1
|
Palma E, Içhedef C, Fernandes C, Belchior A, Raposinho P, Gano L, Miranda A, Moreira D, Lourenço P, Cruz C, Pires AS, Botelho MF, Paulo A. Targeting of G-quadruplex DNA with 99mTc(I)/Re(I) Tricarbonyl Complexes Carrying Pyridostatin Derivatives. Chemistry 2024; 30:e202400285. [PMID: 38386665 DOI: 10.1002/chem.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
The main goal of this work was to elucidate the potential relevance of (radio)metal chelates of 99mTc and Re targeting G-quadruplex structures for the design of new tools for cancer theranostics. 99mTc provides the complexes with the ability to perform single-photon-emission computed tomography imaging studies, while the Re complexes should act as anticancer agents upon interaction with specific G4 DNA or RNA structures present in tumor tissues. Towards this goal, we have developed isostructural 99mTc(I) and Re(I) tricarbonyl complexes anchored by a pyrazolyl-diamine (Pz) chelator carrying a pendant pyridostatin (PDS) fragment as the G4-binding motif. The interaction of the PDF-Pz-Re (8) complex with different G4-forming oligonucleotides was studied by circular dichroism, fluorescence spectroscopy and FRET-melting assays. The results showed that the Re complex retained the ability to bind and stabilize G4-structures from different DNA or RNA sequences, namely those present on the SRC proto-oncogene and telomeric RNA (TERRA sequence). PDF-Pz-Re (8) showed low to moderate cytotoxicity in PC3 and MCF-7 cancer cell lines, as typically observed for G4-binders. Biodistribution studies of the congener PDF-Pz-99mTc (12) in normal mice showed that the complex undergoes a fast blood clearance with a predominant hepatobiliary excretion, pointing also for a high in vitro stability.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Cigdem Içhedef
- Ege University, Institute of Nuclear Sciences, 35100, Izmir, Turkey
| | - Célia Fernandes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Ana Belchior
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Lurdes Gano
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - David Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Pedro Lourenço
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
2
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Grus T, Lahnif H, Bausbacher N, Miederer M, Rösch F. DOTA Conjugate of Bisphosphonate and PSMA-Inhibitor: A Promising Combination for Therapy of Prostate Cancer Related Bone Metastases. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:892147. [PMID: 39354968 PMCID: PMC11440839 DOI: 10.3389/fnume.2022.892147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 10/03/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancer types worldwide. 90% of men with late stage PCa will develop bone metastases. Since the expression level of PSMA (prostate-specific membrane antigen) in bone metastases can vary significantly, a compound is being searched for which accumulates in bone metastases independently of PSMA level. With DOTA-L-Lys(SA.Pam)-PSMA-617, we present a compound that, in addition to a PSMA inhibitor as a target vector, also contains a bisphosphonate that is established as a bone tracer and thus combines the advantages of PSMA targeting and bone targeting. This is a class of small molecules combining targeting of two different targets with the potential advantages for treatment of biologically heterogeneous bone metastasis from prostate cancer. The molecule can be labeled with lutetium-177 and used for the therapy of PCa-related bone metastases. DOTA-L-Lys(SA.Pam)-PSMA-617 was synthesized and radiolabelled in 1 M ammonium acetate buffer pH 5.5 at 95°C. Different amounts of precursor were evaluated. Complex stability was evaluated in three different media. LogD7.4 value was evaluated via the determination of the equilibrium distribution in a PBS/n-octanol mixture. A hydroxyapatite binding assay was used to evaluate the potential binding to bone metastases. In vitro affinity was determined and Ki value was evaluated. To evaluate the binding potential in mice, ex vivo biodistribution studies were carried out in LNCaP tumor-bearing Balb/c mice. [177Lu]Lu-labeling of DOTA-L-Lys(SA.Pam)-PSMA-617 showed quantitative RCY within 10 min and high complex stability over 14 days. The lipophilicity of the labeled compound was similar to the lipophilicity of the reference compound [177Lu]Lu-PSMA-617 and showed an excellent and selective HAP binding of 98.2 ± 0.11%. With a Ki of 42.3 ± 7.7 nM PSMA binding affinity is lower in comparison to [177Lu]Lu-PSMA-617. First ex vivo biodistribution studies with LNCaP tumor-bearing Balb/c mice showed a PSMA dependent tumor accumulation of 4.2 ± 0.7%ID/g and a femur accumulation of 3.4 ± 0.4%ID/g. [177Lu]Lu-DOTA-L-Lys(SA.Pam)-PSMA-617 is a promising compound for therapy of PCa related bone and tissue metastases. Accumulation on the bone metastases via two mechanisms also enables the treatment of bone metastases that show little or no PSMA expression.
