1
|
In Vivo Production of Small Recombinant RNAs Embedded in 5S rRNA-Derived Protective Scaffold. Methods Mol Biol 2021; 2323:75-97. [PMID: 34086275 DOI: 10.1007/978-1-0716-1499-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preparative synthesis of RNA is a challenging task that is usually accomplished by either chemical or enzymatic polymerization of ribonucleotides in vitro. Herein, we describe an alternative approach in which RNAs of interest are expressed as a fusion with a 5S rRNA-derived scaffold. The scaffold provides protection against cellular ribonucleases resulting in cellular accumulations comparable to those of regular ribosomal RNAs. After isolation of the chimeric RNA from the cells, the scaffold can be removed, if necessary, by deoxyribozyme-catalyzed cleavage followed by preparative electrophoretic separation of the reaction products. The protocol is designed for sustained production of high quality RNA on the milligram scale.
Collapse
|
2
|
Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int J Pharm 2020; 585:119513. [DOI: 10.1016/j.ijpharm.2020.119513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
|
3
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
4
|
A Novel Small RNA-Cleaving Deoxyribozyme with a Short Binding Arm. Sci Rep 2019; 9:8224. [PMID: 31160698 PMCID: PMC6546695 DOI: 10.1038/s41598-019-44750-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/17/2019] [Indexed: 01/12/2023] Open
Abstract
Deoxyribozymes capable of catalyzing sequence-specific RNA cleavage have found broad applications in biotechnology, DNA computing and environmental sensing. Among these, deoxyribozyme 8–17 is the most common small DNA motif capable of catalyzing RNA cleavage. However, the extent to which other DNA molecules with similar catalytic motifs exist remains elusive. Here we report a novel RNA-cleaving deoxyribozyme called 10–12opt that functions with an equally small catalytic motif and an unusually short binding arm. This deoxyribozyme contains a 14-nucleotide catalytic core that preferentially catalyzes RNA cleavage at UN dinucleotide junctions (kobs = 0.9 h−1 for UU cleavage). Surprisingly, the left binding arm contains only three nucleotides and forms two canonical base pairs with the RNA substrate. Mutational analysis reveals that a riboguanosine residue 3-nucleotide downstream of cleavage site must not form canonical base pairing for the optimal catalysis, and this nucleobase likely participates in catalysis with its carbonyl O6 atom. Furthermore, we demonstrate that deoxyribozyme 10–12opt can be utilized to cleave certain microRNA sequences which are not preferentially cleaved by 8–17. Together, these results suggest that this novel RNA-cleaving deoxyribozyme forms a distinct catalytic structure than 8–17 and that sequence space may contain additional examples of DNA molecules that can cleave RNA at site-specific locations.
Collapse
|
5
|
Liu M, Chang D, Li Y. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. Acc Chem Res 2017; 50:2273-2283. [PMID: 28805376 DOI: 10.1021/acs.accounts.7b00262] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA-based enzymes, or DNAzymes, are not known to exist in Nature but can be isolated from random-sequence DNA pools using test tube selection techniques. Since the report of the first DNAzyme in 1994, many catalytic DNA molecules for catalyzing wide-ranging chemical transformations have been isolated and studied. Our laboratory has a keen interest in searching for diverse DNAzymes capable of cleaving RNA-containing substrates, determining their sequence requirements and structural properties, and examining their potential as biosensors. This Account begins with the description of an accidental discovery on the sequence adaptability of a small DNAzyme known as "8-17", when we performed 16 parallel selections to search for DNAzymes that targeted each and every possible dinucleotide junction of RNA for cleavage. DNAzyme 8-17 dominated all the selection pools targeting purine-containing junctions. In-depth sequence analysis revealed that 8-17 could manifest itself in many sequence options defined by the requirement of four absolutely conserved nucleotides. This study also exposed the fact that 8-17 had poor activity toward pyrimidine-pyrimidine junctions. With this information in hand, we proceeded to the discovery of diverse non-8-17 DNAzymes that exhibited robust catalytic activity under physiological conditions. These DNAzymes were found to universally interact with their substrates through two Watson-Crick binding arms and have a catalytic core of varying length and secondary-structure complexity. RNA-cleaving