1
|
Chapman J, Paukner M, Leser M, Teng KW, Koide S, Holder M, Armache KJ, Becker C, Ueberheide B, Brenowitz M. Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting. Anal Chem 2023; 95:18316-18325. [PMID: 38049117 PMCID: PMC10734636 DOI: 10.1021/acs.analchem.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
Collapse
Affiliation(s)
- Jessica
R. Chapman
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
| | - Max Paukner
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Micheal Leser
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Kai Wen Teng
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
| | - Shohei Koide
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Marlene Holder
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Chris Becker
- Protein
Metrics Inc., Cupertino, California 95014, United States
| | - Beatrix Ueberheide
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Leser M, Chapman JR, Khine M, Pegan J, Law M, Makkaoui ME, Ueberheide BM, Brenowitz M. Chemical Generation of Hydroxyl Radical for Oxidative 'Footprinting'. Protein Pept Lett 2019; 26:61-69. [PMID: 30543161 DOI: 10.2174/0929866526666181212164812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND For almost four decades, hydroxyl radical chemically generated by Fenton chemistry has been a mainstay for the oxidative 'footprinting' of macromolecules. OBJECTIVE In this article, we start by reviewing the application of chemical generation of hydroxyl radical to the development of oxidative footprinting of DNA and RNA and the subsequent application of the method to oxidative footprinting of proteins. We next discuss a novel strategy for generating hydroxyl radicals by Fenton chemistry that immobilizes catalytic iron on a solid surface (Pyrite Shrink Wrap laminate) for the application of nucleic acid and protein footprinting. METHOD Pyrite Shrink-Wrap Laminate is fabricated by depositing pyrite (Fe-S2, aka 'fool's gold') nanocrystals onto thermolabile plastic (Shrinky Dink). The laminate can be thermoformed into a microtiter plate format into which samples are deposited for oxidation. RESULTS We demonstrate the utility of the Pyrite Shrink-Wrap Laminate for the chemical generation of hydroxyl radicals by mapping the surface of the T-cell co-stimulatory protein Programmed Death - 1 (PD-1) and the interface of the complex with its ligand PD-L1. CONCLUSION We have developed and validated an affordable and reliable benchtop method of hydroxyl radical generation that will broaden the application of protein oxidative footprinting. Due to the minimal equipment required to implement this method, it should be easily adaptable by many laboratories with access to mass spectrometry.
Collapse
Affiliation(s)
- Micheal Leser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica R Chapman
- Proteomics Laboratory, Department of Biochemistry, New York University School of Medicine, New York, NY, United States
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, CA, United States.,Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States
| | - Jonathan Pegan
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Matt Law
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States.,Department of Chemistry, University of California, Irvine, CA, United States
| | - Mohammed El Makkaoui
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States.,Department of Chemistry, University of California, Irvine, CA, United States
| | - Beatrix M Ueberheide
- Proteomics Laboratory, Department of Biochemistry, New York University School of Medicine, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Leser M, Pegan J, El Makkaoui M, Schlatterer JC, Khine M, Law M, Brenowitz M. Protein footprinting by pyrite shrink-wrap laminate. LAB ON A CHIP 2015; 15:1646-1650. [PMID: 25666234 PMCID: PMC9431544 DOI: 10.1039/c4lc01288g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The structure of macromolecules and their complexes dictate their biological function. In "footprinting", the solvent accessibility of the residues that constitute proteins, DNA and RNA can be determined from their reactivity to an exogenous reagent such as the hydroxyl radical (·OH). While ·OH generation for protein footprinting is achieved by radiolysis, photolysis and electrochemistry, we present a simpler solution. A thin film of pyrite (cubic FeS2) nanocrystals deposited onto a shape memory polymer (commodity shrink-wrap film) generates sufficient ·OH via Fenton chemistry for oxidative footprinting analysis of proteins. We demonstrate that varying either time or H2O2 concentration yields the required ·OH dose-oxidation response relationship. A simple and scalable sample handling protocol is enabled by thermoforming the "pyrite shrink-wrap laminate" into a standard microtiter plate format. The low cost and malleability of the laminate facilitates its integration into high throughput screening and microfluidic devices.
Collapse
Affiliation(s)
- Micheal Leser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jonathan Pegan
- Department of Biomedical Engineering, University of California, Irvine, CA
| | - Mohammed El Makkaoui
- Department of Chemistry, University of California, Irvine, CA
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA
| | | | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, CA
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA
| | - Matt Law
- Department of Chemistry, University of California, Irvine, CA
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
4
|
Schlatterer JC, Wieder MS, Jones CD, Pollack L, Brenowitz M. Pyrite footprinting of RNA. Biochem Biophys Res Commun 2012; 425:374-8. [PMID: 22842460 DOI: 10.1016/j.bbrc.2012.07.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ((·)OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS(2)) can produce sufficient (·)OH to footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to (·)OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated (·)OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.
Collapse
Affiliation(s)
- Jörg C Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|