1
|
Lu C, Ouyang J, Zhang J. Core-shell upconversion nanoparticles with suitable surface modification to overcome endothelial barrier. DISCOVER NANO 2024; 19:181. [PMID: 39532756 PMCID: PMC11557796 DOI: 10.1186/s11671-024-04139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Upconversion nanoparticles (UCNPs), capable of converting near-infrared (NIR) light into high-energy emission, hold significant promise for bioimaging applications. However, the presence of tissue barriers poses a challenge to the effective delivery of nanoparticles (NPs) to target organs. In this study, we demonstrate the core-shell UCNPs modified with cationic biopolymer, i.e., N, N-trimethyl chitosan (TMC), can overcome endothelial barriers. The core-shell UCNP is composed of NaGdF4: Yb3+,Tm3+ (16.7 ± 2.7 nm) as core materials and silica (SiO2) shell. The average particle size of UCNPs@SiO2 is estimated at 26.1 ± 3.7 nm. X-ray diffraction (XRD), transmission electron microscopy (TEM) and element mapping shows the formation of hexagonal crystal structure of β-NaGdF4 and elements doping. The surface of UCNPs@SiO2 has been modified with poly(ethylene glycol) (PEG) to enhance water dispersibility and colloidal stability, and further modified with TMC with the zeta potential increasing from -2.1 ± 0.96 mV to 26.9 ± 12.6 mV. No significant toxic effect is imposed to HUVECs when the cells are treated with core-shell UCNPs with surface modification up to 250 µg/mL. The transport ability of the core-shell UCNPs has been evaluated by using the in vitro endothelial barrier model. Transepithelial electrical resistance (TEER) and immunofluorescence staining of tight junction proteins have been employed to verify the integrity of the in vitro endothelial barrier model. The results indicate that the transport percentage of the UCNPs@SiO2 with PEG and TMC through the model is up to 4.56%, which is twice higher than that of the UCNPs@SiO2 with PEG but without TMC and six times that of the UCNPs@SiO2.
Collapse
Affiliation(s)
- Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Jianying Ouyang
- Quantum and Nanotechnologies Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
- School of Biomedical Engineering, University of Western Ontario, London, ON, 6A 5B9, Canada.
| |
Collapse
|
2
|
Kaur A, Singh N, Kaur H, Kakoty V, Sharma DS, Khursheed R, Babu MR, Harish V, Gupta G, Gulati M, Kumar P, Dureja H, Alharthi NS, Khan FR, Rehman ZU, Hakami MA, Patel M, Patel R, Zandi M, Vishwas S, Dua K, Singh SK. Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers. J Drug Deliv Sci Technol 2023; 87:104868. [DOI: 10.1016/j.jddst.2023.104868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122719. [PMID: 36559214 PMCID: PMC9786068 DOI: 10.3390/pharmaceutics14122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
It is well known that the presence of a blood-brain barrier (BBB) makes drug delivery to the brain more challenging. There are various mechanistic routes through which therapeutic molecules travel and deliver the drug across the BBB. Among all the routes, the transcellular route is widely explored to deliver therapeutics. Advances in nanotechnology have encouraged scientists to develop novel formulations for brain drug delivery. In this article, we have broadly discussed the BBB as a limitation for brain drug delivery and ways to solve it using novel techniques such as nanomedicine, nose-to-brain drug delivery, and peptide as a drug delivery carrier. In addition, the article will help to understand the different factors governing the permeability of the BBB, as well as various formulation-related factors and the body clearance of the drug delivered into the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rakesh Kumar Tekade
- Correspondence: ; Tel.: +91-796674550 or +91-7966745555; Fax: +91-7966745560
| |
Collapse
|
4
|
Paramanick D, Singh VD, Singh VK. Neuroprotective effect of phytoconstituents via nanotechnology for treatment of Alzheimer diseases. J Control Release 2022; 351:638-655. [DOI: 10.1016/j.jconrel.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
|
5
|
Sorokina SA, Shifrina ZB. Dendrimers as Antiamyloid Agents. Pharmaceutics 2022; 14:760. [PMID: 35456594 PMCID: PMC9031116 DOI: 10.3390/pharmaceutics14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Dendrimer-protein conjugates have significant prospects for biological applications. The complexation changes the biophysical behavior of both proteins and dendrimers. The dendrimers could influence the secondary structure of proteins, zeta-potential, distribution of charged regions on the surface, the protein-protein interactions, etc. These changes offer significant possibilities for the application of these features in nanotheranostics and biomedicine. Based on the dendrimer-protein interactions, several therapeutic applications of dendrimers have emerged. Thus, the formation of stable complexes retains the disordered proteins on the aggregation, which is especially important in neurodegenerative diseases. To clarify the origin of these properties and assess the efficiency of action, the mechanism of protein-dendrimer interaction and the nature and driving force of binding are considered in this review. The review outlines the antiamyloid activity of dendrimers and discusses the effect of dendrimer structures and external factors on their antiamyloid properties.
