1
|
Dockery LT, Daniel MC. Targeted Doxorubicin-Loaded Dendronized Gold Nanoparticles. Pharmaceutics 2023; 15:2103. [PMID: 37631317 PMCID: PMC10459818 DOI: 10.3390/pharmaceutics15082103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Dendronized nanoparticles, also called nanoparticle-cored dendrimers, combine the advantages of nanoparticles and dendrimers. These very stable and polyvalent nanoparticles can be used for diverse applications. One such application is drug delivery, because the dendrons can enhance the density of the payload. In this report, we describe the design of multifunctional gold nanoparticles (AuNPs) coated with poly(propylene imine) (PPI) dendrons that contain both prostate cancer active targeting and chemotherapeutic drugs. The PPI dendron is a good candidate for the design of drug delivery vehicles because of its ability to induce a proton sponge effect that will enhance lysosomal escape and intracellular therapeutic delivery. The chemotherapeutic drug used is doxorubicin (DOX), and it was linked to the dendron through a hydrazone acid-sensitive bond. Subsequent acidification of the AuNP system to a pH of 4-5 resulted in the release of 140 DOX drugs per nanoparticles. In addition, the PPI dendron was conjugated via "click" chemistry to an EphA2-targeting antibody fragment that has been shown to target prostate cancer cells. In vitro cell viability assays revealed an IC50 of 0.9 nM for the targeted DOX-bearing AuNPs after 48 h incubation with PC3 cells. These results are very promising upon optimization of the system.
Collapse
Affiliation(s)
| | - Marie-Christine Daniel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA;
| |
Collapse
|
2
|
Modular and efficient synthesis of a poly (propylene imine) (PPI) dendron applied to acid-sensitive doxorubicin conjugation. Tetrahedron 2022; 125. [DOI: 10.1016/j.tet.2022.133044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Delyanee M, Akbari S, Solouk A. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. Eur J Med Chem 2021; 221:113572. [PMID: 34087497 DOI: 10.1016/j.ejmech.2021.113572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
It is often challenging to design diagnostic and therapeutic agents that fulfill all functional requirements. So, bulk and surface modifications as a common approach for biomedical applications have been suggested. There have been considerable research interests in using nanomaterials to the prementioned methods. Among all nanomaterials, dendritic materials with three-dimensional structures, host-guest properties, and nano-polymeric dimensions have received considerable attention. Amine-terminated dendritic structures including, polyamidoamine (PAMAM), polypropyleneimine (PPI), and polyethyleneimine (PEI), have been enormously utilized in bio-modification. This review briefly described the structure of these three common dendritic polymers and their use to modify diagnostic and therapeutic agents in six major applications, including drug delivery, gene delivery, biosensor, bioimaging, tissue engineering, and antimicrobial activity. The current review covers amine-terminated dendritic polymers toxicity challenging and improvement strategies as well.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Chow E, Raguse B, Della Gaspera E, Barrow SJ, Hong J, Hubble LJ, Chai R, Cooper JS, Sosa Pintos A. Flow-controlled synthesis of gold nanoparticles in a biphasic system with inline liquid–liquid separation. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00403c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Dimethylaminopyridine-stabilised gold nanoparticles are synthesised in a biphasic flow reactor system using organic/aqueous membrane separators and gas-permeable tubing.
Collapse
|
5
|
Bartolo M, Amaral JJ, Hirst LS, Ghosh S. Directed assembly of magnetic and semiconducting nanoparticles with tunable and synergistic functionality. Sci Rep 2019; 9:15784. [PMID: 31673043 PMCID: PMC6823540 DOI: 10.1038/s41598-019-52154-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 11/10/2022] Open
Abstract
The ability to fabricate new materials using nanomaterials as building blocks, and with meta functionalities, is one of the most intriguing possibilities in the area of materials design and synthesis. Semiconducting quantum dots (QDs) and magnetic nanoparticles (MNPs) are co-dispersed in a liquid crystalline (LC) matrix and directed to form self-similar assemblies by leveraging the host's thermotropic phase transition. These co-assemblies, comprising 6 nm CdSe/ZnS QDs and 5-20 nm Fe3O4 MNPs, bridge nano- to micron length scales, and can be modulated in situ by applied magnetic fields <250 mT, resulting in an enhancement of QD photoluminescence (PL). This effect is reversible in co-assemblies with 5 and 10 nm MNPs but demonstrates hysteresis in those with 20 nm MNPs. Transmission electron microscopy (TEM) and energy dispersive spectroscopy reveal that at the nanoscale, while the QDs are densely packed into the center of the co-assemblies, the MNPs are relatively uniformly dispersed through the cluster volume. Using Lorentz TEM, it is observed that MNPs suspended in LC rotate to align with the applied field, which is attributed to be the cause of the observed PL increase at the micro-scale. This study highlights the critical role of correlating multiscale spectroscopy and microscopy characterization in order to clarify how interactions at the nanoscale manifest in microscale functionality.
