1
|
Debnath S, Paramasivam SS, Pradhan D, Manickam P, Chatterjee PB. A Redox-Active Copper Complex for Orthogonal Detection of Homocysteine Involving Fluorescence and Electrochemical Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409982. [PMID: 39846818 DOI: 10.1002/smll.202409982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Indexed: 01/24/2025]
Abstract
The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH. The fluorogenic redox-active 1 and 2 are deposited onto gold electrode surfaces to construct the electrochemical sensors 1@Au and 2@Au, respectively. Under specific alkaline conditions, a distinct and selective redox peak at 0.6 V (vs Ag/AgCl) emerges for 1@Au upon interaction with homocysteine. Further, square wave voltammetry confirms the non-interference of its congener (cysteine) even at high concentrations (200 µM) while detecting Hcy (5-100 µM), demonstrating its potential for real-world applications. The fabricated 1@Au exhibits excellent sensitivity of 31.88 µA/µM, with an impressive detection limit of 2.26 nM, and a limit of quantification of 6.85 nM toward Hcy. The analytical applicability of the 1@Au is validated by quantifying Hcy levels in human blood plasma samples. The results highlighted the feasibility of the proposed technique as a rapid and portable monitoring of Hcy in diagnosing cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sriraja Subhasri Paramasivam
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debjani Pradhan
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Trinh L, Parzuch A, Bienkowski K, Wróbel P, Pisarek M, Kaproń G, Solarska R. Prussian Blue Analogues-Derived ZnFe 2O 4 in CuO/ZnFe 2O 4 p-n Junction for H 2 Production. ACS OMEGA 2024; 9:43734-43742. [PMID: 39493985 PMCID: PMC11525516 DOI: 10.1021/acsomega.4c06231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
ZnFe2O4 is an n-type semiconductor spinel oxide with promising applications in various fields, including photocatalysis. This study reports the successful synthesis of a novel ZnFe2O4 derivative based on Prussian Blue Analogues (PBAs) through an electrosynthesis method. To enhance photocatalytic performance, the synthesized ZnFe2O4 was employed as a cocatalyst in p-n junction materials, specifically CuO/ZnFe2O4. Our findings reveal that introducing ZnFe2O4 could significantly improve the photocatalytic activity and hydrogen (H2) production rate of the CuO/ZnFe2O4 system compared to bare CuO. This enhancement was sustained over an extended operational period, indicating the material's potential for long-term use in photocatalytic applications. The superior performance of the ZnFe2O4 cocatalyst is attributed to its efficient charge separation and improved light absorption properties, which collectively contribute to higher photocatalytic efficiency. This study highlights the potential of PBA-based derivative ZnFe2O4 as an effective cocatalyst in developing advanced photocatalytic systems for sustainable hydrogen production.
Collapse
Affiliation(s)
- Linh Trinh
- Laboratory
of Molecular Research for Solar Energy Innovations, Centre of New
Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland
| | - Aleksandra Parzuch
- Laboratory
of Molecular Research for Solar Energy Innovations, Centre of New
Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland
| | - Krzysztof Bienkowski
- Laboratory
of Molecular Research for Solar Energy Innovations, Centre of New
Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland
| | - Piotr Wróbel
- Faculty
of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Marcin Pisarek
- Institute
of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz Kaproń
- Faculty
of Geology, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Renata Solarska
- Laboratory
of Molecular Research for Solar Energy Innovations, Centre of New
Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Wu H, Zhang Q, Chu S, Du H, Wang Y, Liu P. Single-Atom Underpotential Deposition at Specific Sites of N-Doped Graphene for Hydrogen Evolution Reaction Electrocatalysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5082. [PMID: 39459787 PMCID: PMC11509329 DOI: 10.3390/ma17205082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Single-atom catalysts (SACs) have the advantages of good active site uniformity, high atom utilization, and high catalytic activity. However, the study of its controllable synthesis still needs to be thoroughly investigated. In this paper, we deposited Cu SAs on nanoporous N-doped graphene by underpotential deposition and further obtained a Pt SAC by a galvanic process. Electrochemical and spectroscopic analyses showed that the pyridine-like N defect sites are the specific sites for the underpotential-deposited SAs. The obtained Pt SAC exhibits a good activity in a hydrogen evolution reaction with a turnover frequency of 25.1 s-1. This work reveals the specific sites of UPD of SAs on N-doped graphene and their potential applications in HERs, which provides a new idea for the design and synthesis of SACs.
Collapse
Affiliation(s)
- Haofei Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| | - Qiwen Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| | - Shufen Chu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Du
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
- JA Solar Technology Co., Ltd., Beijing 100160, China
| | - Yanyue Wang
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
- JA Solar Technology Co., Ltd., Beijing 100160, China
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| |
Collapse
|
4
|
Velmurugan S, Tse MM, Lin XY, Yu YH, Cheng SH, Lu KL. Surface modification prepared porous copper oxide/(Cu-S) n metal-organic framework/reduced graphene oxide hierarchical structure for highly selective electrochemical quercetin detection. Mikrochim Acta 2024; 191:471. [PMID: 39028342 DOI: 10.1007/s00604-024-06544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Electrochemical alkalization of (Cu-S)n metal-organic framework (MOF) and graphene oxide ((Cu-S)n MOF/GO) composite yields a new CuO/(Cu-S)n MOF/RGO (reduced GO) composite with porous morphology on screen printed carbon electrode (SPCE) which facilitated the electron transfer properties in electrochemical quercetin (QUE) detection. A selective QUE detection ability has been demonstrated by the constructed electrochemical sensor (CuO/(Cu-S)n MOF/RGO/SPCE), which also has a broad dynamic range of 0.5 to 115 µM in pH 3 by differential pulse voltammetry. The detection limit is 0.083 µM (S/N = 3). In this study, it was observed that the real samples contained 0.34 mg mL-1 and 27.7 µg g-1 QUE in wine and onion, respectively.
Collapse
Affiliation(s)
- Sethupathi Velmurugan
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien, 545, Taiwan
| | - Man-Mo Tse
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien, 545, Taiwan
| | - Xiao-Yuan Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yuan-Hsiang Yu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Shu-Hua Cheng
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien, 545, Taiwan.
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
5
|
Korell L, Lauterbach S, Timm J, Wang L, Mellin M, Kundmann A, Wu Q, Tian C, Marschall R, Hofmann JP, Osterloh FE, Einert M. On the structural evolution of nanoporous optically transparent CuO photocathodes upon calcination for photoelectrochemical applications. NANOSCALE ADVANCES 2024; 6:2875-2891. [PMID: 38817433 PMCID: PMC11134239 DOI: 10.1039/d4na00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
Copper oxides are promising photocathode materials for solar hydrogen production due to their narrow optical band gap energy allowing broad visible light absorption. However, they suffer from severe photocorrosion upon illumination, mainly due to copper reduction. Nanostructuring has been proven to enhance the photoresponse of CuO photocathodes; however, there is a lack of precise structural control on the nanoscale upon sol-gel synthesis and calcination for achieving optically transparent CuO thin film photoabsorbers. In this study, nanoporous and nanocrystalline CuO networks were prepared by a soft-templating and dip-coating method utilizing poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic® F-127) as a structure-directing agent, resulting for the first-time in uniformly structured, crack-free, and optically transparent CuO thin films. The photoelectrochemical properties of the nanoporous CuO frameworks were investigated as a function of the calcination temperature and film thickness, revealing important information about the photocurrent, photostability, and photovoltage. Based on surface photovoltage spectroscopy (SPV), the films are p-type and generate up to 60 mV photovoltage at 2.0 eV (0.050 mW cm-2) irradiation for the film annealed at 750 °C. For these high annealing temperatures, the nanocrystalline domains in the thin film structure are more developed, resulting in improved electronic quality. In aqueous electrolytes with or without methyl viologen (as a fast electron acceptor), CuO films show cathodic photocurrents of up to -2.4 mA cm-2 at 0.32 V vs. RHE (air mass (AM) 1.5). However, the photocurrents were found to be entirely due to photocorrosion of the films and decay to near zero over the course of 20 min under AM 1.5 illumination. These fundamental results on the structural and morphological development upon calcination provide a direction and show the necessity for further (surface) treatment of sol-gel derived CuO photocathodes for photoelectrochemical applications. The study demonstrates how to control the size of nanopores starting from mesopore formation at 400 °C to the evolution of macroporous frameworks at 750 °C.