Collapse
Affiliation(s)
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia;
| |
Collapse
|
6
|
Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021; 22:10118. [PMID: 34576281 PMCID: PMC8465340 DOI: 10.3390/ijms221810118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood-brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Jisu Song
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Jin Zhang
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| |
Collapse
|
7
|
Jatczak-Pawlik I, Gorzkiewicz M, Studzian M, Zinke R, Appelhans D, Klajnert-Maculewicz B, Pułaski Ł. Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines. Biomacromolecules 2021; 22:3396-3407. [PMID: 34286584 PMCID: PMC8382243 DOI: 10.1021/acs.biomac.1c00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/06/2021] [Indexed: 12/22/2022]
Abstract
New therapeutic strategies for personalized medicine need to involve innovative pharmaceutical tools, for example, modular nanoparticles designed for direct immunomodulatory properties. We synthesized mannose-functionalized poly(propyleneimine) glycodendrimers with a novel architecture, where freely accessible mannose moieties are presented on poly(ethylene glycol)-based linkers embedded within an open-shell maltose coating. This design enhanced glycodendrimer bioactivity and led to complex functional effects in myeloid cells, with specific induction of interleukin-8 expression by mannose glycodendrimers detected in HL-60 and THP-1 cells. We concentrated on explaining the molecular mechanism of this phenomenon, which turned out to be different in both investigated cell lines: in HL-60 cells, transcriptional activation via AP-1 binding to the promoter predominated, while in THP-1 cells (which initially expressed less IL-8), induction was mediated mainly by mRNA stabilization. The success of directed immunomodulation, with synthetic design guided by assumptions about mannose-modified dendrimers as exogenous regulators of pro-inflammatory chemokine levels, opens new possibilities for designing bioactive nanoparticles.
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department
of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 281/289 Rzgowska Street, Lodz 93-338, Poland
- Polish
Mother’s Memorial Hospital Research Institute (PMMHRI), 281/289 Rzgowska Street, Lodz 93-338, Poland
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Michał Gorzkiewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Maciej Studzian
- Department
of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Robin Zinke
- Leibniz
Institute of Polymer Research Dresden, Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz
Institute of Polymer Research Dresden, Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Klajnert-Maculewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Łukasz Pułaski
- Department
of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
- Laboratory
of Transcriptional Regulation, Institute
of Medical Biology PAS, 106 Lodowa Street, Lodz 93-232, Poland
| |
Collapse
|
8
|
Delyanee M, Akbari S, Solouk A. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. Eur J Med Chem 2021; 221:113572. [PMID: 34087497 DOI: 10.1016/j.ejmech.2021.113572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
It is often challenging to design diagnostic and therapeutic agents that fulfill all functional requirements. So, bulk and surface modifications as a common approach for biomedical applications have been suggested. There have been considerable research interests in using nanomaterials to the prementioned methods. Among all nanomaterials, dendritic materials with three-dimensional structures, host-guest properties, and nano-polymeric dimensions have received considerable attention. Amine-terminated dendritic structures including, polyamidoamine (PAMAM), polypropyleneimine (PPI), and polyethyleneimine (PEI), have been enormously utilized in bio-modification. This review briefly described the structure of these three common dendritic polymers and their use to modify diagnostic and therapeutic agents in six major applications, including drug delivery, gene delivery, biosensor, bioimaging, tissue engineering, and antimicrobial activity. The current review covers amine-terminated dendritic polymers toxicity challenging and improvement strategies as well.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Baroud M, Lepeltier E, Thepot S, El-Makhour Y, Duval O. The evolution of nucleosidic analogues: self-assembly of prodrugs into nanoparticles for cancer drug delivery. NANOSCALE ADVANCES 2021; 3:2157-2179. [PMID: 36133769 PMCID: PMC9418958 DOI: 10.1039/d0na01084g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/20/2021] [Indexed: 05/12/2023]
Abstract
Nucleoside and nucleotide analogs are essential tools in our limited arsenal in the fight against cancer. However, these structures face severe drawbacks such as rapid plasma degradation or hydrophilicity, limiting their clinical application. Here, different aspects of nucleoside and nucleotide analogs have been exposed, while providing their shortcomings. Aiming to improve their fate in the body and combating their drawbacks, two different approaches have been discussed, the prodrug and nanocarrier technologies. Finally, a novel approach called "PUFAylation" based on both the prodrug and nanocarrier technologies has been introduced, promising to be the supreme method to create a novel nucleoside or nucleotide analog based formulation, with enhanced efficacy and highly reduced toxicity.