DNAzymes were also isolated to function at acidic conditions (pH 3-5), and these molecules exhibited intriguing pH profiles, with the highest activity precisely matching the pH used for their selection. Interestingly, these DNAzymes appear to use non-Watson-Crick interactions in defining their structures. More recently, we have embarked on the development of ligand-responsive RNA-cleaving fluorogenic DNAzymes that can recognize specific bacterial pathogens, such as Escherichia coli and Clostridium difficile, using a method that does not require a priori identification of a specific biomarker. Instead, the crude extracellular mixture as a whole is used as the target to drive the DNAzyme isolation. High recognition specificity can be achieved with a double-selection approach in which a DNA library is negatively selected against the cellular mixture prepared from unintended bacteria, followed by positive selection against the same mixture derived from a specific species or strain of bacterial pathogen. Finally, we have shown that DNAzymes' compatibility with DNA replication can benefit the design of amplification mechanisms that uniquely link the action of RNA-cleaving DNAzymes to rolling circle amplification, an isothermal DNA amplification technique. These methods are well suited for translating the target-binding and cleavage activity of an analyte-activated RNA-cleaving DNAzyme into the production of massive amounts of DNA amplicons to achieve ultrahigh detection sensitivity. Given the high chemical stability of DNA, our ability to discover catalytic DNA sequences by simultaneously evaluating as many as 1016 different DNA sequences, the accessibility to diverse RNA-cleaving DNAzymes in a single DNA pool, and the availability of methods for designing simple biosensors that incorporate RNA-cleaving DNAzymes, we believe we are moving closer to employing RNA-cleaving DNAzymes for exciting applications, such as point of care diagnostics or field detection of environmental toxins.
Collapse
Affiliation(s)
- Meng Liu
- Department
of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute
of Infectious Disease Research, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- School
of Environmental Science and Technology, Key Laboratory of Industrial
Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Dingran Chang
- Department
of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute
of Infectious Disease Research, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department
of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute
of Infectious Disease Research, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
6
|
The Optimization and Characterization of an RNA-Cleaving Fluorogenic DNAzyme Probe for MDA-MB-231 Cell Detection. SENSORS 2017; 17:s17030650. [PMID: 28335559 PMCID: PMC5375936 DOI: 10.3390/s17030650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers in females worldwide and lacks specific biomarkers for early detection. In a previous study, we obtained a selective RNA-cleaving Fluorogenic DNAzyme (RFD) probe against MDA-MB-231 cells, typical breast cancer cells, through the systematic evolution of ligands by exponential process (SELEX). To improve the performance of this probe for actual application, we carried out a series of optimization experiments on the pH value of a reaction buffer, the type and concentration of cofactor ions, and sequence minimization. The length of the active domain of the probe reduced to 25 nt from 40 nt after optimization, which was synthesized more easily and economically. The detection limit of the optimized assay system was 2000 MDA-MB-231 cells in 30 min, which is more sensitive than the previous one (almost 5000 cells). The DNAzyme probe was also capable of distinguishing MDA-MB-231 cell specifically from 3 normal cells and 10 other tumor cells. This probe with high sensitivity, selectivity, and economic efficiency enhances the feasibility for further clinical application in breast cancer diagnosis. Herein, we developed an optimization system to produce a general strategy to establish an easy-to-use DNAzyme-based assay for other targets.
Collapse
|
7
|
Pan J, Cha TG, Li F, Chen H, Bragg NA, Choi JH. Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers. SCIENCE ADVANCES 2017; 3:e1601600. [PMID: 28116353 PMCID: PMC5249260 DOI: 10.1126/sciadv.1601600] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/30/2016] [Indexed: 05/23/2023]
Abstract
DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers' small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s-1) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps.