Collapse
Affiliation(s)
- Lukas Korell
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Stefan Lauterbach
- Institute for Applied Geosciences, Geomaterial Science, Technical University of Darmstadt Schnittspahnstraße 9 64287 Darmstadt Germany
| | - Jana Timm
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Li Wang
- Department of Chemistry, University of California One Shields Avenue Davis CA 95616 USA
| | - Maximilian Mellin
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Anna Kundmann
- Department of Chemistry, University of California One Shields Avenue Davis CA 95616 USA
| | - Qingyang Wu
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Chuanmu Tian
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Roland Marschall
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Frank E Osterloh
- Department of Chemistry, University of California One Shields Avenue Davis CA 95616 USA
| | - Marcus Einert
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| |
Collapse
|
6
|
Xiong L, Yu Z, Cao H, Guan W, Su Y, Pan X, Zhang L, Liu X, Wang A, Tang J. Converting Glycerol into Valuable Trioses by Cu δ+ -Single-Atom-Decorated WO 3 under Visible Light. Angew Chem Int Ed Engl 2024; 63:e202318461. [PMID: 38302835 DOI: 10.1002/anie.202318461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Photocatalytic selective oxidation under visible light presents a promising approach for the sustainable transformation of biomass-derived wastes. However, achieving both high conversion and excellent selectivity poses a significant challenge. In this study, two valuable trioses, glyceraldehyde and dihydroxyacetone, are produced from glycerol over Cuδ+ -decorated WO3 photocatalyst in the presence of H2 O2 . The photocatalyst exhibits a remarkable five-fold increase in the conversion rate (3.81 mmol ⋅ g-1 ⋅ h-1 ) while maintaining a high selectivity towards two trioses (46.4 % to glyceraldehyde and 32.9 % to dihydroxyacetone). Through a comprehensive analysis involving X-ray photoelectron spectroscopy measurements with and without light irradiation, electron spin resonance spectroscopy, and isotopic analysis, the critical role of Cu+ species has been explored as efficient hole acceptors. These species facilitate charge transfer, promoting glycerol oxidation by photoholes, followed by coupling with OH- , which are subsequently dehydrated to yield the desired glyceraldehyde and dihydroxyacetone.
Collapse
Affiliation(s)
- Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Zhounan Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hongchen Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weixiang Guan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yang Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoli Pan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Leilei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Benedet M, Rizzi GA, Gasparotto A, Zeng L, Pagot G, Olsson E, Di Noto V, Maccato C, Barreca D. Efficient photoactivated hydrogen evolution promoted by Cu xO-gCN-TiO 2-Au ( x = 1,2) nanoarchitectures. RSC Adv 2024; 14:7221-7228. [PMID: 38419682 PMCID: PMC10901216 DOI: 10.1039/d4ra00773e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
In this work, we propose an original and potentially scalable synthetic route for the fabrication of CuxO-gCN-TiO2-Au (x = 1,2) nanoarchitectures, based on Cu foam anodization, graphitic carbon nitride liquid-phase deposition, and TiO2/Au sputtering. A thorough chemico-physical characterization by complementary analytical tools revealed the formation of nanoarchitectures featuring an intimate contact between the system components and a high dispersion of gold nanoparticles. Modulation of single component interplay yielded excellent functional performances in photoactivated hydrogen evolution, corresponding to a photocurrent of ≈-5.7 mA cm-2 at 0.0 V vs. the reversible hydrogen electrode (RHE). These features, along with the very good service life, represent a cornerstone for the conversion of natural resources, as water and largely available sunlight, into added-value solar fuels.
Collapse
Affiliation(s)
- Mattia Benedet
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Alberto Gasparotto
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Lunjie Zeng
- Department of Physics, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, Padova University, INSTM 35131 Padova Italy
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, Padova University, INSTM 35131 Padova Italy
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Davide Barreca
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| |
Collapse
|
8
|
Dieu Thuy UT, Huan TN, Zanna S, Wilson K, Lee AF, Le ND, Mensah J, Dasireddy VDBC, Liem NQ. Cu and Zn promoted Al-fumarate metal organic frameworks for electrocatalytic CO 2 reduction. RSC Adv 2024; 14:3489-3497. [PMID: 38259983 PMCID: PMC10801401 DOI: 10.1039/d3ra07639c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metal organic frameworks (MOFs) are attractive materials to generate multifunctional catalysts for the electrocatalytic reduction of CO2 to hydrocarbons. Here we report the synthesis of Cu and Zn modified Al-fumarate (Al-fum) MOFs, in which Zn promotes the selective reduction of CO2 to CO and Cu promotes CO reduction to oxygenates and hydrocarbons in an electrocatalytic cascade. Cu and Zn nanoparticles (NPs) were introduced to the Al-fum MOF by a double solvent method to promote in-pore metal deposition, and the resulting reduced Cu-Zn@Al-fum drop-cast on a hydrophobic gas diffusion electrode for electrochemical study. Cu-Zn@Al-fum is active for CO2 electroreduction, with the Cu and Zn loading influencing the product yields. The highest faradaic efficiency (FE) of 62% is achieved at -1.0 V vs. RHE for the conversion of CO2 into CO, HCOOH, CH4, C2H4 and C2H5OH, with a FE of 28% to CH4, C2H4 and C2H5OH at pH 6.8. Al-fum MOF is a chemically robust matrix to disperse Cu and Zn NPs, improving electrocatalyst lifetime during CO2 reduction by minimizing transition metal aggregation during electrode operation.
Collapse
Affiliation(s)
- Ung Thi Dieu Thuy
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Ngoc Huan
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Sandrine Zanna
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP) 11 rue Pierre et Marie Curie 75005 Paris France
| | - Karen Wilson
- School of Environment & Science, Centre for Catalysis and Clean Energy, Griffith University Gold Coast Campus QLD 4222 Australia
| | - Adam F Lee
- School of Environment & Science, Centre for Catalysis and Clean Energy, Griffith University Gold Coast Campus QLD 4222 Australia
| | - Ngoc-Diep Le
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Jim Mensah
- Centre for Applied Materials and Industrial Chemistry (CAMIC), RMIT University Australia
| | - Venkata D B C Dasireddy
- School of Environment & Science, Centre for Catalysis and Clean Energy, Griffith University Gold Coast Campus QLD 4222 Australia
| | - Nguyen Quang Liem
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
9
|
Zhao Y, Niu Z, Zhao J, Xue L, Fu X, Long J. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Gao J, Wang K, Cao J, Zhang M, Lin F, Ling M, Wang M, Liang C, Chen J. Recent Progress of Self-Supported Metal Oxide Nano-Porous Arrays in Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302786. [PMID: 37415542 DOI: 10.1002/smll.202302786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Indexed: 07/08/2023]
Abstract
The demand for high-performance and cost-effective energy storage solutions for mobile electronic devices and electric vehicles has been a driving force for technological advancements. Among the various options available, transitional metal oxides (TMOs) have emerged as a promising candidates due to their exceptional energy storage capabilities and affordability. In particular, TMO nanoporous arrays fabricated by electrochemical anodization technique demonstrate unrivaled advantages including large specific surface area, short ion transport paths, hollow structures that reduce bulk expansion of materials, and so on, which have garnered significant research attention in recent decades. However, there is a lack of comprehensive reviews that discuss the progress of anodized TMO nanoporous arrays and their applications in energy storage. Therefore, this review aims to provide a systematic detailed overview of recent advancements in understanding the ion storage mechanisms and behavior of self-organized anodic TMO nanoporous arrays in various energy storage devices, including alkali metal ion batteries, Mg/Al-ion batteries, Li/Na metal batteries, and supercapacitors. This review also explores modification strategies, redox mechanisms, and outlines future prospects for TMO nanoporous arrays in energy storage.