Collapse
Affiliation(s)
- Milad Baroud
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
| | - Sylvain Thepot
- University Hospital of Angers, Hematology 49933 Angers France
- Université d'Angers, Inserm, CRCINA 49000 Angers France
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL) France
| | - Yolla El-Makhour
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University Nabatieh Lebanon
| | - Olivier Duval
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021 Angers France
- University Hospital of Angers, Hematology 49933 Angers France
| |
Collapse
|
10
|
Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Appelhans D, Bryszewska M, Borowiec M. Neurotoxicity of poly(propylene imine) glycodendrimers. Drug Chem Toxicol 2020; 45:1484-1492. [DOI: 10.1080/01480545.2020.1843472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
- GeneaMed LTD, Lodz, Poland
- University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
- GeneaMed LTD, Lodz, Poland
| | | | | | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol 2020; 403:115139. [PMID: 32687837 DOI: 10.1016/j.taap.2020.115139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cancer nanotherapeutics have shown promise in resolving some of the limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, and low therapeutic indices, Among the various nanoparticles that are available, dendrimers, highly branched macromolecules with a specific size and shape, are one of the most promising ones. In this preliminary study, we tested the anti-tumor activity of maltotriose-modified fourth-generation poly(propylene imine) glycodendrimers (PPI-G4-M3) in vivo in the subcutaneous MEC-1 xenograft model of human chronic lymphocytic leukemia (CLL) in NOD scid gamma mice. Fludarabine was used for model validation and as a positive treatment control. The anti-tumor response was calculated as tumor volume, tumor control ratio, and tumor growth inhibition. The study showed that PPI-G4-M3 inhibited subcutaneous tumor growth more efficiently than fludarabine. The anti-tumor response was dose-dependent. Cationic PPI-G4-M3 showed the highest anti-tumor activity but also higher toxicity than the neutral dendrimers and fludarabine. These first promising results warrant further studies in the optimization of dendrimers charge, dose, route and schedule of administration to combat CLL.
Collapse
|
12
|
Validation of Poly(Propylene Imine) Glycodendrimers Towards Their Anti-prion Conversion Efficiency. Mol Neurobiol 2019; 57:1863-1874. [PMID: 31848935 DOI: 10.1007/s12035-019-01837-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Prion diseases, such as the sporadic Creutzfeldt-Jakob disease (sCJD), are a class of fatal neurodegenerative disorders. Currently, there is no efficient treatment or therapy available. Hence, the search for molecules that may inhibit the conversion of the cellular prion protein (PrPC) into its pathological counterpart PrPScrapie (PrPSc) is of great urgency. Here, we report the generation- and dose-dependent biological action of dense-shell poly(propylene imine) (PPI) glycodendrimers by using scrapie-infected neuroblastoma (ScN2a) cells and the real-time quaking-induced conversion assay (RT-QuIC) for validation of anti-prion efficiencies. Whereas the 2nd and 3rd generation of PPI glycodendrimers exhibited anti-prion conversion efficiency in ScN2a cells validated by RT-QuIC analysis, we observed that the 4th generation of glycodendrimers had shown no significant effect. Translational RT-QuIC studies conducted with human prions derived from sCJD patients indicated an anti-prion conversion effect (not on PrPRes degradation) of PPI glycodendrimers against human prions with the highest inhibitory activity of the 4th generation of PPI glycodendrimers towards prion aggregation compared to the 2nd and 3rd generation. In conclusion, our study highlights the potential of PPI glycodendrimers as therapeutic compounds due to their anti-conversion activity on human prions in a PrPSc strain depending manner.
