1
|
Li N, Zhang Y, Wang H, Xu X, Huo X, Wang J, Xu Y. A chip-based universal strategy to realize multiplex PCR by using wax films for sealing and controllable release of primers. Biosens Bioelectron 2025; 269:116921. [PMID: 39550777 DOI: 10.1016/j.bios.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Simultaneous detection of multiple nucleic acid targets from a single sample is a common requirement in molecular diagnosis and basic research. Dividing a bulky polymerase chain reaction (PCR) into many isolated small reaction units through microfluidic technology is commonly used to realize this goal. However, previous microfluidic platforms for multiplex PCR suffer from complex structures and strict operation requirements. In this study, a chip-based universal strategy is constructed to realize multiplex PCR by using wax films for sealing and controllable release of prespotted primers. This microfluidic chip contains twenty-four reaction chambers connected in series by a single channel, and the bottom of each reaction chamber is covered by a wax film generated by solvent volatilization. These wax films can prevent the prespotted primers from being flushed away by the reaction mixture during the injection process. After thermal blocking of the connecting channel to isolate each reaction chamber, the chip is placed on a flat thermal cycler. The wax films melt during the denaturing step of PCR so that the primers are released and mixed with the reaction mixture, a process seamlessly compatible with PCR thermal cycling. After fluid flow simulation and carefully examining its basic performance, this chip was applied to genotype seven deafness-associated hotspot mutations using a competitive allele-specific PCR assay. The genotyping results of clinical samples using this chip were totally concordant with those obtained by Sanger sequencing, demonstrating the practical utility of this universal strategy for multiplex PCR detection.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyue Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huili Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xun Xu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaoye Huo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youchun Xu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, 102200, China.
| |
Collapse
|
2
|
Li T, Li Z, Chang Y, Shen X, Shi H, Wang B, Duan X. A hand-held in-situ nucleic acid detection device based on dual-function GHz acoustofluidic resonator. Biosens Bioelectron 2025; 268:116914. [PMID: 39522472 DOI: 10.1016/j.bios.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Microfluidic-based nucleic acid testing (NAT) has been proven as an alternative approach for in-situ and rapid NA detection. However, these on-chip methods still require complex peripherals, which contradict the purpose of point-of-care (POC) applications. One of the major challenges is the integration of NA purification and amplification in a miniaturized setup with high mass and heat transfer efficiency. Here, we propose a hand-held in-situ nucleic acid detection device featuring a dual-functional GHz acoustofluidic resonator. The device is designed to utilize GHz acoustic streaming and acoustothermal effects to address both liquid mixing and heating issues, ensuring uniform reaction conditions and consistent thermal management in the microfluidic channel. By replacing traditional magnetic beads with polystyrene beads as matrix for solid-phase microextraction, the redundant washing and elution steps are eliminated, thereby simplifying the NA extraction process. The mixing and heating functions can be seamlessly switched by adjusting the applied power, thereby enhancing NA processing without the need for additional peripherals. The developed hand-held NAT apparatus achieved a detection limit of 10³ copies per milliliter in complex plasma samples within 35 min. Our method simplifies workflows, improves NA retention, and is suitable for processing complex biological samples, making it ideal for POC and in-field testing applications.