Collapse
Affiliation(s)
- Jianhong Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kun Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Cao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ming Zhang
- Quzhou Jingzhou Technology Development Co., Ltd., Quzhou, 324000, China
| | - Feng Lin
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Min Ling
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| | - Minjun Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| | - Chengdu Liang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| | - Jun Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou, 324000, China
| |
Collapse
|
11
|
Zindrou A, Belles L, Solakidou M, Boukos N, Deligiannakis Y. Non-graphitized carbon/Cu 2O/Cu 0 nanohybrids with improved stability and enhanced photocatalytic H 2 production. Sci Rep 2023; 13:13999. [PMID: 37634030 PMCID: PMC10460407 DOI: 10.1038/s41598-023-41211-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
Cu2O is a highly potent photocatalyst, however photocorrosion stands as a key obstacle for its stability in photocatalytic technologies. Herein, we show that nanohybrids of Cu2O/Cu0 nanoparticles interfaced with non-graphitized carbon (nGC) constitute a novel synthesis route towards stable Cu-photocatalysts with minimized photocorrosion. Using a Flame Spray Pyrolysis (FSP) process that allows synthesis of anoxic-Cu phases, we have developed in one-step a library of Cu2O/Cu0 nanocatalysts interfaced with nGC, optimized for enhanced photocatalytic H2 production from H2O. Co-optimization of the nGC and the Cu2O/Cu0 ratio is shown to be a key strategy for high H2 production, > 4700 μmoles g-1 h-1 plus enhanced stability against photocorrosion, and onset potential of 0.234 V vs. RHE. After 4 repetitive reuses the catalyst is shown to lose less than 5% of its photocatalytic efficiency, while photocorrosion was < 6%. In contrast, interfacing of Cu2O/Cu0 with graphitized-C is not as efficient. Raman, FT-IR and TGA data are analyzed to explain the undelaying structural functional mechanisms where the tight interfacing of nGC with the Cu2O/Cu0 nanophases is the preferred configuration. The present findings can be useful for wider technological goals that demand low-cost engineering, high stability Cu-nanodevices, prepared with industrially scalable process.
Collapse
Affiliation(s)
- Areti Zindrou
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Loukas Belles
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Maria Solakidou
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos, 15310, Athens, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
12
|
Shahmiri M, Bayat S, Kharrazi S. Catalytic performance of PVP-coated CuO nanosheets under environmentally friendly conditions. RSC Adv 2023; 13:13213-13223. [PMID: 37124016 PMCID: PMC10140733 DOI: 10.1039/d2ra07645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Aromatic nitro compounds are an increasing concern worldwide due to their potential toxicity, prompting a quest for efficient removal approaches. This study established a simple and environmentally friendly method to synthesize a highly efficient, recoverable and stable CuO nanosheets catalyst to overcome public health and environmental problems caused by nitro aromatic compounds. In the current research, the effect of different concentrations of copper nitrate on the size and shape of CuO nanostructures in the chemical synthesis was studied. The CuO nanosheets were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectrophotometry. It was found that at concentrations of 0.07 M and 0.1 M of copper nitrate, pure CuO was formed. The FTIR results showed that carbonyl group in PVP coordinated with CuO and formed a protective layer. The as-synthesized CuO nanosheets with an average width of 60 ± 23 nm and length of 579 ± 154 were used as a catalyst for highly selective and efficient reduction of aromatic nitro and aromatic carboxylic acid to the corresponding amine and alcohol compounds. The reduction reaction was monitored by either UV-Vis absorption spectroscopy or high performance liquid chromatography (HPLC). 4-Nitrophenol and 4-nitroaniline were reduced to corresponding amine compounds within 12 min and 6 min, respectively in the presence of a reasonable amount of catalyst and reducing agent. The CuO nanosheets also exhibited excellent stability. The catalyst can be reused without loss of its activity after ten runs.
Collapse
Affiliation(s)
- Mahdi Shahmiri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences Tehran Iran
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Vic 3086 Australia
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
13
|
Khalik WF, Ho LN, Ong SA, Lai NB, Thor SH, Yap KL. Converting synthetic azo dye and real textile wastewater into clean energy by using synthesized CuO/C as photocathode in dual-photoelectrode photocatalytic fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58516-58526. [PMID: 36988807 DOI: 10.1007/s11356-023-26589-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
Cathode in photocatalytic fuel cell (PFC) plays a crucial role in degradation of organic contaminants. In this study, synthesized copper oxide (CuO) was loaded on carbon plate and used as photocathode in PFC for degradation of synthetic azo dye Reactive Black 5 (RB5) and real textile wastewater. Morphology and structural phase of the synthesized CuO were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Several operating parameters had been investigated such as light irradiation, initial dye concentration, and pH of azo dye solution within 6 h of irradiation time. The lowest initial concentration of RB5 (10 mg L-1) achieved 100% color removal compared to the highest initial concentration (40 mg L-1) which only achieved 77.1% color removal within 6 h of irradiation time. The influence of external resistance was significant in electricity generation but trivial in dye degradation efficiency. The external resistance of 6000 Ω yielded highest maximum power density, with Pmax of 0.2631 μW cm-2, followed by 1000 Ω (0.2196 μW cm-2) and 8000 Ω (0.1587 μW cm-2), respectively. The real textile wastewater with dilution ratio (DR) 1:6 yielded the highest energy conversion efficiency, η (3.62%), followed by DR 1:4 (3.19%) and DR 1:2 (1.96%), respectively.
Collapse
Affiliation(s)
- Wan Fadhilah Khalik
- Centre of Excellence Water Research and Environmental Sustainability Growth (WAREG), Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Li-Ngee Ho
- Centre of Excellence Water Research and Environmental Sustainability Growth (WAREG), Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Centre of Excellence Water Research and Environmental Sustainability Growth (WAREG), Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Nun-Bao Lai
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Shen-Hui Thor
- Centre of Excellence Water Research and Environmental Sustainability Growth (WAREG), Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Kea-Lee Yap
- Centre of Excellence Water Research and Environmental Sustainability Growth (WAREG), Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
14
|
Li S, Mo QL, Xiao Y, Xiao FX. Maneuvering cuprous oxide-based photocathodes for solar-to-fuel conversion. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Gary S, Bloom S. Peptide Carbocycles: From -SS- to -CC- via a Late-Stage "Snip-and-Stitch". ACS CENTRAL SCIENCE 2022; 8:1537-1547. [PMID: 36439308 PMCID: PMC9686213 DOI: 10.1021/acscentsci.2c00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 05/28/2023]
Abstract
One way to improve the therapeutic potential of peptides is through cyclization. This is commonly done using a disulfide bond between two cysteine residues in the peptide. However, disulfide bonds are susceptible to reductive cleavage, and this can deactivate the peptide and endanger endogenous proteins through covalent modification. Substituting disulfide bonds with more chemically robust carbon-based linkers has proven to be an effective strategy to better develop cyclic peptides as drugs, but finding the optimal carbon replacement is synthetically laborious. We report a new late-stage platform wherein a single disulfide bond in a cyclic peptide can serve as the progenitor for any number of new carbon-rich groups, derived from organodiiodides, using a Zn:Cu couple and a hydrosilane. We show that this platform can furnish entirely new carbocyclic scaffolds with enhanced permeability and structural integrity and that the stereochemistry of the new cycles can be biased by a judicious choice in silane.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
16
|
Wang X, Lei Y, Gao Y, Yun X, Wang Z, Fan F, Ma Y. Multi-Function of the Ni Interlayer in the Design of a BiVO 4-Based Photoanode for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48682-48693. [PMID: 36265862 DOI: 10.1021/acsami.2c13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BiVO4 with an appropriate band structure is considered to be an ideal candidate for photoanodes. However, slow water oxidation kinetics and low charge separation efficiency seriously restrict its application. To address these issues, an NF/N/BVO photoanode with a hierarchical network structure was successfully constructed by direct-current magnetron sputtering of Ni followed by electrochemical deposition of nickel-iron layered double hydroxide (NiFe-LDH) on BiVO4. A photocurrent density of 4.50 mA/cm2 was obtained for NF/N/BVO, which was 2.4 times that for pristine BiVO4. The introduction of the Ni layer contributed to the following growth of NiFe-LDH nanosheets with larger size, which acted as active sites and speeded up water oxidation kinetics. Furthermore, surface photovoltage microscopy revealed that Ni and NiFe-LDH acted as the electron collector and hole reservoir, respectively. The co-existence of the two components constituted a highly efficient surface charge separation structure, which was one of the important issues for the excellent water oxidation activity.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yubo Lei
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xinyi Yun
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zenglin Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Yi Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
17
|
Lai TH, Tsao CW, Fang MJ, Wu JY, Chang YP, Chiu YH, Hsieh PY, Kuo MY, Chang KD, Hsu YJ. Au@Cu 2O Core-Shell and Au@Cu 2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40771-40783. [PMID: 36040289 DOI: 10.1021/acsami.2c07145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we demonstrated the practical use of Au@Cu2O core-shell and Au@Cu2Se yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core-shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk-shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal-semiconductor yolk-shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.