Collapse
Affiliation(s)
- Mark Bartolo
- School of Natural Sciences, University of California, Merced, CA, 95344, USA
| | - Jussi J Amaral
- School of Natural Sciences, University of California, Merced, CA, 95344, USA
| | - Linda S Hirst
- School of Natural Sciences, University of California, Merced, CA, 95344, USA
| | - Sayantani Ghosh
- School of Natural Sciences, University of California, Merced, CA, 95344, USA.
| |
Collapse
|
6
|
Morphology-Controlled Versatile One-Pot Synthesis of Hydrophobic Gold Nanodots, Nanobars, Nanorods, and Nanowires and Their Applications in Surface-Enhanced Raman Spectroscopy. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many previously reported syntheses of gold nanoparticles required lengthy reaction times, complicated operations, high temperatures, or multi-step manipulations. In this work, a morphology-controlled versatile one-pot synthesis of hydrophobic gold nanodots, nanobars, nanorods, and nanowires has been developed. A series of gold nanomaterials ranging from round nanodots, short nanobars, and long nanorods to ultrathin and ultralong nanowires (diameter <2 nm, length >2 μm) have been readily prepared by simply adjusting the feeding ratio of chloroauric acid to oleylamine, oleic acid, and triphenylsilane. The silk-like ultralong and ultrathin nanowires were found to have a single crystalline structure and may have significant potential applications in microelectronics and biosensors. Large sizes of gold spherical nanoparticles were obtained from gold nanodots via a seed-mediated growth approach. These nanoparticles and ultralong nanowires showed excellent surface-enhanced Raman scattering (SERS) activity in organic solvents and, therefore, were employed as efficient organic-soluble SERS substrates for the detection of hydrophobic food toxicants, such as 3,4-benzopyrene, and carcinogens, such as benzidine.
Collapse
|
7
|
Ray AS, Ghann WE, Tsoi PS, Szychowski B, Dockery LT, Pak YJ, Li W, Kane MA, Swaan P, Daniel MC. Set of Highly Stable Amine- and Carboxylate-Terminated Dendronized Au Nanoparticles with Dense Coating and Nontoxic Mixed-Dendronized Form. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3391-3403. [PMID: 30712354 PMCID: PMC6499480 DOI: 10.1021/acs.langmuir.8b03196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The synthesis of a novel poly(propyleneimine) (PPI) dendron in gram scale as well as its use in the formation of a highly stable, dendronized gold nanoparticle (AuNP)-based drug delivery platform is described herein. The AuNP-based platform is composed of three complementary parts: (i) a 15 nm AuNP core, (ii) a heterofunctional thioctic acid-terminated tetraethylene glycol spacer, and (iii) a third-generation PPI dendron with a unique protonation profile and diverse end-group functionalization that allows for further derivatization. The prepared dendronized AuNPs are able to withstand several rounds of lyophilization cycles with no sign of aggregation, are stable in phosphate-buffered saline and Hanks' buffer as well as in serum, and are resistant to degradation by glutathione exchange reactions. This nanocarrier platform displays a dense coating, with >1400 dendrons/AuNPs, which will enable very high payload. Furthermore, while amine-terminated AuNPs expectedly showed cytotoxicity against the MCF-7 breast cancer cell line from a NP concentration of 1 nM, the mixed monolayer AuNPs (coated with 40/60 amine/carboxylate dendrons) interestingly did not exhibit any sign of toxicity at concentrations as high as 15 nM, similar to the carboxylate-terminated AuNPs. The described dendronized AuNPs address the current practical need for a stable NP-based drug delivery platform which is scalable and easily conjugable, has long-term stability in solution, and can be conveniently formulated as a powder and redispersed in desired buffer or serum.