Collapse
Affiliation(s)
- Tilmann Grus
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | - Hanane Lahnif
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
| | - Frank Rösch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Pazderová L, Benešová M, Havlíčková J, Vojtíčková M, Kotek J, Lubal P, Ullrich M, Walther M, Schulze S, Neuber C, Rammelt S, Pietzsch HJ, Pietzsch J, Kubíček V, Hermann P. Cyclam with a phosphinate-bis(phosphonate) pendant arm is a bone-targeting carrier of copper radionuclides. Dalton Trans 2022; 51:9541-9555. [PMID: 35670322 DOI: 10.1039/d2dt01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often slow down complex formation and decrease radiochemical yields. Nevertheless, their negative effect on complexation rates may be mitigated by using a suitable spacer between bis(phosphonate) and the macrocycle. To demonstrate the potential of bis(phosphonate) bearing macrocyclic ligands as a copper radioisotope carrier, we report the synthesis of a new cyclam derivative bearing a phosphinate-bis(phosphonate) pendant (H5te1PBP). The ligand showed a high selectivity to CuII over ZnII and NiII ions, and the bis(phosphonate) group was not coordinated in the CuII complex, strongly interacting with other metal ions in solution. The CuII complex formed quickly, in 1 s, at pH 5 and at a millimolar scale. The complexation rates significantly differed under a ligand or metal ion excess due to the formation of reaction intermediates differing in their metal-to-ligand ratio and protonation state, respectively. The CuII-te1PBP complex also showed a high resistance to acid-assisted hydrolysis (t1/2 2.7 h; 1 M HClO4, 25 °C) and was effectively adsorbed on the hydroxyapatite surface. H5te1PBP radiolabeling with [64Cu]CuCl2 was fast and efficient, with specific activities of approximately 30 GBq 64Cu per 1 μmol of ligand (pH 5.5, room temperature, 30 min). In a pilot experiment, we further demonstrated the excellent suitability of [64Cu]CuII-te1PBP for imaging active bone compartments by dedicated small animal PET/CT in healthy mice and subsequently in a rat femoral defect model, in direct comparison with [18F]fluoride. Moreover, [64Cu]CuII-te1PBP showed a higher uptake in critical bone defect regions. Therefore, our study highlights the potential of [64Cu]CuII-te1PBP as a PET radiotracer for evaluating bone healing in preclinical and clinical settings with a diagnostic value similar to that of [18F]fluoride, albeit with a longer half-life (12.7 h) than 18F (1.8 h), thereby enabling extended observation times.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Martina Benešová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic. .,Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Přemysl Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
5
|
Greifenstein L, Engelbogen N, Máthé D, Grus T, Rösch F, Bergmann R. Squaric Acid Bisphposphonates for Theranostics of Bone Metastasis - the Easy DOTA-Zoledronate. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:870910. [PMID: 39354958 PMCID: PMC11440830 DOI: 10.3389/fnume.2022.870910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 10/03/2024]
Abstract
Bisphosponates are an interesting molecular class and in recent years their application has found its way into radiopharmaceutical research and thus into molecular imaging. In addition to great imaging of bone metastases, bisphospnate-based tracers for imaging also have some significant drawbacks. For example, their synthesis is often difficult. Additionally, this can lead to complex and almost impossible purification and quality control. This has limited the production and labeling of suitable molecular and their widespread use to a few facilities. Our squaric acid-based approach provides a way to overcome these problems and makes the synthesis as well as the purification of the compounds much easier. In addition, we were able to demonstrate that labeling with 68Ga is possible under the typical conditions.
Collapse
Affiliation(s)
| | - Nils Engelbogen
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Domokos Máthé
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tilmann Grus
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ralf Bergmann
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Dresden Rossendorf, Germany
| |
Collapse
|
6
|
|
7
|
Maruk AY, Ragulin VV, Mitrofanov IA, Tsebrikova GS, Solov’ev VP, Lunev AS, Lunyova KA, Klementyeva OE, Baulin VE, Kodina GE, Tsivadse AY. Synthesis, Complexation Properties, and Evaluation of New Aminodiphosphonic Acids as Vector Molecules for 68Ga Radiopharmaceuticals. Molecules 2021; 26:molecules26082357. [PMID: 33919605 PMCID: PMC8073962 DOI: 10.3390/molecules26082357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/05/2022] Open
Abstract
Two new aminodiphosphonic acids derived from salicylic acid and its phosphonic analogue were prepared through a simple and efficient synthesis. 2-[(2-Amino-2,2-diphosphono)ethyloxy]-benzoic acid 8 and 2-[(2-amino-2,2-diphosphono)ethyloxy]-5-ethyl-phenylphosphonic acid 9 were evaluated for their applicability as 68Ga binding bone-seeking agents. Protonation constants of 8 and 9 and stability constants of the Ga3+ complexes with 8 and 9 in water were determined. The stability constant of Ga3+ complex with fully phosphorylated acid 9 (logKGaL = 31.92 ± 0.32) significantly exceeds stability constant of Ga3+ complex with 8 (logKGaL = 26.63 ± 0.24). Ligands 8 and 9 are as effective for Ga3+ cation binding as ethylenediamine-N,N’-diacetic-N,N’-bis(methy1enephosphonic) acid and ethylenediamine-N,N,N’,N’-tetrakis(methylenephosphonic) acid, respectively. The labelling process and stability of [68Ga]Ga-8 and [68Ga]Ga-9 were studied. Both 8 and 9 readily form 68Ga-complexes stable to ten-fold dilution with saline. However, in fetal bovine serum, only [68Ga]Ga-9 was stable enough to be subject to biological evaluation. It was injected into rats with bone pathology and aseptic inflammation of soft tissues. For [68Ga]Ga-9 in animals with a bone pathology model in 60 and 120 min after injection, a slight accumulation in the pathology site, stable blood percentage level, and moderate accumulation in the liver were observed. For animals with an aseptic inflammation, the accumulation of [68Ga]Ga-9 in the pathology site was higher than that in animals with bone pathology. Moreover, the accumulation of [68Ga]Ga-9 in inflammation sites was more stable than that for [68Ga]Ga-citrate. The percentage of [68Ga]Ga-9 in the blood decreased from 3.1% ID/g (60 min) to 1.5% ID/g (120 min). Accumulation in the liver was comparable to that obtained for [68Ga]Ga-citrate.
Collapse
Affiliation(s)
- Alesya Ya. Maruk
- Department of Radiation Medical Technologies, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya str. 46, 123182 Moscow, Russia; (A.Y.M.); (I.A.M.); (A.S.L.); (K.A.L.); (O.E.K.); (G.E.K.)
| | - Valery V. Ragulin
- Laboratory of Organophosphorus Сompounds, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severnyi proezd 1, 142432 Chernogolovka, Russia; (V.V.R.); (V.E.B.)
| | - Iurii A. Mitrofanov
- Department of Radiation Medical Technologies, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya str. 46, 123182 Moscow, Russia; (A.Y.M.); (I.A.M.); (A.S.L.); (K.A.L.); (O.E.K.); (G.E.K.)
| | - Galina S. Tsebrikova
- Laborotary of Novel Physicochemical Problems, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31/4, 119071 Moscow, Russia; (V.P.S.); (A.Y.T.)