Collapse
Affiliation(s)
- Ting-Hsuan Lai
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Wen Tsao
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mei-Jing Fang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhen-Yang Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Peng Chang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Hsuan Chiu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ping-Yen Hsieh
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ming-Yu Kuo
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kao-Der Chang
- Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
18
|
Bekru A, Tufa LT, Zelekew OA, Goddati M, Lee J, Sabir FK. Green Synthesis of a CuO-ZnO Nanocomposite for Efficient Photodegradation of Methylene Blue and Reduction of 4-Nitrophenol. ACS OMEGA 2022; 7:30908-30919. [PMID: 36092591 PMCID: PMC9453957 DOI: 10.1021/acsomega.2c02687] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 05/15/2023]
Abstract
CuO-ZnO nanocomposites (NCs) were synthesized using an aqueous extract of Verbascum sinaiticum Benth. (GH) plant. X-ray diffraction (XRD), spectroscopic, and microscopic methods were used to explore the crystallinity, optical properties, morphology, and other features of the CuO-ZnO samples. Furthermore, catalytic performances were investigated for methylene blue (MB) degradation and 4-nitrophenol (4-NP) reduction. According to the results, CuO-ZnO NCs with 20 wt % CuO showed enhanced photocatalytic activity against MB dye with a 0.017 min-1 rate constant compared to 0.0027 min-1 for ZnO nanoparticles (NPs). Similarly, a ratio constant of 5.925 min-1 g-1 4-NP reductions was achieved with CuO-ZnO NCs. The results signified enhanced performance of CuO-ZnO NCs relative to ZnO NPs. The enhancement could be due to the synergy between ZnO and CuO, resulting in improved absorption of visible light and reduced electron-hole (e-/h+) recombination rate. In addition, variations in the CuO content affected the performance of the CuO-ZnO NCs. Thus, the CuO-ZnO NCs prepared using V. sinaiticum Benth. extract could make the material a desirable catalyst for the elimination of organic pollutants.
Collapse
Affiliation(s)
- Aklilu
Guale Bekru
- Department
of Applied Chemistry, Adama Science and
Technology University, Adama 1888, Ethiopia
| | - Lemma Teshome Tufa
- Department
of Applied Chemistry, Adama Science and
Technology University, Adama 1888, Ethiopia
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic of Korea
| | - Osman Ahmed Zelekew
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
- ,
| | - Mahendra Goddati
- Department
of Chemistry, Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaebeom Lee
- Department
of Chemistry, Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fedlu Kedir Sabir
- Department
of Applied Chemistry, Adama Science and
Technology University, Adama 1888, Ethiopia
| |
Collapse
|
19
|
Value-added fabrication of NiO-doped CuO nanoflakes from waste flexible printed circuit board for advanced photocatalytic application. Sci Rep 2022; 12:12171. [PMID: 35842453 PMCID: PMC9288507 DOI: 10.1038/s41598-022-16614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
The disposal of electronic waste (e-waste) presents a number of environmental problems. However, there are great opportunities to use this problem waste as a source of value-added metals. These metals could be recovered and transformed for use in beneficial applications, such as the manufacture of nanomaterials for the generation of hydrogen through thermodynamic water-splitting. This study used microrecycling techniques to synthesise Nitrogen oxide (NiO) doped copper oxide (CuO) nanoflakes from waste flexible printed circuit boards (FPCBs) using microrecycling techniques. Several precise characterisation and experimental analysis were used to validate the synthesised nanoflakes’ phase purity, surface chemistry, morphology and optical properties. XRD analysis confirmed the nanoflakes produced in the system were predominantly Tenorite, CuO (98.5% ± 4.5) with a dopant of NiO (1.5% ± 0.1). The nanoflakes had a specific surface area of 115.703 m2/g and mesoporous structure with an average pore diameter of 11 nm. HRTEM analysis confirmed that the nanoflakes were not a single structure but assembled from 2D nanorods. The width of the nanorods varied from ∼ 10 to 50 nm, and the length from ∼ 30 to 80 nm. After rapid thermal processing, the photocurrent response of the synthesised material was assessed, revealing a higher photocurrent density (− 1.9 mA/cm2 at 0.6 V vs. reversible hydrogen electrode (RHE) under 1.5G AM). Mott Schottky analysis and electrochemical impedance spectroscopy showed that the synthesised nanomaterial had the potential thermodynamic water-splitting capability. These results were an encouraging indication of the promise of techniques which use e-waste to produce nanomaterials with valuable properties. This has the potential to both decrease problem waste and preserves dwindling natural resources.
Collapse
|
20
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. High-efficient degradation of sulfamethazine by electro-enhanced peroxymonosulfate activation with bimetallic modified Mud sphere catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Fabrication of an Efficient N, S Co-Doped WO 3 Operated in Wide-Range of Visible-Light for Photoelectrochemical Water Oxidation. NANOMATERIALS 2022; 12:nano12122079. [PMID: 35745417 PMCID: PMC9228223 DOI: 10.3390/nano12122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
In this work, a highly efficient wide-visible-light-driven photoanode, namely, nitrogen and sulfur co-doped tungsten trioxide (S-N-WO3), was synthesized using tungstic acid (H2WO4) as W source and ammonium sulfide ((NH4)2S), which functioned simultaneously as a sulfur source and as a nitrogen source for the co-doping of nitrogen and sulfur. The EDS and XPS results indicated that the controllable formation of either N-doped WO3 (N-WO3) or S-N-WO3 by changing the nW:n(NH4)2S ratio below or above 1:5. Both N and S contents increased when increasing the nW:n(NH4)2S ratio from 1:0 to 1:15 and thereafter decreased up to 1:25. The UV-visible diffuse reflectance spectra (DRS) of S-N-WO3 exhibited a significant redshift of the absorption edge with new shoulders appearing at 470–650 nm, which became more intense as the nW:n(NH4)2S ratio increased from 1:5 and then decreased up to 1:25, with the maximum at 1:15. The values of nW:n(NH4)2S ratio dependence is consistent with the cases of the S and N contents. This suggests that S and N co-doped into the WO3 lattice are responsible for the considerable redshift in the absorption edge, with a new shoulder appearing at 470–650 nm owing to the intrabandgap formation above the valence band (VB) edge and a dopant energy level below the conduction band (CB) of WO3. Therefore, benefiting from the S and N co-doping, the S-N-WO3 photoanode generated a photoanodic current under visible light irradiation below 580 nm due to the photoelectrochemical (PEC) water oxidation, compared with pure WO3 doing so below 470 nm.