Collapse
|
13
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
14
|
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Dwivedi N, Shah J, Mishra V, Tambuwala M, Kesharwani P. Nanoneuromedicine for management of neurodegenerative disorder. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Seixas N, Ravanello BB, Morgan I, Kaluđerović GN, Wessjohann LA. Chlorambucil Conjugated Ugi Dendrimers with PAMAM-NH₂ Core and Evaluation of Their Anticancer Activity. Pharmaceutics 2019; 11:E59. [PMID: 30717083 PMCID: PMC6409784 DOI: 10.3390/pharmaceutics11020059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Herein, a new Ugi multicomponent reaction strategy is described to enhance activity and solubility of the chemotherapeutic drug chlorambucil through its conjugation to poly(amidoamine) (PAMAM-NH₂) dendrimers with the simultaneous introduction of lipidic (i-Pr) and cationic (⁻NH₂) or anionic (⁻COOH) groups. Standard viability assays were used to evaluate the anticancer potential of the water-soluble dendrimers against PC-3 prostate and HT-29 colon cancer cell lines, as well as non-cancerous mouse NIH3T3 fibroblasts. It could be demonstrated that the anticancer activity against PC-3 cells was considerably improved when both chlorambucil and ⁻NH₂ (cationic) groups were present on the dendrimer surface (1b). Additionally, this dendrimer showed activity only against the prostate cancer cells (PC-3), while it did not affect colon cancer cells and fibroblasts significantly. The cationic chlorambucil-dendrimer 1b blocks PC-3 cells in the G2/M phase and induces caspase independent apoptosis.
Collapse
Affiliation(s)
- Nalin Seixas
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Bruno B Ravanello
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Strasse 2, 06217 Merseburg, Germany.
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
17
|
Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:198-209. [PMID: 30708052 DOI: 10.1016/j.nano.2019.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 01/02/2023]
Abstract
Poly(propylene imine) dendrimers have been shown to be promising 3-dimensional polymers for the use in the pharmaceutical and biomedical applications. Our aims of this study were first, to synthesize a novel type of dendrimer with poly(propylene imine) core and maltose-histidine shell (G4HisMal) assessing if maltose-histidine shell can improve the biocompatibility and the ability to cross the blood-brain barrier, and second, to investigate the potential of G4HisMal to protect Alzheimer disease transgenic mice from memory impairment. Our data demonstrate that G4HisMal has significantly improved biocompatibility and ability to cross the blood-brain barrier in vivo. Therefore, we suggest that a maltose-histidine shell can be used to improve biocompatibility and ability to cross the blood-brain barrier of dendrimers. Moreover, G4HisMal demonstrated properties for synapse and memory protection when administered to Alzheimer disease transgenic mice. Therefore, G4HisMal can be considered as a promising drug candidate to prevent Alzheimer disease via synapse protection.
Collapse
|
18
|
Liegertová M, Wrobel D, Herma R, Müllerová M, Šťastná LČ, Cuřínová P, Strašák T, Malý M, Čermák J, Smejkal J, Štofik M, Maly J. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology 2018; 12:797-818. [DOI: 10.1080/17435390.2018.1475582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michaela Liegertová
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Dominika Wrobel
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Regina Herma
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | | | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Marek Malý
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Čermák
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Jiří Smejkal
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marcel Štofik
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Maly
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| |
Collapse
|
19
|
Abstract
Delivery of imaging agents and pharmaceutical payloads to the central nervous system (CNS) is essential for efficient diagnosis and treatment of brain diseases. However, therapeutic delivery is often restricted by the blood-brain barrier (BBB), which prevents transport of clinical compounds to their region of interest. This review discusses the methods that have been used to avoid or overcome this barrier, presenting the use of biologically-derived nanomaterial systems as an efficient strategy for the diagnosis and treatment of CNS diseases. Biological nanomaterials have many advantages over synthetic systems, including being biodegradable, biocompatible, easily surface functionalised for conjugation of targeting moieties, and are often able to self-assemble. These abilities are discussed in relation to various systems, including liposomes, dendrimers, and viral nanoparticles.
Collapse
|
20
|
Firdaus S, Geisler M, Friedel P, Banerjee S, Appelhans D, Voit B, Lederer A. Glyco-pseudodendrimers on a Polyester Basis: Synthesis and Investigation of Protein-Pseudodendrimer Interaction. Macromol Rapid Commun 2018; 39:e1800364. [PMID: 29984438 DOI: 10.1002/marc.201800364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/08/2018] [Indexed: 11/09/2022]
Abstract
Molar mass and end group number of a hyperbranched polyester are significantly increased by its transformation to a pseudodendrimer. Three generations of pseudodendrimers are obtained from hyperbranched aliphatic polyester core by modification with a protected AB*2 monomer. A sequence of protection and deprotection steps leads to OH-terminated pseudodendrimers. NMR studies confirm maximum degree of branching in the first generation, which slightly decreases in the next two generations. Uniform, dense molecular structure formation was confirmed by MD simulation. Further modification to glyco-pseudodendrimers was performed with α-D-mannose leading to high molar masses and dense distribution of sugar units. The interaction of these sugar units with a plant lectin concanavalin A (Con A) was investigated using dynamic light scattering and cryogenic transmission electron microscopy. The protein-interaction studies of the glyco-pseudodendrimers confirm a loose network with Con A. The interaction activity depends on the generation number and modification degree.