- Correspondence:
| | - Vitaly P. Solov’ev
- Laborotary of Novel Physicochemical Problems, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31/4, 119071 Moscow, Russia; (V.P.S.); (A.Y.T.)
| | - Alexandr S. Lunev
- Department of Radiation Medical Technologies, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya str. 46, 123182 Moscow, Russia; (A.Y.M.); (I.A.M.); (A.S.L.); (K.A.L.); (O.E.K.); (G.E.K.)
| | - Kristina A. Lunyova
- Department of Radiation Medical Technologies, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya str. 46, 123182 Moscow, Russia; (A.Y.M.); (I.A.M.); (A.S.L.); (K.A.L.); (O.E.K.); (G.E.K.)
| | - Olga E. Klementyeva
- Department of Radiation Medical Technologies, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya str. 46, 123182 Moscow, Russia; (A.Y.M.); (I.A.M.); (A.S.L.); (K.A.L.); (O.E.K.); (G.E.K.)
| | - Vladimir E. Baulin
- Laboratory of Organophosphorus Сompounds, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severnyi proezd 1, 142432 Chernogolovka, Russia; (V.V.R.); (V.E.B.)
| | - Galina E. Kodina
- Department of Radiation Medical Technologies, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya str. 46, 123182 Moscow, Russia; (A.Y.M.); (I.A.M.); (A.S.L.); (K.A.L.); (O.E.K.); (G.E.K.)
| | - Aslan Yu. Tsivadse
- Laborotary of Novel Physicochemical Problems, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31/4, 119071 Moscow, Russia; (V.P.S.); (A.Y.T.)
| |
Collapse
|
8
|
Yang X, Wang J, Ding Z, Lin Q, Zhuo L, Liao W, Zhao Y, Feng Y, Chen Y, Wei H, Yang Y. Dual-radiolabelling of an injectable hyaluronan-tyramine-bisphosphonate hybrid gel for in vitro and in vivo tracking. Carbohydr Polym 2020; 231:115652. [PMID: 31888820 DOI: 10.1016/j.carbpol.2019.115652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Hyaluronan (HA) have been widely used as the ideal biomaterials. It is important to understand their degradation and distribution for better optimization. From a new aspect of using radiotracers, we designed the HA-tyramine-bisphosphonate derivative for dual-labelling with two radionuclides (99mTc and 131I) simultaneously for in vitro and in vivo tracking. This dual-radiolabelled HA derivative can still be non-covalently crosslinked by hydroxyapatites to form injectable gel. The excellent properties of the gel, such as robust, biodegradable, and self-healing capacity were maintained. We firstly proved the possibility to distinguish different radionuclides in the degraded gel using the high-resolution gamma-ray spectrometry. The radiolabelled gel showed lower toxicity than pure hydroxyapatites against various cell lines, while the in vivo results proved that the 99mTc/131I-labelling of the gel was safe and stable enough for imaging and quantitatively tracking. The present method can also be applied for the development of dual-radiolabelled gels from other polysaccharides.
Collapse
Affiliation(s)
- Xia Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, 215123, Suzhou, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China.
| | - Jing Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China
| | - Zhikai Ding
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China; Department of Nuclear Medicine, The Affiliated Hospital Southwest of Medical University, 646000, Luzhou, PR China
| | - Qingchuan Lin
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China
| | - Liangang Zhuo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, 215123, Suzhou, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China
| | - Wei Liao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China
| | - Yan Zhao
- Department of Nuclear Medicine, The Affiliated Hospital Southwest of Medical University, 646000, Luzhou, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital Southwest of Medical University, 646000, Luzhou, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital Southwest of Medical University, 646000, Luzhou, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, 215123, Suzhou, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621900, Mianyang, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, 215123, Suzhou, PR China; Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, 621999, Mianyang, PR China.
| |
Collapse
|
9
|
Mirković M, Milanović Z, Stanković D, Petrović Đ, Vranješ-Đurić S, Janković D, Radović M. Investigation of 177Lu-labeled HEDP, DPD, and IDP as potential bone pain palliation agents. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1702243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marija Mirković
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Zorana Milanović
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Dalibor Stanković
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Đorđe Petrović
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Drina Janković
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Magdalena Radović
- Laboratory for radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Raina DB, Liu Y, Isaksson H, Tägil M, Lidgren L. Synthetic hydroxyapatite: a recruiting platform for biologically active molecules. Acta Orthop 2019; 91:126-132. [PMID: 31680611 PMCID: PMC7144254 DOI: 10.1080/17453674.2019.1686865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Targeted delivery of drugs is important to achieve efficient local concentrations and reduce systemic side effects. We hypothesized that locally implanted synthetic hydroxyapatite (HA) particles can act as a recruiting moiety for systemically administered drugs, leading to targeted drug accretion.Methods - Synthetic HA particles were implanted ectopically in a muscle pouch in rats, and the binding of systemically circulating drugs such as zoledronic acid (ZA), tetracycline and 18F-fluoride (18F) was studied. The local biological effect was verified in an implant integration model in rats, wherein a hollow implant was filled with synthetic HA particles and the animals were given systemic ZA, 2-weeks post-implantation. The effect of HA particle size on drug binding and the possibility of reloading HA particles were also evaluated in the muscle pouch.Results - The systemically administered biomolecules (ZA, tetracycline and 18F) all sought the HA moiety placed in the muscle pouch. Statistically significant higher peri-implant bone volume and peak force were observed in the implant containing HA particles compared with the empty implant. After a single injection of ZA at 2 weeks, micro HA particles showed a tendency to accumulate more 14C-zoledronic acid (14C-ZA) than nano-HA particles in the muscle pouch. HA particles could be reloaded when ZA was given again at 4 weeks, showing increased 14C-ZA accretion by 73% in microparticles and 77% in nanoparticles.Interpretation - We describe a novel method of systemic drug loading resulting in targeted accretion in locally implanted particulate HA, thereby biologically activating the material.
Collapse
Affiliation(s)
- Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund; ,Correspondence:
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund;
| | - Hanna Isaksson
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund; ,Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Magnus Tägil
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund;
| | - Lars Lidgren
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund;
| |
Collapse
|
11
|
Romanenko VD. α-Heteroatom-substituted gem-Bisphosphonates: Advances in the Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190401141844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functionalized gem-bisphosphonic acid derivatives being pyrophosphate isosteres are of great synthetic and biological interest since they are currently the most important class of drugs developed for the treatment of diseases associated with the disorder of calcium metabolism, including osteoporosis, Paget’s disease, and hypercalcemia. In this article, we will try to give an in-depth overview of the methods for obtaining α- heteroatom-substituted methylenebisphosphonates and acquaint the reader with the synthetic strategies that are used to develop biologically important compounds of this type.
