1
|
Zheng W, Xie R, Liang X, Liang Q. Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105867. [PMID: 35072338 DOI: 10.1002/smll.202105867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Biofabrication technologies are of importance for the construction of organ models and functional tissue replacements. Microfluidic manipulation, a promising biofabrication technique with micro-scale resolution, can not only help to realize the fabrication of specific microsized structures but also build biomimetic microenvironments for biofabricated tissues. Therefore, microfluidic manipulation has attracted attention from researchers in the manipulation of particles and cells, biochemical analysis, tissue engineering, disease diagnostics, and drug discovery. Herein, biofabrication based on microfluidic manipulation technology is reviewed. The application of microfluidic manipulation technology in the manufacturing of biomaterials and biostructures with different dimensions and the control of the microenvironment is summarized. Finally, current challenges are discussed and a prospect of microfluidic manipulation technology is given. The authors hope this review can provide an overview of microfluidic manipulation technologies used in biofabrication and thus steer the current efforts in this field.
Collapse
Affiliation(s)
- Wenchen Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruoxiao Xie
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong, 510006, China
| | - Qionglin Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
AmbroŽič R, Plazl I. Development of an electrically responsive hydrogel for programmable in situ immobilization within a microfluidic device. SOFT MATTER 2021; 17:6751-6764. [PMID: 34195747 DOI: 10.1039/d1sm00510c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel microfluidic channel device with programmable in situ formation of a hydrogel 3D network was designed. A biocompatible hybrid material consisting of iron ion-crosslinked alginate was used as the active porous medium. The sol-gel transition of the alginate was controlled by the oxidation state of Fe ions and regulated by an external electrical signal through an integrated gold plate electrode. The SEM images, FT-IR analysis, and rheological test demonstrated that homogeneous yet programmable hydrogel films were formed. The higher the concentration of the crosslinker (Fe(iii)), the smaller the pore and mesh size of the hydrogel. Moreover, the hydrogel thickness and volume were tailored by controlling the deposition time and the strength of electric current density. The as-prepared system was employed as an active medium for immobilization of target molecules, using BSA as a drug-mimicking protein. The reductive potential (activated by switching the current direction) caused dissolution of the hydrogel and consequently the release of BSA and Fe. The diffusion of the entrapped molecules was optimally adjusted by varying the dissolution conditions and the initial formulations. Finally, the altering electrical conditions confirm the programmable nature of the electrically responsive material and highlight its wide-ranging application potential.
Collapse
Affiliation(s)
- Rok AmbroŽič
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Igor Plazl
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia. and Chair of Microprocess Engineering and Technology - COMPETE, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
|
4
|
Zhou W, Le J, Chen Y, Cai Y, Hong Z, Chai Y. Recent advances in microfluidic devices for bacteria and fungus research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Decock J, Schlenk M, Salmon JB. In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels. LAB ON A CHIP 2018; 18:1075-1083. [PMID: 29488541 DOI: 10.1039/c7lc01342f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the fabrication of highly permeable membranes in poly(ethylene glycol) diacrylate (PEGDA) channels, for investigating ultra- or micro-filtration, at the microfluidic scale. More precisely, we used a maskless UV projection setup to photo-pattern PEG-based hydrogel membranes on a large scale (mm-cm), and with a spatial resolution of a few microns. We show that these membranes can withstand trans-membrane pressure drops of up to 7 bar without any leakage, thanks to the strong anchoring of the hydrogel to the channel walls. We also report in situ measurements of the Darcy permeability of these membranes, as a function of the deposited energy during photo-polymerization, and their formulation composition. We show that the use of PEG chains as porogens, as proposed in [Lee et al., Biomacromolecules, 2010, 11, 3316], significantly increases the porosity of the hydrogels, up to Darcy permeabilities of about 1.5 × 10-16 m2, while maintaining the strong mechanical stability of the membranes. We finally illustrate the opportunities offered by this technique, by investigating frontal filtration of colloidal dispersions in a straight microfluidic channel.