Collapse
Affiliation(s)
- Arunendra Saha Ray
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - William E. Ghann
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Phoebe S. Tsoi
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Brian Szychowski
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Lance T. Dockery
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Yewon J. Pak
- Department of Pharmaceutical Sciences, Center for Nanobiotechnology, University of Maryland, Baltimore, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Wenjing Li
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Maureen A. Kane
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Peter Swaan
- Department of Pharmaceutical Sciences, Center for Nanobiotechnology, University of Maryland, Baltimore, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Marie-Christine Daniel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| |
Collapse
|
8
|
Peña-González CE, Pedziwiatr-Werbicka E, Shcharbin D, Guerrero-Beltrán C, Abashkin V, Loznikova S, Jiménez JL, Muñoz-Fernández MÁ, Bryszewska M, Gómez R, Sánchez-Nieves J, de la Mata FJ. Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Trans 2018; 46:8736-8745. [PMID: 28091639 DOI: 10.1039/c6dt03791g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (AuNPs) and polycationic macromolecules are used as gene carriers. Their behaviour is dependent on several factors, such as the size and type of the framework, charge, etc. We have combined both types of systems and prepared AuNPs covered with cationic carbosilane dendrons with the aim to evaluate their biocompatibility. Water soluble dendronized cationic AuNPs were prepared following a straightforward procedure from dendrons, a gold precursor and a reducing agent in water and were characterized by 1H NMR, transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), and zeta potential (ZP). The biological properties of dendrons and AuNPs were determined by hemolysis, platelet aggregation and lymphocyte proliferation. These assays reflect modification of dendron properties when covering nanoparticles. For dendrons, hemolysis and platelet aggregation are generation dependent whilst, for AuNPs these properties are related to the bigger size of NPs. On the other hand, none of the systems induced lymphocyte proliferation. Selected cationic dendrons and AuNPs were chosen for gene delivery experiments employing a small interference RNA (siRNA Nef) against human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Cornelia E Peña-González
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
This chapter reviews the use of dendronized systems as nanocarriers for the delivery of chemotherapeutic drugs. Dendronized systems include dendrimers prepared through convergent methods as well as other systems containing dendrons (e.g., polymers, nanoparticles, liposomes). The preparation of such systems is detailed, followed by the various conjugation techniques used for the transport of chemotherapeutic drugs and their specific delivery to tumor cells. In addition, the ability of dendronized systems to provide passive and active targeting to tumors is discussed. The efficacy of drug delivery using dendronized systems is also illustrated through specific examples of kinetic and biological studies. Finally, the newest trends in conjugation of the most common chemotherapeutics to dendronized systems are described. Overall, this chapter highlights dendronized systems as a way to improve the therapeutic efficiency of drugs for the treatment of cancer. All the recent developments in areas, such as biodegradable dendrimers, modifications to enhance biocompatibility, selectively cleavable drug conjugations, ligand-mediated targeting, and the potential for multifunctional properties, show promises for future advances in cancer therapy.
Collapse
|
10
|
Cavuslar O, Celaloglu C, Duman FD, Konca YU, Yagci MB, Yagci Acar H. pH and molecular weight dependence of auric acid reduction by polyethylenimine and the gene transfection efficiency of cationic gold nanoparticles thereof. NEW J CHEM 2018. [DOI: 10.1039/c8nj00628h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small, cationic gold nanoparticles (GNPs) are produced by the direct reduction of auric acid in a non-reducing solvent, water, with branched polyethylenimine (bPEI) in a broad pH range (3.0–9.0).