Collapse
Affiliation(s)
- Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhiwei Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Ye Chang
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300072, China
| | - Xiaotian Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Hongtao Shi
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Bingnan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Feng W, Chen Y, Han Y, Diao Z, Zhao Z, Zhang Y, Huang T, Ma Y, Li Z, Jiang J, Li J, Li J, Zhang R. Key performance evaluation of commercialized multiplex rRT-PCR kits for respiratory viruses: implications for application and optimization. Microbiol Spectr 2024; 12:e0164124. [PMID: 39470276 PMCID: PMC11619282 DOI: 10.1128/spectrum.01641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
Respiratory tract infections (RTIs) caused by viruses are prevalent and significant conditions in clinical settings. Accurate and effective detection is of paramount importance in the diagnosis, treatment, and prevention of viral RTIs. With technological advancements, multiplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assays have been developed and extensively adopted for the diagnosis of viral RTIs. Given the potential challenges in the detection performance of multiplex assays, this study evaluated the analytical sensitivity and competitive interference of the six most commonly used multiplex rRT-PCR kits for detection of respiratory viruses in China. The results revealed that the limits of detection were variable across the viruses and kits. Most of the evaluated multiplex kits demonstrated comparable or enhanced analytical sensitivity compared with singleplex kits for clinically significant viruses, including human adenovirus (HAdV)-3, HAdV-7, Omicron BA.5, H1N1pdm09, H3N2, B/Victoria, respiratory syncytial virus subtype A, and respiratory syncytial virus subtype B, whereas multiplex kits showed relatively less analytical sensitivity for human rhinovirus-B72, human metapneumovirus-A2, parainfluenza virus (PIV)-1, and PIV-3. In addition, most multiplex kits successfully identified co-infections when one analyte was present at a low concentration and another analyte was present at a high concentration. IMPORTANCE The complexity and severity of viral respiratory tract infections (RTIs) emphasize the pivotal role of precise diagnosis for viral RTIs in guiding effective public health responses and ensuring appropriate medical interventions, given the substantial population at risk. This study highlights the necessity and importance of evaluating the analytical validity of multiplex real-time reverse transcription polymerase chain reaction assays, offering valuable insights into their optimization and application.
Collapse
Affiliation(s)
- Wanyu Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Zhenli Diao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Zihong Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuanfeng Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Tao Huang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yu Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ziqiang Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jian Jiang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jing Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
4
|
Choi JH, Jang W, Lim YJ, Mun SJ, Bong KW. Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles. ACS Sens 2023; 8:3158-3166. [PMID: 37489756 DOI: 10.1021/acssensors.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
5
|
Lee SH, Chun YS, Kim KW. Coin-shaped corneal endothelial scar in herpes zoster ophthalmicus: a case report. J Med Case Rep 2022; 16:107. [PMID: 35296348 PMCID: PMC8928647 DOI: 10.1186/s13256-022-03319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background Herpes zoster ophthalmicus includes a wide spectrum of lesions at the ocular surface, including epithelial, stromal, endothelial keratitis, and uveitis. Thus far, the occurrence of corneal endothelial disorder in herpes zoster ophthalmicus and the causative virus have not been confirmed, and the differential diagnosis and establishment of therapeutic strategies are challenging. Corneal endothelial coin-shaped lesions are well known to occur in cytomegalovirus-related corneal endotheliitis but have not been reported in patients with herpes zoster ophthalmicus. Case presentation A 39-year-old Asian female was referred to our ophthalmology department with recurrent anterior uveitis accompanied by coin-shaped corneal endothelial scar-like lesions that appeared after right facial herpes zoster. Diffuse corneal stromal haziness was mostly limited in the anterior stroma. The coin-shaped corneal endothelial lesions were separate from stromal lesions and showed a high-reflective scar-like line in sections of anterior segment optical coherence tomography. Anterior uveitis recurred each time she discontinued oral antiviral drug treatment for 12 months after the first event, but was remitted by the maintenance medications of combined topical ganciclovir gel with oral valaciclovir, at a dose lower than the usual adult dose, for acute or recurrent zoster-associated anterior uveitis. Corneal endothelial function remained normal and corneal endothelial and stromal lesions were unchanged throughout the treatment and follow-up period. Conclusions In patients with a history of facial herpes zoster with coin-shaped corneal endothelial scar accompanying recurrent anterior uveitis, suspicion for active varicella-zoster virus is warranted, and prolonged intake of oral antiviral agents is required despite varicella-zoster virus DNA not being detected in aqueous humor.