Collapse
Affiliation(s)
- Vadim D. Romanenko
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1-Murmanska Street, Kyiv-94, 02660, Ukraine
| |
Collapse
|
12
|
Fragogeorgi EA, Rouchota M, Georgiou M, Velez M, Bouziotis P, Loudos G. In vivo imaging techniques for bone tissue engineering. J Tissue Eng 2019; 10:2041731419854586. [PMID: 31258885 PMCID: PMC6589947 DOI: 10.1177/2041731419854586] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bone is a dynamic tissue that constantly undergoes modeling and remodeling. Bone tissue engineering relying on the development of novel implant scaffolds for the treatment of pre-clinical bone defects has been extensively evaluated by histological techniques. The study of bone remodeling, that takes place over several weeks, is limited by the requirement of a large number of animals and time-consuming and labor-intensive procedures. X-ray-based imaging methods that can non-invasively detect the newly formed bone tissue have therefore been extensively applied in pre-clinical research and in clinical practice. The use of other imaging techniques at a pre-clinical level that act as supportive tools is convenient. This review mainly focuses on nuclear imaging methods (single photon emission computed tomography and positron emission tomography), either alone or used in combination with computed tomography. It addresses their application to small animal models with bone defects, both untreated and filled with substitute materials, to boost the knowledge on bone regenerative processes.
Collapse
Affiliation(s)
- Eirini A Fragogeorgi
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece
| | - Maritina Rouchota
- Bioemission Technology Solutions (BIOEMTECH), Athens, Greece / Lefkippos Attica Technology Park, NCSR "Demokritos", Athens, Greece
| | - Maria Georgiou
- Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | - Marisela Velez
- Instituto de Catálisis y Petroleoquímica (CSIC), Madrid, Spain
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece
| | - George Loudos
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece.,Bioemission Technology Solutions (BIOEMTECH), Athens, Greece / Lefkippos Attica Technology Park, NCSR "Demokritos", Athens, Greece
| |
Collapse
|
13
|
Guleria M, Das T, Amirdhanayagam J, Shinto AS, Kamaleshwaran KK, Pandian A, Sarma HD, Dash A. Convenient Formulation of 68Ga-BPAMD Patient Dose Using Lyophilized BPAMD Kit and 68Ga Sourced from Different Commercial Generators for Imaging of Skeletal Metastases. Cancer Biother Radiopharm 2019; 34:67-75. [DOI: 10.1089/cbr.2018.2605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | | | - Ajit S. Shinto
- Department of Nuclear Medicine and PET, Kovai Medical Center and Hospital, Coimbatore, India
| | | | - Arun Pandian
- Department of Nuclear Medicine and PET, Kovai Medical Center and Hospital, Coimbatore, India
| | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
14
|
Alvarez-Valdes A, Matesanz AI, Perles J, Fernandes C, Correia JDG, Mendes F, Quiroga AG. Novel structures of platinum complexes bearing N‑bisphosphonates and study of their biological properties. J Inorg Biochem 2018; 191:112-118. [PMID: 30496946 DOI: 10.1016/j.jinorgbio.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023]
Abstract
Novel bisphosphonate platinum complexes: [Pt(isopropylamine)2(BP)]NO3 (BP = pamidronate and alendronate) have been synthesized and characterized. Their monomeric structure contains a bisphosphonate acting as chelate ligand through its oxygen atom donors, conferring the compound's cationic structure with a good solubility in water. The study of the compounds in solution showed high stability up to 24 h. The cytotoxicity in cancer cell lines has been assessed. We also present preliminary studies on the evaluation of the affinity towards biological targets such as DNA (both calf thymus DNA and supercoiled plasmid DNA) and hydroxyapatite where the complexes showed a low DNA interaction, but a clear affinity for hydroxyapatite comparing to their precursors.
Collapse
Affiliation(s)
| | - Ana I Matesanz
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, 28049, Spain
| | - Josefina Perles
- SIdI (Servicio Interdepartamental de Investigación), Universidad Autónoma de Madrid, 28049, Spain
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Adoracion G Quiroga
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, 28049, Spain.
| |
Collapse
|
15
|
Qayoom I, Raina DB, Širka A, Tarasevičius Š, Tägil M, Kumar A, Lidgren L. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018; 7:548-560. [PMID: 30464835 PMCID: PMC6215244 DOI: 10.1302/2046-3758.710.bjr-2018-0015.r2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions. Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2.
Collapse
Affiliation(s)
- I Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - D B Raina
- Department of Orthopedics, The Medical Faculty, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - A Širka
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Š Tarasevičius
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - M Tägil
- Department of Orthopedics, The Medical Faculty, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - A Kumar
- Department of Biological Sciences and Bioengineering; Centre for Environmental Sciences and Engineering; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - L Lidgren
- Department of Orthopedics, The Medical Faculty, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Kumar C, Sharma R, Vats K, Mallia MB, Das T, Sarma HD, Dash A. Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Tsebrikova GS, Ragulin VV, Baulin VE, German KE, Malysheva AO, Klement’eva OE, Kodina GE, Larenkov AA, Lyamtseva EA, Taratonenkova NA, Zhukova MV, Tsivadze AY. 2,5-Diamino-5,5-diphosphonovaleric Acid as a Ligand for an Osteotropic 188Re Radiopharmaceutical. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218090037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Inhibitory effects of low intensity pulsed ultrasound on osteoclastogenesis induced in vitro by breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:197. [PMID: 30126457 PMCID: PMC6102871 DOI: 10.1186/s13046-018-0868-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Background Bone tissue is one of the main sites for breast metastasis; patients diagnosed with advanced breast cancer mostly develop bone metastasis characterized by severe osteolytic lesions, which heavily influence their life quality. Low Intensity Pulsed Ultrasound (LIPUS) is a form of mechanical energy able to modulate various molecular pathways both in cancer and in health cells. The purpose of the present study was to evaluate for the first time, the ability of LIPUS to modulate osteolytic capability of breast cancer cells. Methods Two different approaches were employed: a) Indirect method -conditioned medium obtained by MDA-MB-231 cell line treated or untreated with LIPUS was used to induce osteoclast differentiation of murine macrophage Raw264.7 cell line; and b) Direct method -MDA-MB-231 were co-cultured with Raw264.7 cells and treated or untreated with LIPUS. Results LIPUS treatment impaired MDA-MB-231 cell dependentosteoclast differentiation and produced a reduction of osteoclast markers such as Cathepsin K, Matrix Metalloproteinase 9 and Tartrate Resistant Acid Phosphatase, suggesting its role as an effective and safe adjuvant in bone metastasis management. Conclusion LIPUS treatment could be a good and safety therapeutic adjuvant in osteolyitic bone metastasis not only for the induction properties of bone regeneration, but also for the reduction of osteolysis.