Collapse
Affiliation(s)
- O. Cavuslar
- Koc University
- Graduate School of Materials Science and Engineering
- Rumelifeneri Yolu
- Istanbul
- Turkey
| | - C. Celaloglu
- Koc University
- Department of Chemistry, Rumelifeneri Yolu
- Istanbul
- Turkey
| | - F. D. Duman
- Koc University
- Department of Chemistry, Rumelifeneri Yolu
- Istanbul
- Turkey
| | - Y. U. Konca
- Koc University
- Department of Chemistry, Rumelifeneri Yolu
- Istanbul
- Turkey
| | - M. B. Yagci
- Koc University
- KUYTAM
- Rumelifeneri Yolu
- Istanbul
- Turkey
| | - H. Yagci Acar
- Koc University
- Graduate School of Materials Science and Engineering
- Rumelifeneri Yolu
- Istanbul
- Turkey
| |
Collapse
|
11
|
Russo M, La Corte D, Pisciotta A, Riela S, Alduina R, Lo Meo P. Binding abilities of polyaminocyclodextrins: polarimetric investigations and biological assays. Beilstein J Org Chem 2017; 13:2751-2763. [PMID: 29564010 PMCID: PMC5753052 DOI: 10.3762/bjoc.13.271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/09/2017] [Indexed: 12/04/2022] Open
Abstract
Three polyaminocyclodextrin materials, obtained by direct reaction between heptakis(6-deoxy-6-iodo)-β-cyclodextrin and the proper linear polyamines, were investigated for their binding properties, in order to assess their potential applications in biological systems, such as vectors for simultaneous drug and gene cellular uptake or alternatively for the protection of macromolecules. In particular, we exploited polarimetry to test their interaction with some model p-nitroaniline derivatives, chosen as probe guests. The data obtained indicate that binding inside the host cavity is mainly affected by interplay between Coulomb interactions and conformational restraints. Moreover, simultaneous interaction of the cationic polyamine pendant bush at the primary rim was positively assessed. Insights on quantitative aspects of the interaction between our materials and polyanions were investigated by studying the binding with sodium alginate. Finally, the complexation abilities of the same materials towards polynucleotides were assessed by studying their interaction with the model plasmid pUC19. Our results positively highlight the ability of our materials to exploit both the cavity and the polycationic branches, thus functioning as bimodal ligands.
Collapse
Affiliation(s)
- Marco Russo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Daniele La Corte
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Annalisa Pisciotta
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Serena Riela
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Paolo Lo Meo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
- ATeNCenter, University of Palermo, V.le delle Scienze ed. 18, 90128 Palermo, Italy
| |
Collapse
|
12
|
Sarazen ML, Jones CW. Insights into Azetidine Polymerization for the Preparation of Poly(propylenimine)-Based CO2 Adsorbents. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michele L. Sarazen
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Ortega-Muñoz M, Blanco V, Hernandez-Mateo F, Lopez-Jaramillo FJ, Santoyo-Gonzalez F. Catalytic Materials Based on Surface Coating with Poly(ethyleneimine)-Stabilized Gold Nanoparticles. ChemCatChem 2017. [DOI: 10.1002/cctc.201700776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariano Ortega-Muñoz
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Victor Blanco
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - F. Javier Lopez-Jaramillo
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry; Biotechnology Institute; Faculty of Sciences; University of Granada; 18071 Granada Spain
| |
Collapse
|
14
|
Enciso AE, Doni G, Nifosì R, Palazzesi F, Gonzalez R, Ellsworth AA, Coffer JL, Walker AV, Pavan GM, Mohamed AA, Simanek EE. Facile synthesis of stable, water soluble, dendron-coated gold nanoparticles. NANOSCALE 2017; 9:3128-3132. [PMID: 28211928 DOI: 10.1039/c6nr09679d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Upon reduction with sodium borohydride, diazonium tetrachloroaurate salts of triazine dendrons yield dendron-coated gold nanoparticles connected by a gold-carbon bond. These robust nanoparticles are stable in water and toluene solutions for longer than one year and present surface groups that can be reacted to change surface chemistry and manipulate solubility. Molecular modeling was used to provide insight on the hydration of the nanoparticles and their observed solubilties.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | - Giovanni Doni
- Department of Physics, King's College, London Strand, London WC2R 2NS, UK
| | - Riccardo Nifosì
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Ferruccio Palazzesi
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zurich, Switzerland and Facoltá di Informatica, Istituto di Scienze Computazionali, Universitá della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Roberto Gonzalez
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | | | - Jeffery L Coffer
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | - Amy V Walker
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA and Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Ahmed A Mohamed
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA and Department of Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| | - Eric E Simanek
