vázquez-Guilló R, Martínez-Tomé MJ, Mallavia R, Mateo CR. New Red-Emitting Conjugated Polyelectrolyte: Stabilization by Interaction with Biomolecules and Potential Use as Drug Carriers and Bioimaging Probes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1958-1969. [PMID: 26709951 DOI: 10.1021/acsami.5b10167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design and development of fluorescent conjugated polyelectrolytes (CPEs) emitting in the red region of the visible spectrum is at present of great interest for bioimaging studies. However, despite the wide variety of CPEs available, stable bright red-emitters remain scarce due to their low solubility and instability in aqueous media, consequently limiting their applications. In this work, we have synthesized and characterized a new red-emitting cationic conjugated polyelectrolyte copoly-{[9,9-bis(6'-N,N,N-trimethylammonium)hexyl]-2,7-(fluorene)-alt-1,4-(naphtho[2,3c]-1,2,5-thiadiazole)} bromide (HTMA-PFNT), based on the incorporation of naphtha[2,3c][1,2,5] thiadiazole on fluorene backbone to increase the bathochromic emission, extending the conjugation length in the polymer backbone. Water stabilization was achieved by binding the polyelectrolyte to two different biological systems which are currently used as nanocarriers: human serum albumin (HSA) and lipid vesicles. Using both systems, stable nanostructures of different composition were obtained and their properties were characterized. The properties of the protein-based nanoparticles are consistent with polyelectrolyte aggregates covered with HSA molecules, while the liposome system is composed of lipid vesicles coated with polyelectrolyte chains partially inserted in the bilayer. Both protein and vesicle structural integrity were not affected after their interaction with HTMA-PFNT, as well as the carrier properties, allowing for the binding and transport of ligands. In addition, the nanoparticles displayed the ability of labeling the cell membrane of living cells. All these results extend the potential applications of these novel multifunctional nanoparticles as therapeutic carriers and bioimaging probes.
Collapse
Affiliation(s)
- Zehra Kahveci
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202 Elche, Alicante, Spain
| | - Rebeca Vázquez-Guilló
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202 Elche, Alicante, Spain
| | - Maria José Martínez-Tomé
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202 Elche, Alicante, Spain
| | - Ricardo Mallavia
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202 Elche, Alicante, Spain
| | - C Reyes Mateo
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202 Elche, Alicante, Spain
| |
Collapse
|
9
|
Synthesis, optical and electrochemical properties of novel D-π-A type conjugated polymers based on benzo[c][1,2,5]selenadiazole unit via alkyne module. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|