Collapse
|
8
|
Zhang W, Feng Q, Chang D, Tram K, Li Y. In vitro selection of RNA-cleaving DNAzymes for bacterial detection. Methods 2016; 106:66-75. [DOI: 10.1016/j.ymeth.2016.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/23/2022] Open
|
9
|
Hwang K, Hosseinzadeh P, Lu Y. Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes. Inorganica Chim Acta 2016; 452:12-24. [PMID: 27695134 DOI: 10.1016/j.ica.2016.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review summarizes research into the metal-binding properties of catalytic DNAzymes, towards the goal of understanding the structural properties leading to metal ion specificity. Progress made and insight gained from a range of biochemical and biophysical techniques are covered, and promising directions for future investigations are discussed.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
10
|
Räz MH, Hollenstein M. Probing the effect of minor groove interactions on the catalytic efficiency of DNAzymes 8-17 and 10-23. MOLECULAR BIOSYSTEMS 2016; 11:1454-61. [PMID: 25854917 DOI: 10.1039/c5mb00102a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNAzymes (Dz) 8-17 and 10-23 are two widely studied and well-characterized RNA-cleaving DNA catalysts. In an effort to further improve the understanding of the fragile interactions and dynamics of the enzymatic mechanism, this study examines the catalytic efficiency of minimally modified DNAzymes. Five single mutants of Dz8-17 and Dz10-23 were prepared by replacing the adenine residues in the corresponding catalytic cores with 3-deazaadenine units. Kinetic assays were used to assess the effect on the catalytic activity and thereby identify the importance of hydrogen bonding that arises from the N3 atoms. The results suggest that modifications at A15 and A15.0 of Dz8-17 have a significant influence and show a reduction in catalytic activity. Modification at each location in Dz10-23 results in a decrease of the observed rate constants, with A12 appearing to be the most affected with a reduction of ∼80% of kobs and ∼25% of the maximal cleavage rate compared to the wild-type DNAzyme. On the other hand, modification of A12 in Dz8-17 showed an ∼130% increase in kobs, thus unraveling a new potential site for the introduction of chemical modifications. A pH-profile analysis showed that the chemical cleavage step is rate-determining, regardless of the presence and/or location of the mutation. These findings point towards the importance of the N3-nitrogens of certain adenine nucleotides located within the catalytic cores of the DNAzymes for efficient catalytic activity and further suggest that they might directly partake in maintaining the appropriate tertiary structure. Therefore, it appears that minor groove interactions constitute an important feature of DNAzymes as well as ribozymes.
Collapse
Affiliation(s)
- Michael H Räz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | | |
Collapse
|
11
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
12
|
Cha TG, Pan J, Chen H, Robinson HN, Li X, Mao C, Choi JH. Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. J Am Chem Soc 2015; 137:9429-37. [PMID: 26151085 DOI: 10.1021/jacs.5b05522] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tae-Gon Cha
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jing Pan
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haorong Chen
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Heather N. Robinson
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiang Li
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Stepanov VG, Fox GE. In Vivo Production of Small Recombinant RNAs Embedded in a 5S rRNA-Derived Protective Scaffold. Methods Mol Biol 2015; 1316:45-65. [PMID: 25967052 DOI: 10.1007/978-1-4939-2730-2_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Preparative synthesis of RNA is a challenging task that is usually accomplished using either chemical or enzymatic polymerization of ribonucleotides in vitro. Herein, we describe an alternative approach in which RNAs of interest are expressed as a fusion with a 5S rRNA-derived scaffold. The scaffold provides protection against cellular ribonucleases resulting in cellular accumulations comparable to those of regular ribosomal RNAs. After isolation of the chimeric RNA from the cells, the scaffold can be removed if necessary by deoxyribozyme-catalyzed cleavage followed by preparative electrophoretic separation of the cleavage reaction products. The protocol is designed for sustained production of high quality RNA on the milligram scale.
Collapse
Affiliation(s)
- Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, 3201 Cullen Blvd, Houston, TX, 77204-5001, USA,
| | | |
Collapse
|
14
|
Gao J, Shimada N, Maruyama A. Enhancement of deoxyribozyme activity by cationic copolymers. Biomater Sci 2015. [DOI: 10.1039/c4bm00256c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic copolymer enhanced DNAzyme activity.
Collapse
Affiliation(s)
- Jueyuan Gao
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Naohiko Shimada
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Atsushi Maruyama
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|