Collapse
Affiliation(s)
- Jérémy Decock
- CNRS, Solvay, LOF, UMR 5258, Univ. Bordeaux, F-33600 Pessac, France.
| | | | | |
Collapse
|
6
|
Rosentsvit L, Park S, Yossifon G. Effect of advection on transient ion concentration-polarization phenomenon. Phys Rev E 2017; 96:023104. [PMID: 28950496 DOI: 10.1103/physreve.96.023104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 06/07/2023]
Abstract
Here, we studied the effect of advection on the transient ion concentration-polarization phenomenon in microchannel-membrane systems. Specifically, the temporal evolution of the depletion layer in a system that supports net flow rates with varying Péclet values was examined. Experiments complemented with simplified analytical one-dimensional semi-infinite modeling and numerical simulations demonstrated either suppression or enhancement of the depletion layer propagation against or with the direction of the net flow, respectively. Of particular interest was the third-species fluorescent dye ion concentration-polarization dynamics which was further explained using two-dimensional numerical simulations that accounted for the device complex geometry.
Collapse
Affiliation(s)
- Leon Rosentsvit
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 3200000, Israel
| | - Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 3200000, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 3200000, Israel
| |
Collapse
|
7
|
Choi E, Maeng B, Lee JH, Chang HK, Park J. In vitro quantitative analysis of Salmonella typhimurium preference for amino acids secreted by human breast tumor. MICRO AND NANO SYSTEMS LETTERS 2016. [DOI: 10.1186/s40486-016-0033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Investigation of the Influence of Glucose Concentration on Cancer Cells by Using a Microfluidic Gradient Generator without the Induction of Large Shear Stress. MICROMACHINES 2016; 7:mi7090155. [PMID: 30404324 PMCID: PMC6189924 DOI: 10.3390/mi7090155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
A microfluidic device capable of precise chemical control is helpful to mimic tumor microenvironments in vitro, which are closely associated with malignant progression, including metastasis. Cancer cells under a concentration gradient of oxygen and other sustenance materials inside a tumor in vivo have recently been reported to increase the probability of metastasis. The influence of glucose concentration on cancer cells has not been measured well, whereas that of oxygen concentration has been thoroughly examined using microfluidic devices. This is because glucose concentrations can be controlled using microfluidic concentration gradient generators, which trade off temporal stability of the glucose concentration and shear stress on the cells; by contrast, oxygen concentration can be easily controlled without microfluidic device-induced shear stresses. To study cell division and migration responses as a function of glucose concentration, we developed a microfluidic device to observe cell behaviors under various chemical conditions. The device has small-cross-section microchannels for generating a concentration gradient and a large-cross-section chamber for cell culture. With this design, the device can achieve both a cell culture with sufficiently low shear stress on cell activity and a stable glucose concentration gradient. Experiments revealed that a low glucose concentration increased the total migration length of HeLa cells and that HeLa cells under a glucose concentration gradient exhibit random motion rather than chemotaxis.
Collapse
|
9
|
Wang M, Wang J, Wang Y, Liu C, Liu J, Qiu Z, Xu Y, Lincoln SF, Guo X. Synergetic catalytic effect of α-cyclodextrin on silver nanoparticles loaded in thermosensitive hydrogel. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3867-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Sun YM, Wang W, Wei YY, Deng NN, Liu Z, Ju XJ, Xie R, Chu LY. In situ fabrication of a temperature- and ethanol-responsive smart membrane in a microchip. LAB ON A CHIP 2014; 14:2418-2427. [PMID: 24874275 DOI: 10.1039/c4lc00273c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report a simple and versatile strategy for the in situ fabrication of nanogel-containing smart membranes in microchannels of microchips. The fabrication approach is demonstrated by the in situ formation of a chitosan membrane containing poly(N-isopropylacrylamide) (PNIPAM) nanogels in a microchannel of a microchip. The PNIPAM nanogels, that allow temperature- and ethanol-responsive swelling-shrinking volume transitions, serve as smart nanovalves for controlling the diffusional permeability of solutes across the membrane. Such self-regulation of the membrane permeability is investigated by using fluorescein isothiocyanate (FITC) as a tracer molecule. This approach provides a promising strategy for the in situ fabrication of versatile nanogel-containing smart membranes within microchips via simply changing the functional nanogels for developing micro-scale detectors, sensors, separators and controlled release systems.
Collapse
Affiliation(s)
- Yi-Meng Sun
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li B, Qiu Y, Glidle A, McIlvenna D, Luo Q, Cooper J, Shi HC, Yin H. Gradient microfluidics enables rapid bacterial growth inhibition testing. Anal Chem 2014; 86:3131-7. [PMID: 24548044 PMCID: PMC3988682 DOI: 10.1021/ac5001306] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Abstract
Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).