Collapse
|
22
|
Li S, Yang S, Li K, Lai Y, Deng C, Wang C. Electrodissolution-Coupled Hafnium Alkoxide Synthesis with High Environmental and Economic Benefits. CHEMSUSCHEM 2022; 15:e202200474. [PMID: 35365962 DOI: 10.1002/cssc.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The conventional thermal method of preparing hafnium alkoxides [Hf(OR)4 , R=alkyl] - excellent precursors for gate-dielectric HfO2 on semiconductors - is severely hindered by its unsatisfactory environmental and economic burdens. Herein, we propose a promising electrodissolution-coupled Hf(OR)4 synthesis (EHS) system for green and efficient electrosynthesis of Hf(OR)4 . The operational principle of the electrically driven system consists of two simultaneous heterogeneous reactions of Hf dissolution and alcohol dehydrogenation, plus a spontaneous solution-based combination reaction. In applying ethanol as solvent and Hf metal as electrodissolution medium, we achieved waste-free production of high-purity hafnium ethoxide [Hf(OEt)4 ] with an equivalent "a concomitant" reduction in CO2 emission of 187.33 g CO2 per kg Hf(OEt)4 and a high net profit of 30 477 USD per kg Hf(OEt)4 . This system is very competitive with the thermal process, which unavoidably releases substantial waste and CO2 for a net profit of 27 700 USD per kg Hf(OEt)4 . We anticipate that the environmental and economic benefits of the EHS process could pave the way for its practical application.
Collapse
Affiliation(s)
- Shuai Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shenghai Yang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, New South Wales, 2304, Australia
| | - Yanqing Lai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Chaoyong Deng
- Ximei Resources Limited Company, Guangzhou, Guangdong, 511449, P. R. China
| | - Changhong Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
23
|
Anupriya J, Rajakumaran R, Chen SM, Karthik R, Kumar JV, Shim JJ, Shafi PM, Lee JW. Raspberry-like CuWO 4 hollow spheres anchored on sulfur-doped g-C 3N 4 composite: An efficient electrocatalyst for selective electrochemical detection of antibiotic drug nitrofurazone. CHEMOSPHERE 2022; 296:133997. [PMID: 35167833 DOI: 10.1016/j.chemosphere.2022.133997] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
We report a highly selective and sensitive electrochemical sensor for the determination of nitrofurazone (NZ) based on sulfur-doped graphitic carbon nitride with copper tungstate hollow spheres (Sg-C3N4/CuWO4). Here, a Sg-C3N4/CuWO4 composite was synthesized by a facile ultrasonic method. The physicochemical properties of the composite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Then, the surface morphology of the composite material was investigated by field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). Moreover, the electrochemical activity of the as-synthesized composite material was initially tested using electrochemical impedance spectroscopy (EIS). The electroanalytical techniques namely cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were carried out for the electrochemical studies. The proposed sensor exhibits lower LOD and good sensitivity of about 3 nM and 1.24 μAμM-1 cm-2 to NZ detection. In addition, the Sg-C3N4/CuWO4 modified electrode showed excellent repeatability, reproducibility, long-term storage stability and excellent selectivity. The developed sensor was successfully applied for the determination of NZ in human urine and serum samples and achieved good recovery results.
Collapse
Affiliation(s)
- Jeyaraman Anupriya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1 Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, People's Republic of China
| | - Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1 Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, People's Republic of China
| | - Shen Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1 Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, People's Republic of China.
| | - Raj Karthik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Jeyaraj Vinoth Kumar
- Advanced Nano Surface Engineering Laboratory, Department of Mechanical Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - P Muhammed Shafi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jeong-Won Lee
- Advanced Nano Surface Engineering Laboratory, Department of Mechanical Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| |
Collapse
|
24
|
Uchiyama S, Morinaga A, Tsutsumi H, Katayama Y. Tuning the Polarity of a Fibrous Poly(vinylidene fluoride- co-hexafluoropropylene)-Based Support for Efficient Water Electrolysis. ACS OMEGA 2022; 7:10077-10086. [PMID: 35382293 PMCID: PMC8973098 DOI: 10.1021/acsomega.1c06128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Water electrolysis under alkaline conditions is of interest due to the applicability of non-precious metal-based materials for electrocatalysts. However, the successful design and synthesis of earth-abundant and efficient catalysts for the oxygen evolution reaction (OER) remain a significant challenge. This work presents cost-effective and straightforward ways to improve the OER activity under alkaline conditions by activating the catalyst-support and reactant-support interaction. Micro/nano-sized fibrous poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) was synthesized via simple and scalable electrospinning and subsequently coated with Cu by electroless deposition to obtain the electrocatalyst with a large specific surface area, enhanced mass transport, and high catalyst utilization. Scanning electron microscopy, infrared spectroscopy, and X-ray diffraction confirmed the successful synthesis of the series of Cu/PVdF-HFP fibrous catalysts with varied ferroelectric polarizability of the PVdF-HFP support in the order of stretch-anneal > anneal > stretch > without pre-treatment of the catalyst. The best OER activity was confirmed for the Cu/PVdF-HFP catalyst with stretch and annealed treatment among the catalysts tested, suggesting that both the reaction kinetics and energetics of stretch-annealed Cu/PVdF-HFP catalysts were optimal for the OER. The electron delocalization between Cu and PVdF-HFP substrates (electron transfer from Cu to the negatively charged (δ- eff) PVdF-HFP region at the Cu|PVdF-HFP interface) and the enhanced transport of reactive hydroxide species and/or the increase in the local pH by positively charged (δ+ eff) PVdF-HFP region concertedly accelerate the OER activity. The overall activity for the prototype water electrolyzer increased 10-fold with stretch-anneal treatment compared to the one without pre-treatment, highlighting the effect of tuning the catalyst-support and reactant-support interaction on improving the efficiency of the water electrolysis.
Collapse
|
25
|
|
26
|
Ahmed K, Wang Y, Bai Y, Sekar K, Li W. A carbon nanowire-promoted Cu 2O/TiO 2 nanocomposite for enhanced photoelectrochemical performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj03116g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We started with earth abundant materials to design a heterojunction nanocomposite with excellent visible light photoelectrochemical performance and enhanced durability.
Collapse
Affiliation(s)
- Kassam Ahmed
- School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Yuyin Wang
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Yang Bai
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Karthikeyan Sekar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Wei Li
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, UK
| |
Collapse
|
27
|
Brito JFD, Bessegato GG, Perini JAL, Torquato LDDM, Zanoni MVB. Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Li DJ, Li QH, Gu ZG, Zhang J. Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting. NANO LETTERS 2021; 21:10012-10018. [PMID: 34797085 DOI: 10.1021/acs.nanolett.1c03655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of metal-organic frameworks (MOFs) with nonlinear optical (NLO) properties is of pronounced significance for optical devices. Herein, a series of 2D MOFs ZnTPyP(M) (TPyP = 5,10,15,20-tetrakis(4-pyridyl)porphyrin, M = Cu, Ni, Mn, H2) films with [010]-orientation growth composed of ultrathin nanosheets from a pyridylporphyrinic ligand are first obtained by using a liquid-phase epitaxial (LPE) layer-by-layer (lbl) growth approach. ZnTPyP(M) films show a giant nonlinear optical limiting (OL) response and can be modulated by tuning the type of metalloporphyrinic ligands. As a result, ZnTPyP(Cu) film exhibits the highest nonlinear absorption coefficient of 5.7 × 10-6 m/W compared to other reported NLO materials. Density functional theory calculations were consistent with the experimental results, revealing that the tunable π-π* local excitation and the increased delocalization of the metalloporphyrinic group regulate the NLO performance of ZnTPyP(M) films. These findings provide new insight into the effect of 2D porphyrinic MOFs toward the NLO response and offer new film candidates for nonlinear OL application.