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| |
Collapse
|
15
|
Lu F, Didier A. Catalytically Active Palladium Nanoparticle-Cored Ferrocenyl-Terminated Dendrimers. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Baczko K, Fensterbank H, Berini B, Bordage N, Clavier G, Méallet-Renault R, Larpent C, Allard E. Azide-functionalized nanoparticles as quantized building block for the design of soft-soft fluorescent polystyrene core-PAMAM shell nanostructures. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Krystyna Baczko
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Hélène Fensterbank
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Bruno Berini
- Groupe d'Etude de la Matière Condensée UMR-CNRS 8635, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Nadège Bordage
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Gilles Clavier
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Rachel Méallet-Renault
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Chantal Larpent
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Emmanuel Allard
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| |
Collapse
|
17
|
Cho TJ, Pettibone JM, Gorham JM, Nguyen TM, MacCuspie RI, Gigault J, Hackley VA. Unexpected Changes in Functionality and Surface Coverage for Au Nanoparticle PEI Conjugates: Implications for Stability and Efficacy in Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7673-7683. [PMID: 26114747 DOI: 10.1021/acs.langmuir.5b01634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cationic polyethylenimine conjugated gold nanoparticles (AuNP-PEI) are a widely studied vector for drug delivery and an effective probe for interrogating NP-cell interactions. However, an inconsistent body of literature currently exists regarding the reproducibility of physicochemical properties, colloidal stability, and efficacy for these species. To address this gap, we systematically examined the preparation, stability, and formation mechanism of PEI conjugates produced from citrate-capped AuNPs. We considered the dependence on relative molar mass, Mr, backbone conformation, and material source. The conjugation mechanism of Au-PEI was probed using attenuated total reflectance FTIR and X-ray photoelectron spectroscopy, revealing distinct fates for citrate when interacting with different PEI species. The differences in residual citrate, PEI properties, and sample preparation resulted in distinct products with differentiated stability. Overall, branched PEI (25 kDa) conjugates exhibited the greatest colloidal stability in all media tested. By contrast, linear PEI (25 kDa) induced agglomeration. Colloidal stability of the products was also observed to correlate with displaced citrate, which supports a glaring knowledge gap that has emerged regarding the role of this commonly used carboxylate species as a "place holder" for conjugation with ligands of broad functionalities. We observed an unexpected and previously unreported conversion of amine functional groups to quaternary ammonium species for 10 kDa branched conjugates. Results suggest that the AuNP surface catalyzes this conversion. The product is known to manifest distinct processes and uptake in biological systems compared to amines and may lead to unintentional toxicological consequences or decreased efficacy as delivery vectors. Overall, comprehensive physicochemical characterization (tandem spectroscopy methods combined with physical measurements) of the conjugation process provides a methodology for elucidating the contributing factors of colloidal stability and chemical functionality that likely influence the previously reported variations in conjugate properties and biological response models.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John M Pettibone
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Justin M Gorham
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Thao M Nguyen
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Robert I MacCuspie
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Julien Gigault
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
Dai L, Zhang Q, Li J, Shen X, Mu C, Cai K. Dendrimerlike mesoporous silica nanoparticles as pH-responsive nanocontainers for targeted drug delivery and bioimaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7357-72. [PMID: 25765172 DOI: 10.1021/acsami.5b00746] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we employed dendrimerlike mesoporous silica nanoparticles with hierarchical pores (HPSNs) to fabricate drug delivery system bioimaging and targeted tumor therapy in vivo. N,N-phenylenebis(salicylideneimine)dicarboxylic acid (Salphdc) was used both as the gatekeeper of HPSNs via pH-responsive coordination bonds between -COOH of Salphdc and In(3+) ions and as a fluorescence imaging agent. Folic acid was then conjugated to Salphdc as the targeting unit. The results revealed that the system could deliver model drug DOX to the tumor site with high efficiency and then cause cell apoptosis and tumor growth inhibition. Moreover, the conjugated Salphdc was proved to be a promising fluorescence probe for tracing distribution of the system in vivo. The study affords a potential nanoconainer for cancer therapy and biological imaging.
