1
|
Sharma M, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 2: Non-DSM compounds. Bioorg Chem 2024; 153:107754. [PMID: 39241585 DOI: 10.1016/j.bioorg.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Malaria remains a severe global health concern, with 249 million cases reported in 2022, according to the World Health Organization (WHO) [1]. PfDHODH is an essential enzyme in malaria parasites that helps to synthesize certain building blocks for their growth and development. It has been confirmed that targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme could lead to new and effective antimalarial drugs. Inhibitors of PfDHODH have shown potential for slowing down parasite growth during both the blood and liver stages. Over the last two decades, many species selective PfDHODH inhibitors have been designed, including DSM compounds and other non-DSM compounds. In the first chapter [2] of this review, we have reviewed all synthetic schemes and structure-activity relationship (SAR) studies of DSM compounds. In this second chapter, we have compiled all the other non-DSM PfDHODH inhibitors based on dihydrothiophenones, thiazoles, hydroxyazoles, and N-alkyl-thiophene-2-carboxamides. The review not only offers an insightful overview of the synthetic methods employed but also explores into alternative routes and innovative strategies involving different catalysts and chemical reagents. A critical aspect covered in the review is the SAR studies, which provide a comprehensive understanding of how structural modifications impact the efficacy of PfDHODH inhibitors and challenges related to the discovery of PfDHODH inhibitors. This information is invaluable for scientists engaged in the development of new antimalarial drugs, offering insights into the most promising scaffolds and their synthetic techniques.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
2
|
Sharma M, Pandey V, Poli G, Tuccinardi T, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 1: triazolopyrimidine, isoxazolopyrimidine and pyrrole-based (DSM) compounds. Bioorg Chem 2024; 146:107249. [PMID: 38493638 DOI: 10.1016/j.bioorg.2024.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Vinita Pandey
- MIT College of Pharmacy, Ramganga Vihar, Phase-II, Moradabad, UP-244001, India
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 - Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
3
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
4
|
Driving antimalarial design through understanding of target mechanism. Biochem Soc Trans 2020; 48:2067-2078. [PMID: 32869828 PMCID: PMC7609028 DOI: 10.1042/bst20200224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
Malaria continues to be a global health threat, affecting approximately 219 million people in 2018 alone. The recurrent development of resistance to existing antimalarials means that the design of new drug candidates must be carefully considered. Understanding of drug target mechanism can dramatically accelerate early-stage target-based development of novel antimalarials and allows for structural modifications even during late-stage preclinical development. Here, we have provided an overview of three promising antimalarial molecular targets, PfDHFR, PfDHODH and PfA-M1, and their associated inhibitors which demonstrate how mechanism can inform drug design and be effectively utilised to generate compounds with potent inhibitory activity.
Collapse
|
5
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|
6
|
Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. Eur J Med Chem 2019; 163:266-280. [DOI: 10.1016/j.ejmech.2018.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/23/2022]
|
7
|
Interconvertible geometric isomers of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors exhibit multiple binding modes. Bioorg Med Chem Lett 2017; 27:3878-3882. [DOI: 10.1016/j.bmcl.2017.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/15/2017] [Accepted: 06/17/2017] [Indexed: 11/21/2022]
|
8
|
Costa LM, de Macedo EV, Oliveira FAA, Ferreira JHL, Gutierrez SJC, Peláez WJ, Lima FCA, de Siqueira Júnior JP, Coutinho HDM, Kaatz GW, de Freitas RM, Barreto HM. Inhibition of the NorA efflux pump of Staphylococcus aureus by synthetic riparins. J Appl Microbiol 2016; 121:1312-1322. [PMID: 27537678 DOI: 10.1111/jam.13258] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023]
Abstract
AIM The goal of this study was to increase knowledge about the antimicrobial activity of some synthetic Riparin-derived compounds, alone or in combination with fluoroquinolone antibiotics, against a strain of Staphylococcus aureus resistant to fluoroquinolone by way of overexpression of the NorA efflux pump. METHODS AND RESULTS Microdilution tests showed that Riparins A and B did not show any significant antibacterial activity against Staph. aureus strains. On the other hand, the intrinsic antibacterial activity increased with increasing lipophilicity of the compounds, in the following order: Riparin-D (MIC 256 μg ml-1 ; Log P 2·95) < Riparin-C (MIC 102 μg ml-1 ; Log P 3·22) < Riparin-E (MIC 16 μg ml-1 ; Log P 3·57). The addition of all riparins to growth media at subinhibitory concentrations caused an increase in the antibacterial activity of antibiotics against the NorA-overexpressing test strain. Riparin-B, which has two methoxyl groups at the phenethyl moiety, showed the best modulatory effect. CONCLUSIONS Riparin-E is a good anti-staphylococci agent, while Riparin-B functions as a NorA efflux pump inhibitor. SIGNIFICANCE AND IMPACT OF THE STUDY Our data suggest the possibility of using Riparin-B in combination with norfloxacin or ciprofloxacin for therapy of infections caused by multi-drug resistant Staph. aureus.