Collapse
Affiliation(s)
- De-Jing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
29
|
Singh A, Sarma SK, Karmakar S, Basu S. Photocatalytic H2O2 generation assisted photoelectrochemical water oxidation for enhanced BiVO4 photoanode performance. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
30
|
Rubino A, Zanoni R, Schiavi PG, Latini A, Pagnanelli F. Two-Dimensional Restructuring of Cu 2O Can Improve the Performance of Nanosized n-TiO 2/p-Cu 2O Photoelectrodes under UV-Visible Light. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47932-47944. [PMID: 34606231 PMCID: PMC8517957 DOI: 10.1021/acsami.1c13399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
p-Cu2O/n-TiO2 photoanodes were produced by electrodeposition of octahedral p-type Cu2O nanoparticles over n-type TiO2 nanotubes. The photoresponse of the composite p-n photoanodes was evaluated in photoelectrochemical cells operating at "zero-bias" conditions under either visible or UV-vis irradiation. In both operating conditions, the produced electrodes invariably followed the p-n-based photoanode operations but exhibited lower photoelectrochemical performance as compared to the bare n-TiO2 photoanode under UV-vis light. The reported experimental analysis evidenced that such decreased photoactivity is mainly induced by the scarce efficiency of the nanosized p-n interfaces upon irradiation. To overcome such limitation, a restructuring of the originally electrodeposited p-Cu2O was promoted, following a photoelectrochemical post-treatment strategy. p-Cu2O, restructured in a 2D leaf-like morphology, allowed reaching an improved photoelectrochemical performance for the p-n-based photoanode under UV-vis light. As compared to the bare n-TiO2 behavior, such improvement consisted of photoanodic currents up to three times larger. An analysis of the mechanisms driving the transition from compact (∼100 nm) octahedral p-Cu2O to wider (∼1 μm) 2D leaf-like structures was performed, which highlighted the pivotal role played by the irradiated n-TiO2 NTs.
Collapse
|
31
|
A Cu2O/PEDOT/graphene-modified electrode for the enzyme-free detection and quantification of glucose. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Musikajaroen S, Polin S, Sattayaporn S, Jindata W, Saenrang W, Kidkhunthod P, Nakajima H, Butburee T, Chanlek N, Meevasana W. Photoenhanced Water Electrolysis in Separate O 2 and H 2 Cells Using Pseudocapacitive Electrodes. ACS OMEGA 2021; 6:19647-19655. [PMID: 34368552 PMCID: PMC8340381 DOI: 10.1021/acsomega.1c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Water electrolysis has received much attention in recent years as a means of sustainable H2 production. However, many challenges remain in obtaining high-purity H2 and making large-scale production cost-effective. This study provides a strategy for integrating a two-cell water electrolysis system with solar energy storage. In our proposed system, CuO-Cu(OH)2/Cu2O was used as a redox mediator between oxygen and hydrogen evolution components. The system not only overcame the gas-mixing issue but also showed high gas generation performance. The redox reaction (charge/discharge) of CuO-Cu(OH)2/Cu2O led to a significant increase (51%) in the initial rate of H2 production from 111.7 μmol h-1 cm-2 in the dark to 168.9 μmol h-1 cm-2 under solar irradiation. The effects of light on the redox reaction of CuO-Cu(OH)2/Cu2O during water electrolysis were investigated by in situ X-ray absorption and photoemission spectroscopy. These results suggest that surface oxygen vacancies are created under irradiation and play an important role in increased capacitance and gas generation. These findings provide a new path to direct storage of abundant solar energy and low-cost sustainable hydrogen production.
Collapse
Affiliation(s)
- Supansa Musikajaroen
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Siwat Polin
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | | | - Warakorn Jindata
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Wittawat Saenrang
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Pinit Kidkhunthod
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Hideki Nakajima
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Teera Butburee
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Narong Chanlek
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Worawat Meevasana
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Siavash Moakhar R, Hosseini‐Hosseinabad SM, Masudy‐Panah S, Seza A, Jalali M, Fallah‐Arani H, Dabir F, Gholipour S, Abdi Y, Bagheri‐Hariri M, Riahi‐Noori N, Lim Y, Hagfeldt A, Saliba M. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007285. [PMID: 34117806 PMCID: PMC11468279 DOI: 10.1002/adma.202007285] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods, characterization, and fundamental factors of each classification are discussed in detail. Apart from the exclusive characteristics of CuO-based photoelectrodes, the PEC properties of CuO/2D materials, as groups of the growing nanocomposites in photocurrent-generating devices, are discussed in separate sections. Regarding the particular attention paid to the CuO heterostructure photocathodes, the PEC water splitting application is reviewed and the properties of each group such as electronic structures, defects, bandgap, and hierarchical structures are critically assessed.
Collapse
Affiliation(s)
- Roozbeh Siavash Moakhar
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | | | - Saeid Masudy‐Panah
- Electrical and Computer EngineeringNational University of SingaporeSingapore119260Singapore
- Low Energy Electronic Systems (LEES)Singapore‐MIT Alliance for Research and Technology (SMART) CentreSingapore38602Singapore
| | - Ashkan Seza
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
- Department of Materials Science and EngineeringSharif University of TechnologyAzadi AveTehran11155‐9466Iran
| | - Mahsa Jalali
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
| | - Hesam Fallah‐Arani
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Fatemeh Dabir
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Somayeh Gholipour
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Yaser Abdi
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Mohiedin Bagheri‐Hariri
- Institute for Corrosion and Multiphase flow TechnologyDepartment of Chemical and Biomedical EngineeringOhio UniversityAthensOH45701USA
| | - Nastaran Riahi‐Noori
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Yee‐Fun Lim
- Institute of Materials Research and EngineeringAgency for Science Technology and Research (A*STAR)2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Anders Hagfeldt
- Laboratory of Photomolecular ScienceEcole Polytechnique Fédérale de LausanneEPFL SB‐ISIC‐LSPM, Station 6Lausanne1015Switzerland
| | - Michael Saliba
- Institute for PhotovoltaicsUniversity of StuttgartPfaffenwaldring 47D‐70569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNER IEK5‐PhotovoltaikForschungszentrumD‐52425JülichGermany
| |
Collapse
|
34
|
Shoute LCT, Alam KM, Vahidzadeh E, Manuel AP, Zeng S, Kumar P, Kar P, Shankar K. Effect of morphology on the photoelectrochemical performance of nanostructured Cu 2O photocathodes. NANOTECHNOLOGY 2021; 32:374001. [PMID: 32619996 DOI: 10.1088/1361-6528/aba2a3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Cu2O is a promising earth-abundant semiconductor photocathode for sunlight-driven water splitting. Characterization results are presented to show how the photocurrent density (Jph), onset potential (Eonset), band edges, carrier density (NA), and interfacial charge transfer resistance (Rct) are affected by the morphology and method used to deposit Cu2O on a copper foil. Mesoscopic and planar morphologies exhibit large differences in the values ofNAandRct. However, these differences are not observed to translate to other photocatalytic properties of Cu2O. Mesoscopic and planar morphologies exhibit similar bandgap (e.g.) and flat band potential (Efb) values of 1.93 ± 0.04 eV and 0.48 ± 0.06 eV respectively.Eonsetof 0.48 ± 0.04 eV obtained for these systems is close to theEfbindicating negligible water reduction overpotential. Electrochemically deposited planar Cu2O provides the highest photocurrent density of 5.0 mA cm-2at 0 V vs reversible hydrogen electrode (RHE) of all the morphologies studied. The photocurrent densities observed in this study are among the highest reported values for bare Cu2O photocathodes.