Collapse
Affiliation(s)
- Seung Hyeun Lee
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea
| | - Yeoun Sook Chun
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea
| | - Kyoung Woo Kim
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea.
| |
Collapse
|
6
|
Xing W, Liu Y, Wang H, Li S, Lin Y, Chen L, Zhao Y, Chao S, Huang X, Ge S, Deng T, Zhao T, Li B, Wang H, Wang L, Song Y, Jin R, He J, Zhao X, Liu P, Li W, Cheng J. A High-Throughput, Multi-Index Isothermal Amplification Platform for Rapid Detection of 19 Types of Common Respiratory Viruses Including SARS-CoV-2. ENGINEERING 2020; 6:1130-1140. [PMID: 33520332 PMCID: PMC7833526 DOI: 10.1016/j.eng.2020.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Fast and accurate diagnosis and the immediate isolation of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are regarded as the most effective measures to restrain the coronavirus disease 2019 (COVID-19) pandemic. Here, we present a high-throughput, multi-index nucleic acid isothermal amplification analyzer (RTisochip™-W) employing a centrifugal microfluidic chip to detect 19 common respiratory viruses, including SARS-CoV-2, from 16 samples in a single run within 90 min. The limits of detection of all the viruses analyzed by the RTisochip™-W system were equal to or less than 50 copies·μL-1, which is comparable to those of conventional reverse transcription polymerase chain reaction. We also demonstrate that the RTisochip™-W system possesses the advantages of good repeatability, strong robustness, and high specificity. Finally, we analyzed 201 cases of preclinical samples, 14 cases of COVID-19-positive samples, 25 cases of clinically diagnosed samples, and 614 cases of clinical samples from patients or suspected patients with respiratory tract infections using the RTisochip™-W system. The test results matched the referenced results well and reflected the epidemic characteristics of the respiratory infectious diseases. The coincidence rate of the RTisochip™-W with the referenced kits was 98.15% for the detection of SARS-CoV-2. Based on these extensive trials, we believe that the RTisochip™-W system provides a powerful platform for fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Wanli Xing
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Technology, Beijing 101111, China
| | - Yingying Liu
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Huili Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shanglin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yongping Lin
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Zhao
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Chao
- Department of Pediatrics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiaolan Huang
- Experiment Center, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shaolin Ge
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Tao Deng
- CapitalBio Technology, Beijing 101111, China
| | - Tian Zhao
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Baolian Li
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Hanbo Wang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | - Lei Wang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| | | | - Ronghua Jin
- President's Office, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jianxing He
- Department of Cardiothoracic Surgery, State Key Laboratory of Respiratory Disease, China Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiuying Zhao
- Department of Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,CapitalBio Corporation, Beijing 102206, China
| |
Collapse
|
7
|
Lin B, Guo Z, Geng Z, Jakaratanopas S, Han B, Liu P. A scalable microfluidic chamber array for sample-loss-free and bubble-proof sample compartmentalization by simple pipetting. LAB ON A CHIP 2020; 20:2981-2989. [PMID: 32696770 DOI: 10.1039/d0lc00348d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sample compartmentalization is a pivotal technique in many bioanalytical applications, such as multiplex polymerase chain reaction (PCR) and digital PCR (dPCR). In this study, we successfully developed a novel self-compartmentalization device containing an array of microchambers, each of which is connected to a main microchannel with three capillary burst valves (CBVs) for fluid switching and partitioning. As these CBVs can be automatically opened in a predefined sequence, an incoming solution can be spontaneously directed into the chamber and held in place without further mixing. After that, either air or oil can be loaded into the main channel to isolate each chamber completely. By optimizing the relative burst pressures of the CBVs, a 100% sample utilization rate can be achieved even using a manual pipette and air bubbles in the sample cannot interfere with the loading. In addition, the number of the microchambers in an array can be easily scaled from a few to tens of thousands. To verify the feasibility of this self-compartmentalization method, we successfully conducted mock multiplex loop-mediated isothermal amplifications (LAMP) in an array that contains 144 microchambers, proving that our design method will provide a robust and versatile platform for various sample discretization purposes in the future.