Collapse
|
19
|
Tsebrikova GS, Polyakova IN, Solov'ev VP, Ivanova IS, Kalashnikova IP, Kodina GE, Baulin VE, Tsivadze AY. Complexation of the new tetrakis[methyl(diphenylphosphorylated)] cyclen derivative with transition metals: First examples of octacoordinate zinc(II) and cobalt(II) complexes with cyclen molecules. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Cawthray J, Wasan E, Wasan K. Bone-seeking agents for the treatment of bone disorders. Drug Deliv Transl Res 2018; 7:466-481. [PMID: 28589453 DOI: 10.1007/s13346-017-0394-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The targeting and delivery of therapeutic and diagnostic agents to bone tissue presents both a challenge and opportunity. Osteoporosis, Paget's disease, cancer, and bone metastases are all skeletal diseases whose treatment would benefit from new targeted therapeutic strategies. Osteoporosis, in particular, is a very prevalent disease, affecting over one in three women and one in five men in Canada alone with the cost to the healthcare system estimated at over $2.3 billion in 2010. Bone tissue is often considered a rigid structure when in reality there is a process of continuous remodeling that takes place via complex endocrine-regulated cell signaling pathways in addition to the signaling pathways unique to bone tissue. It is these specific boneremodeling processes that provide unique targeting opportunities but also present a number of challenges.
Collapse
Affiliation(s)
- Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Ellen Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kishor Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Song X, Wang Y, Zhang J, Jin Z, Zhang W, Zhang Y. Synthesis and evaluation of a novel 99m Tc nitrido radiopharmaceutical with alendronate dithiocarbamate as a potential bone-imaging agent. Chem Biol Drug Des 2017; 91:545-551. [PMID: 28994250 DOI: 10.1111/cbdd.13117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
Abstract
Currently, a popular strategy for designing novel radioprobes as bone-imaging agents is based on the concept of bifunctional radiopharmaceuticals. Considering the dithiocarbamate ligand can act as a suitable bifunctional linking agent to attach technetium-99m (99m Tc) to corresponding target molecules, in this study, alendronate dithiocarbamate (ALNDTC) was synthesized and radiolabeled with [99m Tc≡N]2+ core by ligand exchange reaction to produce 99m TcN-ALNDTC complex, for the potential use as a novel probe for bone imaging. The radiochemical purity of the complex was over 90%. The complex was stable in vitro and could bind to hydroxyapatite. The partition coefficient result indicated it was hydrophilic, and an evaluation of biodistribution in mice indicated that the complex exhibited a higher bone uptake than did 99m Tc-labeled methylenediphosphonate (99m Tc-MDP). Further, single photon emission computed tomography imaging study indicated clear accumulation in bone, suggesting that 99m TcN-ALNDTC would be a promising candidate for bone imaging.
Collapse
Affiliation(s)
- Xiaoqing Song
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yue Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhonghui Jin
- Nuclear Medicine Department, Peking University 3rd Hospital, Beijing, China
| | - Weifang Zhang
- Nuclear Medicine Department, Peking University 3rd Hospital, Beijing, China
| | - Yanyan Zhang
- Nuclear Medicine Department, Peking University 3rd Hospital, Beijing, China
| |
Collapse
|
22
|
Qiu L, Yang H, Lv G, Li K, Liu G, Wang W, Wang S, Zhao X, Xie M, Lin J. Insights into the mevalonate pathway in the anticancer effect of a platinum complex on human gastric cancer cells. Eur J Pharmacol 2017; 810:120-127. [DOI: 10.1016/j.ejphar.2017.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/06/2023]
|
23
|
Das T, Shinto A, Kamaleshwaran KK, Sarma HD, Mohammed SK, Mitra A, Lad S, Rajan M, Banerjee S. Radiochemical studies, pre-clinical investigation and preliminary clinical evaluation of 170 Tm-EDTMP prepared using in-house freeze-dried EDTMP kit. Appl Radiat Isot 2017; 122:7-13. [DOI: 10.1016/j.apradiso.2016.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
|
24
|
Nadar RA, Margiotta N, Iafisco M, van den Beucken JJJP, Boerman OC, Leeuwenburgh SCG. Bisphosphonate-Functionalized Imaging Agents, Anti-Tumor Agents and Nanocarriers for Treatment of Bone Cancer. Adv Healthc Mater 2017; 6. [PMID: 28207199 DOI: 10.1002/adhm.201601119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Bone metastases result from the invasion of primary tumors to bone. Current treatment modalities include local treatments such as surgery and radiotherapy, while systemic treatments include chemotherapy and (palliative) treatment of skeletal metastases. Nevertheless, once bone metastases have been established they remain incurable leading to morbidity and mortality. Bisphosphonates are a well-established class of drugs, which are increasingly applied in the treatment of bone cancers owing to their effective inhibition of tumor cells and suppression of bone metastases. The increased understanding of the mechanism of action of bisphosphonates on bone and tumor cells has prompted the development of novel bisphosphonate-functionalized imaging and therapeutic agents. This review provides an update on the preclinical efficacy of bisphosphonate-functionalized fluorophore, anti-tumor agents and nanocarriers for the treatment of bone metastases. After an overview of the general characteristics of bisphosphonates and their mechanisms of action, an outline is provided on the various conjugation strategies that have become available to functionalize imaging agents, anti-tumor agents and nanocarriers with bisphosphonates. Finally, the efficacy of these bisphosphonate-modified agents and carriers in preclinical studies is evaluated by reviewing their potential to target tumors and inhibit tumor growth in clinically relevant animal models for the treatment of bone cancer.