Collapse
Affiliation(s)
- Lian C T Shoute
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Kazi M Alam
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Ehsan Vahidzadeh
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Ajay P Manuel
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Sheng Zeng
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Pawan Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Piyush Kar
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211 - 116 St, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
35
|
Koo B, Chu J, Seo J, Jung G, Baek SH, Nam SW, Duah C, Lee YK, Jung W, Shin B. Drop-casted Platinum Nanocube Catalysts for Hydrogen Evolution Reaction with Ultrahigh Mass Activity. CHEMSUSCHEM 2021; 14:2585-2590. [PMID: 33908698 DOI: 10.1002/cssc.202100613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Platinum hydrogen evolution reaction (HER) electrocatalysts in the form of nanocubes (NCs) were synthesized at 50 °C by aqueous-based colloidal synthesis and were applied to electrochemical (EC) and photoelectrochemical (PEC) systems by a fast and simple drop-casting method. A remarkable Pt mass activity of 1.77 A mg-1 at -100 mV was achieved in EC systems (fluorine-doped tin oxide/Pt NC cathode) with neutral electrolyte while maintaining low overpotential and Tafel slope. In the Cu(In,Ga)(S,Se)2 (CIGS)-based PEC system, a carefully chosen amount of Pt NC loading to achieve a compromise between the catalytic activity (more Pt NCs) and better light transmittance (fewer Pt NCs) led to a maximum onset potential of 0.678 V against the reference hydrogen electrode. The photoelectrodes with Pt NCs also exhibited good long-term operational stability over 9.5 h with negligible degradation of the photocurrent. This study presents an effective strategy to greatly reduce the use of expensive Pt without compromising the catalytic performance because the drop-casting of Pt NC solutions to form electrocatalysts is expected to waste less raw material than vacuum deposition.
Collapse
Affiliation(s)
- Bonhyeong Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwoo Chu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jongsu Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Gihun Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Hee Baek
- School of Medicine, Kyungpook National University, Daegu, 41405, Republic of Korea
| | - Sung-Wook Nam
- School of Medicine, Kyungpook National University, Daegu, 41405, Republic of Korea
| | - Calem Duah
- Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Young Kuk Lee
- Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
36
|
Yang CP, Wu Q, Jiang ZW, Wang X, Huang CZ, Li YF. Cu vacancies enhanced photoelectrochemical activity of metal-organic gel-derived CuO for the detection of l-cysteine. Talanta 2021; 228:122261. [PMID: 33773715 DOI: 10.1016/j.talanta.2021.122261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Defect engineering in the photoelectrochemical (PEC) process of photoelectrodes has been extensively studied. But insufficient attention has been received about the impact of metal vacancies (VM) in PEC process. Herein, the influence of Cu vacancies (VCu) on PEC performance of copper oxide (CuO) derived from Cu-based metal-organic gel (Cu-MOG) precursor was reported. It can be found that the presence of more VCu can improve the PEC activity of CuO photocathode by facilitating the charge separation and transfer. Moreover, the as-prepared CuO was presented as a new PEC sensor to detect l-cysteine (L-Cys) on the basis of the excellent PEC performance, which showed high sensitivity and selectivity. Good linear response of L-Cys within the range of 0.1-6 μM was performed with a detection limit of 0.04 μM. This work not only provides insights into the role of VM in the PEC process of photocathodes, but also proved the high potential applicability of CuO as a PEC device for biomolecule detection.
Collapse
Affiliation(s)
- Chang Ping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qing Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
37
|
Fernández-Catalá J, Navlani-García M, Verma P, Berenguer-Murcia Á, Mori K, Kuwahara Y, Yamashita H, Cazorla-Amorós D. Photocatalytically-driven H2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Water Photo-Electrooxidation Using Mats of TiO2 Nanorods, Surface Sensitized by a Metal–Organic Framework of Nickel and 1,2-Benzene Dicarboxylic Acid. HYDROGEN 2021. [DOI: 10.3390/hydrogen2010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photoanodes comprising a transparent glass substrate coated with a thin conductive film of fluorine-doped tin oxide (FTO) and a thin layer of a photoactive phase have been fabricated and tested with regard to the photo-electro-oxidation of water into molecular oxygen. The photoactive layer was made of a mat of TiO2 nanorods (TDNRs) of micrometric thickness. Individual nanorods were successfully photosensitized with nanoparticles of a metal–organic framework (MOF) of nickel and 1,2-benzene dicarboxylic acid (BDCA). Detailed microstructural information was obtained from SEM and TEM analysis. The chemical composition of the active layer was determined by XRD, XPS and FTIR analysis. Optical properties were determined by UV–Vis spectroscopy. The water photooxidation activity was evaluated by linear sweep voltammetry and the robustness was assessed by chrono-amperometry. The OER (oxygen evolution reaction) photo-activity of these photoelectrodes was found to be directly related to the amount of MOF deposited on the TiO2 nanorods, and was therefore maximized by adjusting the MOF content. The microscopic reaction mechanism which controls the photoactivity of these photoelectrodes was analyzed by photo-electrochemical impedance spectroscopy. Microscopic rate parameters are reported. These results contribute to the development and characterization of MOF-sensitized OER photoanodes.
Collapse
|
39
|
Arumugam GM, Karunakaran SK, Liu C, Zhang C, Guo F, Wu S, Mai Y. Inorganic hole transport layers in inverted perovskite solar cells: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Gowri Manohari Arumugam
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Santhosh Kumar Karunakaran
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P.R. China
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education Sun Yat‐Sen University Guangzhou 510275 P.R. China
| | - Chong Liu
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Cuiling Zhang
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Fei Guo
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Shaohang Wu
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Yaohua Mai
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
40
|
Nanostructured Anodic Copper Oxides as Catalysts in Electrochemical and Photoelectrochemical Reactions. Catalysts 2020. [DOI: 10.3390/catal10111338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, nanostructured copper oxides formed via anodizing have been intensively researched due to their potential catalytic applications in emerging issues. The anodic Cu2O and CuO nanowires or nanoneedles are attractive photo- and electrocatalysts since they show wide array of desired electronic and morphological features, such as highly-developed surface area. In CO2 electrochemical reduction reaction (CO2RR) copper and copper-based nanostructures indicate unique adsorption properties to crucial reaction intermediates. Furthermore, anodized copper-based materials enable formation of C2+ hydrocarbons and alcohols with enhanced selectivity. Moreover, anodic copper oxides provide outstanding turnover frequencies in electrochemical methanol oxidation at lowered overpotentials. Therefore, they can be considered as precious metals electrodes substituents in direct methanol fuel cells. Additionally, due to the presence of Cu(III)/Cu(II) redox couple, these materials find application as electrodes for non-enzymatic glucose sensors. In photoelectrochemistry, Cu2O-CuO heterostructures of anodic copper oxides with highly-developed surface area are attractive for water splitting. All the above-mentioned aspects of anodic copper oxides derived catalysts with state-of-the-art background have been reviewed within this paper.
Collapse
|
41
|
Yang L, Xu H, Liu H, Zeng X, Cheng D, Huang Y, Zheng L, Cao R, Cao D. Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction. RESEARCH 2020; 2020:7593023. [PMID: 33094289 PMCID: PMC7556117 DOI: 10.34133/2020/7593023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/31/2020] [Indexed: 12/01/2022]
Abstract
Identification of an active center of catalysts under realistic working conditions of oxygen reduction reaction (ORR) still remains a great challenge and unclear. Herein, we synthesize the Cu single atom embedded on nitrogen-doped graphene-like matrix electrocatalyst (abbreviated as SA-Cu/NG). The results show that SA-Cu/NG possesses a higher ORR capability than 20% Pt/C at alkaline solution while the inferior activity to 20% Pt/C at acidic medium. Based on the experiment and simulation calculation, we identify the atomic structure of Cu-N2C2 in SA-Cu/NG and for the first time unravels that the oxygen-reconstituted Cu-N2C2-O structure is really the active species of alkaline ORR, while the oxygen reconstitution does not happen at acidic medium. The finding of oxygen-reconstituted active species of SA-Cu/NG at alkaline media successfully unveils the bottleneck puzzle of why the performance of ORR catalysts at alkaline solution is better than that at acidic media, which provides new physical insight into the development of new ORR catalysts.