Collapse
Affiliation(s)
- Baobao Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | | | | | | | | | | |
Collapse
|
8
|
Wang J, Hua G, Li L, Li D, Wang F, Wu J, Ye Z, Zhou X, Ye S, Yang J, Zhang X, Ren L. Upconversion nanoparticle and gold nanocage satellite assemblies for sensitive ctDNA detection in serum. Analyst 2020; 145:5553-5562. [PMID: 32613211 DOI: 10.1039/d0an00701c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A rapid molecular diagnostic technique targeting circulating tumor DNA (ctDNA) has become one of the most clinically significant liquid biopsy methods for non-invasive and timely diagnosis of cancer. Herein, a sensitive detection system of ctDNA based on a fluorescence resonance energy transfer (FRET) system using upconversion nanoparticles (UCNPs) and gold nanocages (AuNCs) was constructed. Through the doping of Yb and Tm ions, the excitation and emission wavelengths of UCNPs were adjusted to 980 nm and 806 nm, respectively. Subsequently, UCNPs and AuNCs with the corresponding wavelength absorption were linked by complementary pairing of surface-modified DNA to form near-infrared fluorescent nanoprobes (NIR probes). Targeting DNA mutation recognition and signal transduction were realized by using NIR probes through the toehold-mediated strand displacement reaction. This method could detect a single point mutation of the KRAS gene with a wide detection range from 5 pM to 1000 pM and the limit of detection reached 6.30 pM. More importantly, the stable and highly specific NIR probes could be directly used in the serum environment without complicated pretreatment and amplification processes in advance. It could be envisioned that this specific and sensitive ctDNA detection strategy has great potential in clinical diagnosis and monitoring of diverse malignant tumors.
Collapse
Affiliation(s)
- Jiawei Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. Digital polymerase chain reaction technology - recent advances and future perspectives. LAB ON A CHIP 2018; 18:3717-3732. [PMID: 30402632 DOI: 10.1039/c8lc00990b] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has remained a "hot topic" in the last two decades due to its potential applications in cell biology, genetic engineering, and medical diagnostics. Various advanced techniques have been reported on sample dispersion, thermal cycling and output monitoring of digital PCR. However, a fully automated, low-cost and handheld digital PCR platform has not been reported in the literature. This paper attempts to critically evaluate the recent developments in techniques for sample dispersion, thermal cycling and output evaluation for dPCR. The techniques are discussed in terms of hardware simplicity, portability, cost-effectiveness and suitability for automation. The present paper also discusses the research gaps observed in each step of dPCR and concludes with possible improvements toward portable, low-cost and automatic digital PCR systems.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | | | | | | | | |
Collapse
|
10
|
Hui J, Gu Y, Zhu Y, Chen Y, Guo SJ, Tao SC, Zhang Y, Liu P. Multiplex sample-to-answer detection of bacteria using a pipette-actuated capillary array comb with integrated DNA extraction, isothermal amplification, and smartphone detection. LAB ON A CHIP 2018; 18:2854-2864. [PMID: 30105321 DOI: 10.1039/c8lc00543e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A pipette-actuated capillary array comb (PAAC) system operated on a smartphone-based hand-held device has been successfully developed for the multiplex detection of bacteria in a "sample-to-answer" manner. The PAAC consists of eight open capillaries inserted into a cylindrical plastic base with a piece of chitosan-modified glass filter paper embedded in each capillary. During the sample preparation, a PAAC was mounted into a 1 mL pipette tip with an enlarged opening and was operated with a 1 mL pipette for liquid handling. The cell lysate was drawn and expelled through the capillaries three times to facilitate the DNA capture on the embedded filter discs. Following washes with water, the loop-mediated isothermal amplification (LAMP) reagents were aspirated into the capillaries, in which the primers were pre-fixed with chitosan. After that, the PAAC was loaded into the smartphone-based device for a one-hour amplification at 65 °C and end-point detection of calcein fluorescence in the capillaries. The DNA capture efficiency of a 1.1 mm-diameter filter disc was determined to be 97% of λ-DNA and the coefficient of variation among the eight capillaries in the PAAC was only 2.2%. The multiplex detection of genomic DNA extracted from Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus provided limits of detection of 200, 500, and 500 copies, respectively, without any cross-contamination and cross reactions. "Sample-to-answer" detection of E. coli samples was successfully completed in 85 minutes, demonstrating a sensitivity of 200 cfu per capillary. The multiplex "sample-to-answer" detection, the streamlined operation, and the compact device should facilitate a broad range of applications of our PAAC system in point-of-care testing.