Collapse
Affiliation(s)
- Robin A. Nadar
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Nicola Margiotta
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via E. Orabona 4 70125 Bari Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC); National Research Council (CNR); Via Granarolo 64 48018 Faenza Italy
| | | | - Otto C. Boerman
- Department of Nuclear Medicine; Radboud University Medical Center; Geert Grooteplein Zuid 10 6525 AG Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| |
Collapse
|
25
|
Silva F, Fernandes C, Campello MPC, Paulo A. Metal complexes of tridentate tripod ligands in medical imaging and therapy. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis 2016; 34:1-10. [DOI: 10.1007/s10585-016-9831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
|
27
|
Fernandes RS, dos Santos Ferreira D, de Aguiar Ferreira C, Giammarile F, Rubello D, de Barros ALB. Development of imaging probes for bone cancer in animal models. A systematic review. Biomed Pharmacother 2016; 83:1253-1264. [DOI: 10.1016/j.biopha.2016.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
|
28
|
Lange R, Ter Heine R, Knapp RF, de Klerk JMH, Bloemendal HJ, Hendrikse NH. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases. Bone 2016; 91:159-79. [PMID: 27496068 DOI: 10.1016/j.bone.2016.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/09/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
Abstract
Therapeutic phosphonate-based radiopharmaceuticals radiolabeled with beta, alpha and conversion electron emitting radioisotopes have been investigated for the targeted treatment of painful bone metastases for >35years. We performed a systematic literature search and focused on the pharmaceutical development, preclinical research and early human studies of these radiopharmaceuticals. The characteristics of an ideal bone-targeting therapeutic radiopharmaceutical are presented and compliance with these criteria by the compounds discussed is verified. The importance of both composition and preparation conditions for the stability and biodistribution of several agents is discussed. Very few studies have described the characterization of these products, although knowledge on the molecular structure is important with respect to in vivo behavior. This review discusses a total of 91 phosphonate-based therapeutic radiopharmaceuticals, of which only six agents have progressed to clinical use. Extensive clinical studies have only been described for (186)Re-HEDP, (188)Re-HEDP and (153)Sm-EDTMP. Of these, (153)Sm-EDTMP represents the only compound with worldwide marketing authorization. (177)Lu-EDTMP has recently received approval for clinical use in India. This review illustrates that a thorough understanding of the radiochemistry of these agents is required to design simple and robust preparation and quality control methods, which are needed to fully exploit the potential benefits of these theranostic radiopharmaceuticals. Extensive biodistribution and dosimetry studies are indispensable to provide the portfolios that are required for assessment before human administration is possible. Use of the existing knowledge collected in this review should guide future research efforts and may lead to the approval of new promising agents.
Collapse
Affiliation(s)
- Rogier Lange
- Department of Clinical Pharmacy, Meander Medical Center, Amersfoort, The Netherlands.
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Medical Center, Nijmegen, The Netherlands; Department of Nuclear Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Russ Ff Knapp
- Medical Radioisotope Program, Nuclear Security and Isotope Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA
| | - John M H de Klerk
- Department of Nuclear Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Haiko J Bloemendal
- Department of Internal Medicine/Medical Oncology, Meander Medical Center, Amersfoort, The Netherlands; Department of Medical Oncology, University Medical Center, Utrecht, The Netherlands
| | - N Harry Hendrikse
- Department of Clinical Pharmacology & Pharmacy, VU University Medical Center, Amsterdam, The Netherlands; Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Makris G, Tseligka ED, Pirmettis I, Papadopoulos MS, Vizirianakis IS, Papagiannopoulou D. Development and Pharmacological Evaluation of New Bone-Targeted (99m)Tc-Radiolabeled Bisphosphonates. Mol Pharm 2016; 13:2301-17. [PMID: 27170456 DOI: 10.1021/acs.molpharmaceut.6b00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel bisphosphonate, 1-(3-aminopropylamino)ethane-1,1-diyldiphosphonic acid (3), was coupled to the tridentate chelators di-2-picolylamine, 2-picolylamine-N-acetic acid, iminodiacetic acid, 3-((2-aminoethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid, and 2-((2-carboxyethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid to form ligands 6, 9, 11, 15, and 19, respectively. Organometallic complexes of the general formula [Re/(99m)Tc(CO)3(κ(3)-L)] were synthesized, where L denotes ligand 6, 9, 11, 15, or 19. The rhenium complexes were prepared at the macroscopic level and characterized by spectroscopic methods. The technetium-99m organometallic complexes were synthesized in high yield and were identified by comparative reversed-phase HPLC with their Re analogues. The (99m)Tc tracers were stable in vitro and exhibited binding to hydroxyapatite. In biodistribution studies, all of the (99m)Tc complexes exhibited high bone uptake superior to that of 25, which is the directly (99m)Tc-labeled bisphosphonate 3, and comparable to that of (99m)Tc-methylene diphosphonate ((99m)Tc-MDP). The tracers [(99m)Tc(CO)3(6)] (26), [(99m)Tc(CO)3(9)] (27), [(99m)Tc(CO)3(11)] (28), and [(99m)Tc(CO)3(15)] (29) exhibited higher bone/blood ratios than (99m)Tc-MDP. 26 had the highest bone uptake at 1 h p.i. The new bisphosphonates showed no substantial growth inhibitory capacity in PC-3, Saos-2, and MCF-7 established cancer cell lines at low concentrations. Incubation of 26 with the same cancer cell lines indicated a rapid and saturated uptake. The promising properties of 26-29 indicate their potential for use as bone-imaging agents.
Collapse
Affiliation(s)
- George Makris
- Department of Pharmacy, School of Health Sciences, Frederick University , 1036 Nicosia, Cyprus
| | | | - Ioannis Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), NCSR "Demokritos" 15310 Agia Paraskevi-Athens, Greece
| | - Minas S Papadopoulos
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), NCSR "Demokritos" 15310 Agia Paraskevi-Athens, Greece
| | | | | |
Collapse
|
30
|
Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev 2016; 99:12-27. [PMID: 26482186 DOI: 10.1016/j.addr.2015.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 01/07/2023]
Abstract
The high concentration of mineral present in bone and pathological calcifications is unique compared with all other tissues and thus provides opportunity for targeted delivery of pharmaceutical drugs, including radiosensitizers and imaging probes. Targeted delivery enables accumulation of a high local dose of a therapeutic or imaging contrast agent to diseased bone or pathological calcifications. Bisphosphonates (BPs) are the most widely utilized bone-targeting ligand due to exhibiting high binding affinity to hydroxyapatite mineral. BPs can be conjugated to an agent that would otherwise have little or no affinity for the sites of interest. This article summarizes the current state of knowledge and practice for the use of BPs as ligands for targeted delivery to bone and mineral deposits. The clinical history of BPs is briefly summarized to emphasize the success of these molecules as therapeutics for metabolic bone diseases. Mechanisms of binding and the relative binding affinity of various BPs to bone mineral are introduced, including common methods for measuring binding affinity in vitro and in vivo. Current research is highlighted for the use of BP ligands for targeted delivery of BP conjugates in various applications, including (1) therapeutic drug delivery for metabolic bone diseases, bone cancer, other bone diseases, and engineered drug delivery platforms; (2) imaging probes for scintigraphy, fluorescence, positron emission tomography, magnetic resonance imaging, and computed tomography; and (3) radiotherapy. Last, and perhaps most importantly, key structure-function relationships are considered for the design of drugs with BP ligands, including the tether length between the BP and drug, the size of the drug, the number of BP ligands per drug, cleavable tethers between the BP and drug, and conjugation schemes.