Collapse
Affiliation(s)
- Bing Li
- Environmental
Simulation and Pollution Control State-Key Joint Laboratory, School
of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- Environmental
Simulation and Pollution Control State-Key Joint Laboratory, School
of Environment, Tsinghua University, Beijing 100084, China
| | - Andrew Glidle
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K.
| | - David McIlvenna
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K.
| | - Qian Luo
- State
Key Laboratory of Environmental Aquatic Chemistry, Research Center
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Jon Cooper
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K.
| | - Han-Chang Shi
- Environmental
Simulation and Pollution Control State-Key Joint Laboratory, School
of Environment, Tsinghua University, Beijing 100084, China
| | - Huabing Yin
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K.
| |
Collapse
|
12
|
Riahi R, Yang YL, Kim H, Jiang L, Wong PK, Zohar Y. A microfluidic model for organ-specific extravasation of circulating tumor cells. BIOMICROFLUIDICS 2014; 8:024103. [PMID: 24803959 PMCID: PMC3987064 DOI: 10.1063/1.4868301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/28/2014] [Indexed: 05/08/2023]
Abstract
Circulating tumor cells (CTCs) are the principal vehicle for the spread of non-hematologic cancer disease from a primary tumor, involving extravasation of CTCs across blood vessel walls, to form secondary tumors in remote organs. Herein, a polydimethylsiloxane-based microfluidic system is developed and characterized for in vitro systematic studies of organ-specific extravasation of CTCs. The system recapitulates the two major aspects of the in vivo extravasation microenvironment: local signaling chemokine gradients in a vessel with an endothelial monolayer. The parameters controlling the locally stable chemokine gradients, flow rate, and initial chemokine concentration are investigated experimentally and numerically. The microchannel surface treatment effect on the confluency and adhesion of the endothelial monolayer under applied shear flow has also been characterized experimentally. Further, the conditions for driving a suspension of CTCs through the microfluidic system are discussed while simultaneously maintaining both the local chemokine gradients and the confluent endothelial monolayer. Finally, the microfluidic system is utilized to demonstrate extravasation of MDA-MB-231 cancer cells in the presence of CXCL12 chemokine gradients. Consistent with the hypothesis of organ-specific extravasation, control experiments are presented to substantiate the observation that the MDA-MB-231 cell migration is attributed to chemotaxis rather than a random process.
Collapse
Affiliation(s)
- R Riahi
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85719, USA
| | - Y L Yang
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85719, USA
| | - H Kim
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, Arizona 85719, USA
| | - L Jiang
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85719, USA ; College of Optical Science, The University of Arizona, Tucson, Arizona 85719, USA
| | - P K Wong
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85719, USA ; Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85719, USA ; BIO5 Institute, The University of Arizona, Tucson, Arizona 85719, USA
| | - Y Zohar
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85719, USA ; Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85719, USA ; BIO5 Institute, The University of Arizona, Tucson, Arizona 85719, USA ; Arizona Cancer Center, The University of Arizona, Tucson, Arizona 85719, USA
| |
Collapse
|
13
|
Hyphenation of optimized microfluidic sample preparation with nano liquid chromatography for faster and greener alkaloid analysis. Anal Chim Acta 2013; 797:50-6. [DOI: 10.1016/j.aca.2013.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
|
14
|
Lee HS, Chu WK, Zhang K, Huang X. Microfluidic devices with permeable polymer barriers for capture and transport of biomolecules and cells. LAB ON A CHIP 2013; 13:3389-97. [PMID: 23828542 PMCID: PMC3818112 DOI: 10.1039/c3lc50280e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report a method for fabricating permeable polymer microstructure barriers in polydimethylsiloxane (PDMS) microfluidic devices and the use of the devices to capture and transport DNA and cells. The polymer microstructure in a desired location in a fluidic channel is formed in situ by the polymerization of acrylamide and polyethylene diacrylate cross-linker (PEG-DA) monomer in a solution which is trapped in the location using a pair of PDMS valves. The porous polymer microstructure provides a mechanical barrier to convective fluid flow in the channel or between two microfluidic chambers while it still conducts ions or small charged species under an electric field, allowing for the rapid capture and transport of biomolecules and cells by electrophoresis. We have demonstrated the application of the devices for the rapid capture and efficient release of bacteriophage λ genomic DNA, solution exchange and for the transport and capture of HeLa cells. Our devices will enable the multi-step processing of biomolecules and cells or individual cells within a single microfluidic chamber.