Collapse
Affiliation(s)
- Junhou Hui
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen J, Shao N, Hu J, Li R, Zhu Y, Zhang D, Guo S, Hui J, Liu P, Yang L, Tao SC. Visual Detection of Multiple Nucleic Acids in a Capillary Array. J Vis Exp 2017. [PMID: 29286383 DOI: 10.3791/56597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multi-target, short time, and resource-affordable methodologies for the detection of multiple nucleic acids in a single, easy to operate test are urgently needed in disease diagnosis, microbial monitoring, genetically modified organism (GMO) detection, and forensic analysis. We have previously described the platform called CALM (Capillary Array-based Loop-mediated isothermal amplification for Multiplex visual detection of nucleic acids). Herein, we describe improved fabrication and performance processes for this platform. Here, we apply a small, ready-to-use cassette assembled by capillary array for multiplex visual detection of nucleic acids. The capillary array is pre-treated into a hydrophobic and hydrophilic pattern before fixing loop-mediated isothermal amplification (LAMP) primer sets in capillaries. After assembly of the loading adaptor, LAMP reaction mixture is loaded and isolated into each capillary, due to capillary force by a single pipetting step. The LAMP reactions are performed in parallel in the capillaries. The results are visually read out by illumination with a hand-held UV flashlight. Using this platform, we demonstrate monitoring of 8 frequently appearing elements and genes in GMO samples with high specificity and sensitivity. In summary, the platform described herein is intended to facilitate the detection of multiple nucleic acids. We believe it will be widely applicable in fields where high-throughput nucleic acid analysis is required.
Collapse
Affiliation(s)
- Jianwei Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University; State Key Laboratory of Oncogenes and Related Genes; School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Ning Shao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University; State Key Laboratory of Oncogenes and Related Genes; School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Jiaying Hu
- Collaborative Innovation Center for Biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Rong Li
- Collaborative Innovation Center for Biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Yuanshou Zhu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University; State Key Laboratory of Oncogenes and Related Genes; School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Dabing Zhang
- Collaborative Innovation Center for Biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection
| | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University; State Key Laboratory of Oncogenes and Related Genes; School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Junhou Hui
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University
| | - Peng Liu
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University
| | - Litao Yang
- Collaborative Innovation Center for Biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University;
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University; State Key Laboratory of Oncogenes and Related Genes; School of Biomedical Engineering, Shanghai Jiao Tong University;
| |
Collapse
|
12
|
Shao N, Chen J, Hu J, Li R, Zhang D, Guo S, Hui J, Liu P, Yang L, Tao SC. Visual detection of multiple genetically modified organisms in a capillary array. LAB ON A CHIP 2017; 17:521-529. [PMID: 28092385 DOI: 10.1039/c6lc01330a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is an urgent need for rapid, low-cost multiplex methodologies for the monitoring of genetically modified organisms (GMOs). Here, we report a C[combining low line]apillary A[combining low line]rray-based L[combining low line]oop-mediated isothermal amplification for M[combining low line]ultiplex visual detection of nucleic acids (CALM) platform for the simple and rapid monitoring of GMOs. In CALM, loop-mediated isothermal amplification (LAMP) primer sets are pre-fixed to the inner surface of capillaries. The surface of the capillary array is hydrophobic while the capillaries are hydrophilic, enabling the simultaneous loading and separation of the LAMP reaction mixtures into each capillary by capillary forces. LAMP reactions in the capillaries are then performed in parallel, and the results are visually detected by illumination with a hand-held UV device. Using CALM, we successfully detected seven frequently used transgenic genes/elements and five plant endogenous reference genes with high specificity and sensitivity. Moreover, we found that measurements of real-world blind samples by CALM are consistent with results obtained by independent real-time PCRs. Thus, with an ability to detect multiple nucleic acids in a single easy-to-operate test, we believe that CALM will become a widely applied technology in GMO monitoring.