Collapse
Affiliation(s)
- Lisa E Cole
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Tracy Vargo-Gogola
- Department of Biochemistry and Molecular Biology, Indiana University Simon Cancer Center, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
31
|
Tsebrikova GS, Baulin VE, Kalashnikova IP, Ragulin VV, Zavel’skii VO, Kodina GE, Tsivadze AY. NMR study of 1,7-diamino-4-oxyheptane-1,1,7,7-tetraphosphonic acid interaction with samarium(III) cation. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s107036321603021x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Tsebrikova GS, Baulin VE, Kalashnikova IP, Ragulin VV, Zavel’skii VO, Maruk AY, Lunev AS, Klement’eva OE, Kodina GE, Tsivadze AY. Cyclen-containing phosphonic acids as components of osteotropic 68Ga radiopharmaceuticals. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215090091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Zhong ZA, Peck A, Li S, VanOss J, Snider J, Droscha CJ, Chang TA, Williams BO. (99m)TC-Methylene diphosphonate uptake at injury site correlates with osteoblast differentiation and mineralization during bone healing in mice. Bone Res 2015; 3:15013. [PMID: 26273540 PMCID: PMC4472149 DOI: 10.1038/boneres.2015.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 01/28/2023] Open
Abstract
99mTc-Methylene diphosphonate (99mTc-MDP) is widely used in clinical settings to detect bone abnormalities. However, the mechanism of 99mTc-MDP uptake in bone is not well elucidated. In this study, we utilized a mouse tibia injury model, single-photon emission computed tomography (gamma scintigraphy or SPECT), ex vivo micro-computed tomography, and histology to monitor 99mTc-MDP uptake in injury sites during skeletal healing. In an ex vivo culture system, calvarial cells were differentiated into osteoblasts with osteogenic medium, pulsed with 99mTc-MDP at different time points, and quantitated for 99mTc-MDP uptake with a gamma counter. We demonstrated that 99mTc-MDP uptake in the injury sites corresponded to osteoblast generation in those sites throughout the healing process. The 99mTc-MDP uptake within the injury sites peaked on day 7 post-injury, while the injury sites were occupied by mature osteoblasts also starting from day 7. 99mTc-MDP uptake started to decrease 14 days post-surgery, when we observed the highest level of bony tissue in the injury sites. We also found that 99mTc-MDP uptake was associated with osteoblast maturation and mineralization in vitro. This study provides direct and biological evidence for 99mTc-MDP uptake in osteoblasts during bone healing in vivo and in vitro.
Collapse
Affiliation(s)
- Zhendong A Zhong
- Center for Skeletal Disease Research, Van Andel Research Institute , Grand Rapids, MI, USA ; Department of Internal Medicine, Center for Musculoskeletal Health, UC Davis Medical Center , Davis, CA, USA
| | - Anderson Peck
- Small Animal Imaging Facility, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Shihong Li
- Small Animal Imaging Facility, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Jeff VanOss
- Small Animal Imaging Facility, Van Andel Research Institute , Grand Rapids, MI, USA
| | - John Snider
- Center for Skeletal Disease Research, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Casey J Droscha
- Center for Skeletal Disease Research, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Tingtung A Chang
- Small Animal Imaging Facility, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Skeletal Disease Research, Van Andel Research Institute , Grand Rapids, MI, USA
| |
Collapse
|
34
|
Banerjee S, Pillai MRA, Knapp FFR. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015; 115:2934-74. [PMID: 25865818 DOI: 10.1021/cr500171e] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - M R A Pillai
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - F F Russ Knapp
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| |
Collapse
|
35
|
Hao G, Liu W, Hassan G, Öz OK, Kovacs Z, Sun X. A comparative study of trans- and cis-isomers of a bone-seeking agent, DO2A2P. Bioorg Med Chem Lett 2015; 25:571-4. [PMID: 25541387 PMCID: PMC4386885 DOI: 10.1016/j.bmcl.2014.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
The macrocyclic bone-seeking agent, DO2A2P, bears a cyclen core and two pairs of peripheral phosphonate and carboxylate groups. The geometric disposition of the peripheral functionalities gives arise to a pair of geometric isomers: cis-DO2A2P and trans-DO2A2P. In order to compare the biological behavior of the isomer pair, cis-DO2A2P was synthesized. Both isomers were successfully radiolabeled with (177)Lu, which might potentiate their applications in both radiotherapy and imaging of bone diseases. Through a set of biological assays including the hydroxyapatite binding, in vitro stability, and in vivo distribution, we demonstrated that the geometric pair of DO2A2P had virtually identical biological properties.