Collapse
Affiliation(s)
- Ho Suk Lee
- Department of Electrical and Computer Engineering, University of University of California, San Diego, La Jolla, CA 92093
| | - Wai Keung Chu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | - Xiaohua Huang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| |
Collapse
|
15
|
Wu J, Wu X, Lin F. Recent developments in microfluidics-based chemotaxis studies. LAB ON A CHIP 2013; 13:2484-99. [PMID: 23712326 DOI: 10.1039/c3lc50415h] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
16
|
Lim JM, Ahn JY, Lee ST. Stem cell maintenance in a different niche. Clin Exp Reprod Med 2013; 40:47-54. [PMID: 23875159 PMCID: PMC3714428 DOI: 10.5653/cerm.2013.40.2.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023] Open
Abstract
To overcome the difficulty of controlling stem cell fate and function in applications to regenerative medicine, a number of alternative approaches have been made. Recent reports demonstrate that a non-cellular niche modulating the biophysical microenvironment with chemical factors can support stem cell self-renewal. In our previous studies, early establishment was executed to optimize biophysical factors and it was subsequently found that the microgeometry of the extracellular matrix made huge differences in stem cell behavior and phenotype. We review here a three-dimensional, non-cellular niche designed to support stem cell self-renewal. The characteristics of stem cells under the designed system are further discussed.
Collapse
Affiliation(s)
- Jeong Mook Lim
- WCU Biomodulation Program, Seoul National University, Seoul, Korea. ; Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
17
|
Lee Y, Bae JW, Oh DH, Park KM, Chun YW, Sung HJ, Park KD. In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. J Mater Chem B 2013; 1:2407-2414. [DOI: 10.1039/c3tb00578j] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR. Microfluidic devices for cell cultivation and proliferation. BIOMICROFLUIDICS 2013; 7:51502. [PMID: 24273628 PMCID: PMC3829894 DOI: 10.1063/1.4826935] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.
Collapse
|
19
|
Choi E, Chang HK, Lim CY, Kim T, Park J. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. LAB ON A CHIP 2012; 12:3968-75. [PMID: 22907568 DOI: 10.1039/c2lc40450h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a robust microfluidic platform for the stable generation of multiple chemical gradients simultaneously using in situ self-assembly of particles in microchannels. This proposed device enables us to generate stable and reproducible diffusion-based gradients rapidly without convection flow: gradients are stabilized within 5 min and are maintained steady for several hours. Using this device, we demonstrate the dynamic position control of bacteria by introducing the sequential directional change of chemical gradients. Green Fluorescent Protein (GFP)-expressing bacterial cells, allowing quantitative monitoring, show not only tracking motion according to the directional control of chemical gradients, but also the gradual loss of sensitivity when exposed to the sequential attractants because of receptor saturation. In addition, the proposed system can be used to study the preferential chemotaxis assay of bacteria toward multiple chemical sources, since it is possible to produce multiple chemical gradients in the main chamber; aspartate induces the most preferential chemotaxis over galactose and ribose. The microfluidic device can be easily fabricated with a simple and cost effective process based on capillary pressure and evaporation for particle assembly. The assembled particles create uniform porous membranes in microchannels and its porosity can be easily controlled with different size particles. Moreover, the membrane is biocompatible and more robust than hydrogel-based porous membranes. The proposed system is expected to be a useful tool for the characterization of bacterial responses to various chemical sources, screening of bacterial cells, synthetic biology and understanding many cellular activities.
Collapse
Affiliation(s)
- Eunpyo Choi
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea
| | | | | | | | | |
Collapse
|
20
|
Edalat F, Sheu I, Manoucheri S, Khademhosseini A. Material strategies for creating artificial cell-instructive niches. Curr Opin Biotechnol 2012; 23:820-5. [PMID: 22705446 DOI: 10.1016/j.copbio.2012.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/26/2022]
Abstract
There has been a tremendous growth in the use of biomaterials serving as cellular scaffolds for tissue engineering applications. Recently, advanced material strategies have been developed to incorporate structural, mechanical, and biochemical signals that can interact with the cell and the in vivo environment in a biologically specific manner. In this article, strategies such as the use of composite materials and material processing methods to better mimic the extracellular matrix, integration of mechanical and topographical properties of materials in scaffold design, and incorporation of biochemical cues such as cytokines in tethered, soluble, or time-released forms are presented. Finally, replication of the dynamic forces and biochemical gradients of the in vivo cellular environment through the use of microfluidics is highlighted.
Collapse
Affiliation(s)
- Faramarz Edalat
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|