Collapse
Affiliation(s)
- L M Costa
- Laboratory for Research in Experimental Neurochemistry, Federal University of Piauí, Teresina (PI), Brazil
| | - E V de Macedo
- Laboratory for Research in Microbiology, Federal University of Piauí, Teresina (PI), Brazil
| | - F A A Oliveira
- Laboratory for Research in Microbiology, Federal University of Piauí, Teresina (PI), Brazil
| | - J H L Ferreira
- Laboratory for Research in Microbiology, Federal University of Piauí, Teresina (PI), Brazil
| | - S J C Gutierrez
- Laboratory for Research in Microbiology, Federal University of Piauí, Teresina (PI), Brazil
| | - W J Peláez
- INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - F C A Lima
- Laboratory of Computational Quantum Chemistry and Drug Planning, State University of Piauí, Teresina (PI), Brazil
| | - J P de Siqueira Júnior
- Laboratory of Genetic of Microorganisms, Federal University of Paraiba, João Pessoa (PB), Brazil
| | - H D M Coutinho
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri, Crato (CE), Brazil
| | - G W Kaatz
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | - R M de Freitas
- Laboratory for Research in Experimental Neurochemistry, Federal University of Piauí, Teresina (PI), Brazil
| | - H M Barreto
- Laboratory for Research in Microbiology, Federal University of Piauí, Teresina (PI), Brazil.
| |
Collapse
|
9
|
Suchetan PA, Suneetha V, Naveen S, Lokanath NK, Krishna Murthy P. 4-Bromo-2-hydroxybenzoic acid. IUCRDATA 2016. [DOI: 10.1107/s2414314616003254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the title compound, C7H5BrO3, the dihedral angle between the aromatic ring and the carboxylic acid group is 4.8 (4)°, and an intramolecular O—H...O hydrogen bond closes anS(6) ring. In the crystal, carboxylic acid inversion dimers linked by pairs of O—H...O hydrogen bonds generateR22(8) loops. Short Br...Br contacts [3.4442 (5) Å] between the molecules of the adjacent dimers leads to a one-dimensional architecture.
Collapse
|
10
|
Aneja B, Kumar B, Jairajpuri MA, Abid M. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra19673f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article provides a comprehensive review of inhibitors from natural, semisynthetic or synthetic sources against key targets ofPlasmodium falciparum.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Bhumika Kumar
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| |
Collapse
|
11
|
In vitro antioxidant and cytotoxic activity of some synthetic riparin-derived compounds. Molecules 2014; 19:4595-607. [PMID: 24731987 PMCID: PMC6271893 DOI: 10.3390/molecules19044595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 11/16/2022] Open
Abstract
This study aimed to study the in vitro antioxidant activity and cytotoxicity on tumor cells lines of six synthetic substances derived from riparins. All the substances showed antioxidant activity and riparins C, D, E, F presented cell growth inhibition rates greater than 70%, suggesting that these molecules have antitumor properties. These substances also caused greater than 80% releases of cytoplasmic lactate dehydrogenase enzyme (LDH). Although the antioxidant and antitumor properties presented herein require further assessment, the outcomes indicate that these novel riparins are promising biologically active compounds.
Collapse
|
12
|
Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era. Future Med Chem 2014; 5:1573-91. [PMID: 24024949 DOI: 10.4155/fmc.13.121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite intense efforts, there has not been a truly new antimalarial, possessing a novel mechanism of action, registered for over 10 years. By virtue of a novel mode of action, it is hoped that the global challenge of multidrug-resistant parasites can be overcome, as well as developing drugs that possess prophylaxis and/or transmission-blocking properties, towards an elimination agenda. Many target-based and whole-cell screening drug development programs have been undertaken in recent years and here an overview of specific projects that have focused on targeting the parasite's mitochondrial electron transport chain is presented. Medicinal chemistry activity has largely focused on inhibitors of the parasite cytochrome bc1 Complex (Complex III) including acridinediones, pyridones and quinolone aryl esters, as well as inhibitors of dihydroorotate dehydrogenase that includes triazolopyrimidines and benzimidazoles. Common barriers to progress and opportunities for novel chemistry and potential additional electron transport chain targets are discussed in the context of the target candidate profiles for uncomplicated malaria.
Collapse
|
13
|
|
14
|
Bedingfield PTP, Cowen D, Acklam P, Cunningham F, Parsons MR, McConkey GA, Fishwick CWG, Johnson AP. Factors Influencing the Specificity of Inhibitor Binding to the Human and Malaria Parasite Dihydroorotate Dehydrogenases. J Med Chem 2012; 55:5841-50. [DOI: 10.1021/jm300157n] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Paul T. P. Bedingfield
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Deborah Cowen
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Paul Acklam
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Fraser Cunningham
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Mark R. Parsons
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Glenn A. McConkey
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Colin W. G. Fishwick
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - A. Peter Johnson
- Faculty
of Biological Sciences, ‡School of Chemistry, and §Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|