Collapse
Affiliation(s)
- Guiyang Hao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Gedaa Hassan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Yousefnia H, Amraei N, Hosntalab M, Zolghadri S, Bahrami-Samani A. Preparation and biological evaluation of 166Ho-BPAMD as a potential therapeutic bone-seeking agent. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-014-3924-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Kurzak B, Goldeman W, Szpak M, Matczak-Jon E, Kamecka A. Synthesis of N-methyl alkylaminomethane-1,1-diphosphonic acids and evaluation of their complex-formation abilities towards copper(II). Polyhedron 2015. [DOI: 10.1016/j.poly.2014.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Das T, Sarma HD, Shinto A, Kamaleshwaran KK, Banerjee S. Formulation, Preclinical Evaluation, and Preliminary Clinical Investigation of an In-House Freeze-Dried EDTMP Kit Suitable for the Preparation of 177Lu-EDTMP. Cancer Biother Radiopharm 2014; 29:412-21. [DOI: 10.1089/cbr.2014.1664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tapas Das
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ajit Shinto
- Department of Nuclear Medicine and PET, Kovai Medical Centre and Hospital, Coimbatore, India
| | | | - Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
39
|
Ventura M, Boerman OC, de Korte C, Rijpkema M, Heerschap A, Oosterwijk E, Jansen JA, Walboomers XF. Preclinical Imaging in Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:578-95. [DOI: 10.1089/ten.teb.2013.0635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Manuela Ventura
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Otto C. Boerman
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Chris de Korte
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Qiu L, Lv G, Guo L, Chen L, Luo S, Zou M, Lin J. Synthesis, crystal structure and antitumor effect of a novel copper(II) complex bearing zoledronic acid derivative. Eur J Med Chem 2014; 89:42-50. [PMID: 25462224 DOI: 10.1016/j.ejmech.2014.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/29/2022]
Abstract
A great majority of Cu(II) complexes currently studied in the anticancer research field exert their antiproliferative activities through ligand exchange. In this work, we present the synthesis and structural characterization of two novel Cu(II) complexes, {[Cu3(ZL)2(H2O)6]·6H2O}n (1) (ZL = 1-hydroxy-2-(1H-imidazol-1-yl)ethane-1,1-diyldiphosphonic acid) and [Cu(IPrDP)2]·3H2O (2) (IPrDP = 1-hydroxy-3-(1H-imidazol-1-yl)propane-1,1-diyldiphosphonic acid). Due to the insolubility of polymer 1 in common solvents, only the biological activities of complex 2 were investigated. The antitumor activity of complex 2 was evaluated against a panel of human cancer cell lines, including U2OS, A549, HCT116, MDA-MB-231 and HepG2. Complex 2 exhibited comparable cytotoxic effect to cisplatin (CDDP) against the human colon carcinoma cells HCT116, and superior selectivity for inhibiting human hepatocarcinoma cells rather than normal liver cells. The cell cycle distribution analysis indicates that complex 2 inhibits human carcinoma cells by inducing the cell cycle arrest at the G2/M phase, showing a similar mechanism of action to that of CDDP. The binding interaction of complex 2 with calf thymus DNA (CT-DNA) has been explored by UV-vis absorption and circular dichroism (CD), demonstrating complex 2 has a moderate binding affinity for DNA through intercalation.
Collapse
Affiliation(s)
- Ling Qiu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Gaochao Lv
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Liubin Guo
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Liping Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Shineng Luo
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Meifen Zou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| |
Collapse
|
41
|
Hahn EM, Casini A, Kühn FE. Re(VII) and Tc(VII) trioxo complexes stabilized by tridentate ligands and their potential use as radiopharmaceuticals. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
David T, Procházková S, Kotek J, Kubíček V, Hermann P, Lukeš I. Aminoalkyl-1,1-bis(phosphinic acids): Stability, Acid-Base, and Coordination Properties. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Fernandes C, Monteiro S, Mendes P, Gano L, Marques F, Casimiro S, Costa L, Correia JD, Santos I. Biological assessment of novel bisphosphonate-containing 99mTc/Re-organometallic complexes. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Holub J, Meckel M, Kubíček V, Rösch F, Hermann P. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:122-34. [DOI: 10.1002/cmmi.1606] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Holub
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 2030 128 43 Prague 2 Czech Republic
| | - Marian Meckel
- Institute of Nuclear Chemistry; University Mainz; Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 2030 128 43 Prague 2 Czech Republic
| | - Frank Rösch
- Institute of Nuclear Chemistry; University Mainz; Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 2030 128 43 Prague 2 Czech Republic
| |
Collapse
|
45
|
Morais M, Paulo A, Gano L, Santos I, Correia JD. Target-specific Tc(CO)3-complexes for in vivo imaging. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
de Almeida A, Oliveira BL, Correia JD, Soveral G, Casini A. Emerging protein targets for metal-based pharmaceutical agents: An update. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
David T, Kotek J, Kubíček V, Tošner Z, Hermann P, Lukeš I. Bis(phosphonate)-Building Blocks Modified with Fluorescent Dyes. HETEROATOM CHEMISTRY 2013. [DOI: 10.1002/hc.21108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomáš David
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; 128 40; Prague 2; Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; 128 40; Prague 2; Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; 128 40; Prague 2; Czech Republic
| | - Zdeněk Tošner
- NMR Laboratory; Faculty of Science, Charles University in Prague; 128 40; Prague 2; Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; 128 40; Prague 2; Czech Republic
| | - Ivan Lukeš
- Department of Inorganic Chemistry, Faculty of Science; Charles University in Prague; 128 40; Prague 2; Czech Republic
| |
Collapse
|
48
|
Yanagi M, Uehara T, Uchida Y, Kiyota S, Kinoshita M, Higaki Y, Akizawa H, Hanaoka H, Arano Y. Chemical Design of 99mTc-Labeled Probes for Targeting Osteogenic Bone Region. Bioconjug Chem 2013; 24:1248-55. [DOI: 10.1021/bc400197f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mashiho Yanagi
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| | - Yukie Uchida
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| | - Sachiko Kiyota
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| | - Mai Kinoshita
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| | - Yusuke Higaki
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| | - Hiromichi Akizawa
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi,
Tokyo, 194-8543, Japan
| | - Hirofumi Hanaoka
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1 Inohana,
Chuo-ku, Chiba, 263-8675, Japan
| |
Collapse
|
49
|
Qiu L, Cheng W, Lin J, Chen L, Yao J, Luo S. Synthesis and biological evaluation of a series of99mTc-labeled diphosphonates as novel radiotracers with improved bone imaging. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ling Qiu
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Wen Cheng
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Liping Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Jun Yao
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Shineng Luo
- Key Laboratory of Nuclear Medicine, Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| |
Collapse
|
50
|
Qiu L, Cheng W, Lin J, Chen L, Yao J, Pu W, Luo S. Synthesis and evaluation of a series of 99mTc-labelled zoledronic acid derivatives as potential bone seeking agents. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1883-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|