Collapse
Affiliation(s)
- Liu Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoxiang Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huibing Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofei Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daojian Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Cao
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dapeng Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
Oh S, Kang H, Joo W, Joo Y. Photoelectrochemical CO
2
Reduction via Cu
2
O/CuFeO
2
Hierarchical nanorods photocatalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202000775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sang‐Ho Oh
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
| | - Ho‐Young Kang
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
| | - Won‐Hyo Joo
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
| | - Young‐Chang Joo
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
- Research Institute of Advanced Materials Seoul National University 1 Gwanak-ro, Gwanak-gu 151-742 Seoul Republic of Korea
| |
Collapse
|
43
|
Aktar A, Ahmmed S, Hossain J, Ismail ABM. Solution-Processed Synthesis of Copper Oxide (Cu x O) Thin Films for Efficient Photocatalytic Solar Water Splitting. ACS OMEGA 2020; 5:25125-25134. [PMID: 33043191 PMCID: PMC7542592 DOI: 10.1021/acsomega.0c02754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
This article reports a solution-processed synthesis of copper oxide (Cu x O) to be used as a potential photocathode for solar hydrogen production in the solar water-splitting system. Cu x O thin films were synthesized through the reduction of copper iodide (CuI) thin films by sodium hydroxide (NaOH), which were deposited by the spin coating method from CuI solution in a polar aprotic solvent (acetonitrile). The phase and crystalline quality of the synthesized Cu x O thin films prepared at various annealing temperatures were investigated using various techniques. The X-ray diffraction and energy dispersive X-ray spectroscopy studies confirm the presence of Cu2O, CuO/Cu2O mixed phase, and pure CuO phase at annealing temperatures of 250, 300, and 350 °C, respectively. It is revealed from the experimental findings that the synthesized Cu x O thin films with an annealing temperature of 350 °C possess the highest crystallinity, smooth surface morphology, and higher carrier density. The highest photocurrent density of -19.12 mA/cm2 at -1 V versus RHE was achieved in the photoelectrochemical solar hydrogen production system with the use of the Cu x O photocathode annealed at a temperature of 350 °C. Therefore, it can be concluded that Cu x O synthesized by the spin coating method through the acetonitrile solvent route can be used as an efficient photocathode in the solar water-splitting system.
Collapse
Affiliation(s)
- Asma Aktar
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shamim Ahmmed
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Jaker Hossain
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Abu Bakar Md. Ismail
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
44
|
Gurgul M, Gawlak K, Syrek K, Kozieł M, Sulka GD, Zaraska L. The influence of water-induced crystallization on the photoelectrochemical properties of porous anodic tin oxide films. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
A novel CuO–Cu2O/Ag–Ag3PO4 nanocomposite: Synthesis, characterization, and its application for 2-chlorophenol decontamination under visible light. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Dom R, Govindarajan S, Joshi SV, Borse PH. A solar-responsive zinc oxide photoanode for solar-photon-harvester photoelectrochemical (PEC) cells. NANOSCALE ADVANCES 2020; 2:3350-3357. [PMID: 36134295 PMCID: PMC9417454 DOI: 10.1039/d0na00139b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/08/2020] [Indexed: 06/16/2023]
Abstract
A highly efficient, nanostructured, solar-responsive zinc-oxide (SRZO) photoanode has been achieved by utilization of a versatile solution precursor plasma spray (SPPS) deposition technique. For the first time, it is demonstrated that a front-illumination type SRZO photo-anode fabricated with a ZnO/stainless steel (SS-304) configuration can generate an enhanced photo-electrochemical (PEC) current of 390 μA cm-2, under solar radiation from a solar simulator with an AM1.5 global filter (∼1 sun). The SRZO electrode displayed a solar-to-hydrogen (STH) conversion efficiency of 2.32% when investigated for H2 evolution in a PEC cell. These electrodes exhibited a maximum peak efficiency of 86% using 320 nm photons during incident photon-to-current conversion efficiency measurement. Interestingly, the film lattice of SRZO showed a significant red-shift of 0.37 eV in the ZnO band gap thereby providing solar photon absorptivity to SRZO. Further, an enhanced charge transport property by virtue of increased donor density (∼4.11 × 1017 cm-3) has been observed, which is higher by an order of magnitude than that of its bulk counterpart. Efficient optical absorption of solar photons and higher donor-density of SRZO have been thus attributed to its superior PEC performance.
Collapse
Affiliation(s)
- Rekha Dom
- International Advanced Research Centre for Powder Metallurgy and New Materials Balapur PO Hyderabad Telangana 500 005 India
| | - Sivakumar Govindarajan
- International Advanced Research Centre for Powder Metallurgy and New Materials Balapur PO Hyderabad Telangana 500 005 India
| | - Shrikant V Joshi
- Department of Engineering Science, University West 46186 Trollhattan Sweden
| | - Pramod H Borse
- International Advanced Research Centre for Powder Metallurgy and New Materials Balapur PO Hyderabad Telangana 500 005 India
| |
Collapse
|
47
|
The impact of ethylenediaminetetraacetic acid (EDTA) additive on anodization of copper in KHCO3 – hindering Cu2+ re-deposition by EDTA influences morphology and composition of the nanostructures. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Zhang M, Wang J, Xue H, Zhang J, Peng S, Han X, Deng Y, Hu W. Acceptor‐Doping Accelerated Charge Separation in Cu
2
O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angew Chem Int Ed Engl 2020; 59:18463-18467. [DOI: 10.1002/anie.202007680] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Mengmeng Zhang
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Hui Xue
- State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Jinfeng Zhang
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Xiaopeng Han
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Yida Deng
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China
| |
Collapse
|
49
|
Zhang M, Wang J, Xue H, Zhang J, Peng S, Han X, Deng Y, Hu W. Acceptor‐Doping Accelerated Charge Separation in Cu
2
O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mengmeng Zhang
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Hui Xue
- State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Jinfeng Zhang
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Xiaopeng Han
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Yida Deng
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin University Tianjin 300072 P. R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China
| |
Collapse
|
50
|
Feng X, Liu Z, Qin L, Kang SZ, Li X. Photocatalytic activity and the electron transport mechanism of titanium dioxide microsphere/porphyrin implanted with small size copper. Phys Chem Chem Phys 2020; 22:13528-13535. [PMID: 32510088 DOI: 10.1039/d0cp01953d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To obtain efficient photocatalysts by coupling architectures, developing novel materials and elucidating the charge transport mechanism at the semiconductor interface are vital. Herein, a special nanocomposite (TiO2 microsphere/CuNPs/THPP) for photocatalytic hydrogen production was facilely fabricated with copper nanoparticles (CuNPs) as the interfacial linker of the TiO2 microspheres and meso-tetra(p-hydroxypheny)porphyrin (THPP). The assembly mode of the nanocomposite was studied in detail. It was found that the CuNPs implanted at the interface of the TiO2 microspheres and THPP can dramatically strengthen the interaction between the TiO2 microspheres and THPP, and improve the separation and transfer of photo-produced charges. Therefore, the nanocomposite displayed excellent performance for photocatalytic hydrogen production. Moreover, by recycling hydrogen production, it is demonstrated that the nanocomposite was a highly efficient and long-term stable photocatalyst. By investigating the energy band location and the charge transfer, the photocatalytic mechanism over the special nanocomposite was explored and proposed to explain the better activity of the TiO2 microsphere/CuNPs/THPP photocatalytic system. It will be helpful to provide deep insights into the construction of efficient photocatalytic systems.
Collapse
Affiliation(s)
- Xuyuan Feng
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Zhiyuan Liu
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|