Collapse
Affiliation(s)
- Ning Shao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaying Hu
- Collaborative Innovation center for biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rong Li
- Collaborative Innovation center for biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dabing Zhang
- Collaborative Innovation center for biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shujuan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhou Hui
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Liu
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Litao Yang
- Collaborative Innovation center for biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Josić D, Peršurić Ž, Rešetar D, Martinović T, Saftić L, Kraljević Pavelić S. Use of Foodomics for Control of Food Processing and Assessing of Food Safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:187-229. [PMID: 28317605 DOI: 10.1016/bs.afnr.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food chain, food safety, and food-processing sectors face new challenges due to globalization of food chain and changes in the modern consumer preferences. In addition, gradually increasing microbial resistance, changes in climate, and human errors in food handling remain a pending barrier for the efficient global food safety management. Consequently, a need for development, validation, and implementation of rapid, sensitive, and accurate methods for assessment of food safety often termed as foodomics methods is required. Even though, the growing role of these high-throughput foodomic methods based on genomic, transcriptomic, proteomic, and metabolomic techniques has yet to be completely acknowledged by the regulatory agencies and bodies. The sensitivity and accuracy of these methods are superior to previously used standard analytical procedures and new methods are suitable to address a number of novel requirements posed by the food production sector and global food market.
Collapse
Affiliation(s)
- D Josić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia.
| | - Ž Peršurić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - D Rešetar
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - T Martinović
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - L Saftić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - S Kraljević Pavelić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| |
Collapse
|
14
|
Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1745-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Xu Y, Yan H, Zhang Y, Jiang K, Lu Y, Ren Y, Wang H, Wang S, Xing W. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification. LAB ON A CHIP 2015; 15:2826-2834. [PMID: 26016439 DOI: 10.1039/c5lc00244c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.
Collapse
Affiliation(s)
- Youchun Xu
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang X, Shao N, Jing W, Tao S, Liu S, Sui G. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta 2014; 122:246-50. [DOI: 10.1016/j.talanta.2014.01.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
17
|
Khodakov DA, Ellis AV. Recent developments in nucleic acid identification using solid-phase enzymatic assays. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1167-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Shao N, Jiang SM, Zhang M, Wang J, Guo SJ, Li Y, Jiang HW, Liu CX, Zhang DB, Yang LT, Tao SC. MACRO: a combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms. Anal Chem 2014; 86:1269-76. [PMID: 24359455 DOI: 10.1021/ac403630a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The monitoring of genetically modified organisms (GMOs) is a primary step of GMO regulation. However, there is presently a lack of effective and high-throughput methodologies for specifically and sensitively monitoring most of the commercialized GMOs. Herein, we developed a multiplex amplification on a chip with readout on an oligo microarray (MACRO) system specifically for convenient GMO monitoring. This system is composed of a microchip for multiplex amplification and an oligo microarray for the readout of multiple amplicons, containing a total of 91 targets (18 universal elements, 20 exogenous genes, 45 events, and 8 endogenous reference genes) that covers 97.1% of all GM events that have been commercialized up to 2012. We demonstrate that the specificity of MACRO is ~100%, with a limit of detection (LOD) that is suitable for real-world applications. Moreover, the results obtained of simulated complex samples and blind samples with MACRO were 100% consistent with expectations and the results of independently performed real-time PCRs, respectively. Thus, we believe MACRO is the first system that can be applied for effectively monitoring the majority of the commercialized GMOs in a single test.
Collapse
Affiliation(s)
- Ning Shao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Deshpande A, White PS. Multiplexed nucleic acid-based assays for molecular diagnostics of human disease. Expert Rev Mol Diagn 2014; 12:645-59. [DOI: 10.1586/erm.12.60] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Abstract
Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules.
Collapse
|
21
|
Profiling in situ microbial community structure with an amplification microarray. Appl Environ Microbiol 2012; 79:799-807. [PMID: 23160129 DOI: 10.1128/aem.02664-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO(3)(-)) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO(3), but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications.
Collapse
|
22
|
Chandler DP, Bryant L, Griesemer SB, Gu R, Knickerbocker C, Kukhtin A, Parker J, Zimmerman C, George KS, Cooney CG. Integrated Amplification Microarrays for Infectious Disease Diagnostics. MICROARRAYS 2012; 1:107-24. [PMID: 27605339 PMCID: PMC5003434 DOI: 10.3390/microarrays1030107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.
Collapse
Affiliation(s)
- Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Lexi Bryant
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Sara B Griesemer
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Rui Gu
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | | - Alexander Kukhtin
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Jennifer Parker
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Cynthia Zimmerman
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Christopher G Cooney
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| |
Collapse
|