Collapse
Affiliation(s)
- Liangliang Dai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Qingfeng Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jinghua Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Caiyun Mu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
19
|
Brunetti V, Bouchet LM, Strumia MC. Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems. NANOSCALE 2015; 7:3808-3816. [PMID: 25566989 DOI: 10.1039/c4nr04438j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoparticle-cored dendrimers (NCDs) are now offering themselves as versatile carriers because of their colloidal stability, tunable membrane properties and ability to encapsulate or integrate a broad range of drugs and molecules. This kind of hybrid nanocomposite aims to combine the advantages of stimuli-responsive dendritic coatings, in order to regulate the drug release behaviour under different conditions and improve the biocompatibility and in vivo half-time circulation of the inorganic nanoparticles. Size, surface chemistry and shape are key nanocarrier properties to evaluate. Here, we have reviewed the most recent advances of NCDs in drug delivery systems, compared their behaviour with non-dendritic stabilized nanoparticles and highlighted their challenges and promising applications in the future.
Collapse
Affiliation(s)
- V Brunetti
- Departamento de Fisicoquímica (INFIQC, CONICET-UNC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, (5016) Córdoba, Argentina
| | | | | |
Collapse
|
20
|
Bédard M, Avti PK, Lam T, Rouleau L, Tardif JC, Rhéaume É, Lesage F, Kakkar A. Conjugation of multivalent ligands to gold nanoshells and designing a dual modality imaging probe. J Mater Chem B 2015; 3:1788-1800. [PMID: 32262252 DOI: 10.1039/c4tb01811g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Design and synthesis of branched tetraethylene glycol (TEG) based ligands for subsequent conjugation to gold nanoshells are reported. TEG enhances the aqueous solubility of hollow gold nanoshells (HAuNShs), and the branched architecture provides stability. An examination of the supernatant of the surface displacement reaction shows that the structure of the ligand plays an important role in the functionalization of HAuNShs. The binding of multivalent ligands leads to rupturing of the gold nanoshell architecture; most probably due to the large dendron not compensating the replacement of small citrate capping agents. The construction of a probe with dual imaging capabilities is demonstrated by covalent linking of a dendron containing Cy5.5A dye to gold nanoshells. It leads to fluorescence quenching of Cy5.5A by the gold nanoshells, as evidenced in solution and in cellular internalization studies with J774 and bEnd.3 cells.
Collapse
Affiliation(s)
- Mathieu Bédard
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ng VWK, Avti PK, Bédard M, Lam T, Rouleau L, Tardif JC, Rhéaume É, Lesage F, Kakkar A. Miktoarm star conjugated multifunctional gold nanoshells: synthesis and an evaluation of biocompatibility and cellular uptake. J Mater Chem B 2014; 2:6334-6344. [PMID: 32262150 DOI: 10.1039/c4tb00722k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple and highly versatile click chemistry based synthetic strategy to develop an ABC type miktoarm star ligand that is conjugated to gold nanoshells (GNS) is reported. The surface functionalized multifunctional GNS contain lipoic acid (LA) as a model therapeutic agent, poly(ethylene glycol) (PEG350) as a solubilizing and stealth agent, and tetraethylene glycol (TEG) with a terminally conjugated thiol moiety. These GNS have an average size of 40 nm, a shell thickness of 6 nm, a well-defined crystal structure lattice (111), and a surface absorption plasmon band in the near infrared (NIR) region. The miktoarm star and GNS functionalized with this ligand are non-cytotoxic for up to 5 μg mL-1 concentrations, and human umbilical vein endothelial cells internalize more than 85% of these GNS at 5 μg mL-1. Our results establish that the biocompatible miktoarm star ligand provides a useful platform to synthetically articulate the introduction of multiple functions onto GNS, and enhance their scope by combining their inherent imaging capabilities with efficient delivery and accumulation of active therapeutic agents.
Collapse
Affiliation(s)
- Vanessa W K Ng
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cho TJ, MacCuspie RI, Gigault J, Gorham JM, Elliott JT, Hackley VA. Highly stable positively charged dendron-encapsulated gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3883-3893. [PMID: 24625049 DOI: 10.1021/la5002013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the development of a novel cationic dendron (TAG1-PCD) and a positively charged gold nanoparticle-dendron conjugate (PCD-AuNP). TAG1-PCD was designed by considering the reactivity, hydrophilicity, and cationic nature that is required to yield a stable gold conjugate in aqueous media. The PCD-AuNPs, nominally 10 nm in size, were synthesized by reduction of chloroauric acid in the presence of TAG1-PCD. The physicochemical properties of PCD-AuNPs were characterized by dynamic light scattering, transmission electron microscopy, UV-vis absorbance, and X-ray photoelectron spectroscopy for investigation of size distribution, shape uniformity, surface plasmon resonance bands, and Au-dendron bonding. Asymmetric-flow field flow fractionation was employed to confirm the in situ size, purity, and surface properties of the PCD-AuNPs. Additionally, the stability of PCD-AuNPs was systematically evaluated with respect to shelf life determination, stability in biological media and a wide range of pH values, chemical resistance against cyanide, redispersibility from lyophilized state, and stability at temperatures relevant to biological systems. Dose dependent cell viability was evaluated in vitro using the human lung epithelial cell line A549 and a monkey kidney Vero cell line. Observations from in vitro studies are discussed. Overall, the investigation confirmed the successful development of stable PCD-AuNPs with excellent stability in biologically relevant test media containing proteins and electrolytes, and with a shelf life exceeding 6 months. The excellent aqueous stability and apparent lack of toxicity for this conjugate enhances its potential use as a test material for investigating interactions between positively charged NPs and biocellular and biomolecular systems, or as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division and ‡Biosystems and Biomaterials Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | | | | | | | | | |
Collapse
|
23
|
Tsai DH, Cho TJ, Elzey SR, Gigault JC, Hackley VA. Quantitative analysis of dendron-conjugated cisplatin-complexed gold nanoparticles using scanning particle mobility mass spectrometry. NANOSCALE 2013; 5:5390-5395. [PMID: 23657543 DOI: 10.1039/c3nr00543g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report a high-resolution and traceable method to quantify the drug loading on nanoparticle-based cancer therapeutics, and demonstrate this method using a model cisplatin functionalized dendron-gold nanoparticle (AuNP) conjugate. Electrospray differential mobility analysis (ES-DMA) provides upstream size classification based on the electrical mobility of AuNP conjugates in aerosol form following electrospray conversion from the aqueous suspension. A condensation particle counter (CPC) and inductively coupled plasma mass spectrometer (ICP-MS) provide the principal downstream quantification. CPC and ICP-MS yield complementary number-based and elemental mass-based particle size distributions, respectively. Conjugation using three different dendron formulations was differentiated based on changes in the mean mobility particle size. The subsequent cisplatin complexation to the dendron conjugates was quantified by coupling ES-DMA with ICP-MS. Discrete AuNP clusters (e.g., dimers, trimers) could be resolved from the relative quantity of atoms (i.e., Au and Pt) per particle after separation by ES-DMA. Surface density of cisplatin on Au was shown to be proportional to the density of carboxylic groups present and was independent of the state of AuNP clustering. Additionally, we found that colloidal stability of the conjugate is inversely proportional to the surface loading of cisplatin. This study demonstrates a prototype methodology to provide traceable quantification and to determine other important formulation factors relevant to therapeutic performance.
Collapse
Affiliation(s)
- De-Hao Tsai
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, MD 20899, USA
| | | | | | | | | |
Collapse
|
24
|
Pan H, Grow ME, Wilson O, Daniel MC. A new poly(propylene imine) dendron as potential convenient building-block in the construction of multifunctional systems. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.01.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
|
26
|
Rousseau G, Fensterbank H, Baczko K, Cano M, Allard E, Larpent C. Azido-Coated Nanoparticles: A Versatile Clickable Platform for the Preparation of Fluorescent Polystyrene Core–PAMAM Shell Nanoparticles. Macromolecules 2012. [DOI: 10.1021/ma300126h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guillaume Rousseau
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Hélène Fensterbank
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Krystyna Baczko
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Manuel Cano
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Emmanuel Allard
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Chantal Larpent
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| |
Collapse
|
27
|
Banu K, Shimura T. Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid–liquid interface. NEW J CHEM 2012. [DOI: 10.1039/c2nj40478h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
|