Collapse
Affiliation(s)
- Shamila Firdaus
- Polymer Separation Group, Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Martin Geisler
- Polymer Separation Group, Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Peter Friedel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, India
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Albena Lederer
- Polymer Separation Group, Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
21
|
Gorzkiewicz M, Buczkowski A, Appelhans D, Voit B, Pułaski Ł, Pałecz B, Klajnert-Maculewicz B. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH- and salt-dependent manner - model studies for adenosine analogue drug delivery. Int J Pharm 2018; 544:83-90. [PMID: 29653214 DOI: 10.1016/j.ijpharm.2018.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
Abstract
Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues.
Collapse
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Adam Buczkowski
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, 165 Pomorska St., 90-236 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Łukasz Pułaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa St., 93-232 Lodz, Poland
| | - Bartłomiej Pałecz
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, 165 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
22
|
Gorzkiewicz M, Sztandera K, Jatczak-Pawlik I, Zinke R, Appelhans D, Klajnert-Maculewicz B, Pulaski Ł. Terminal Sugar Moiety Determines Immunomodulatory Properties of Poly(propyleneimine) Glycodendrimers. Biomacromolecules 2018; 19:1562-1572. [DOI: 10.1021/acs.biomac.8b00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Izabela Jatczak-Pawlik
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Robin Zinke
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Łukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa Street, 93-232 Lodz, Poland
| |
Collapse
|
23
|
Gorzkiewicz M, Jatczak-Pawlik I, Studzian M, Pułaski Ł, Appelhans D, Voit B, Klajnert-Maculewicz B. Glycodendrimer Nanocarriers for Direct Delivery of Fludarabine Triphosphate to Leukemic Cells: Improved Pharmacokinetics and Pharmacodynamics of Fludarabine. Biomacromolecules 2018; 19:531-543. [PMID: 29323872 DOI: 10.1021/acs.biomac.7b01650] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fludarabine, a nucleoside analogue antimetabolite, has complicated pharmacokinetics requiring facilitated transmembrane transport and intracellular conversion to triphosphate nucleotide form (Ara-FATP), causing it to be susceptible to emergence of drug resistance. We are testing a promising strategy to improve its clinical efficacy by direct delivery of Ara-FATP utilizing a biocompatible glycodendrimer nanocarrier system. Here, we present results of a proof-of-concept experiment in several in vitro-cultured leukemic cell lines (CCRF, THP-1, U937) using noncovalent complexes of maltose-modified poly(propyleneimine) dendrimer and fludarabine triphosphate. We show that Ara-FATP has limited cytotoxic activity toward investigated cells relative to free nucleoside (Ara-FA), but complexation with the glycodendrimer (which does not otherwise influence cellular metabolism) drastically increases its toxicity. Moreover, we show that transport via hENT1 is a limiting step in Ara-FA toxicity, while complexation with dendrimer allows Ara-FATP to kill cells even in the presence of a hENT1 inhibitor. Thus, the use of glycodendrimers for drug delivery would allow us to circumvent naturally occurring drug resistance due to decreased transporter activity. Finally, we demonstrate that complex formation does not change the advantageous multifactorial intracellular pharmacodynamics of Ara-FATP, preserving its high capability to inhibit DNA and RNA synthesis and induce apoptosis via the intrinsic pathway. In comparison to other nucleoside analogue drugs, fludarabine is hereby demonstrated to be an optimal candidate for maltose glycodendrimer-mediated drug delivery in antileukemic therapy.
Collapse
Affiliation(s)
| | | | | | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS , 106 Lodowa Street, 93-232 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | | |
Collapse
|
24
|
Janaszewska A, Gorzkiewicz M, Ficker M, Petersen JF, Paolucci V, Christensen JB, Klajnert-Maculewicz B. Pyrrolidone Modification Prevents PAMAM Dendrimers from Activation of Pro-Inflammatory Signaling Pathways in Human Monocytes. Mol Pharm 2017; 15:12-20. [DOI: 10.1021/acs.molpharmaceut.7b00515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anna Janaszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Mario Ficker
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | | | - Valentina Paolucci
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Jørn Bolstad Christensen
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Barbara Klajnert-Maculewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
25
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
26
|
Gorzkiewicz M, Klajnert-Maculewicz B. Dendrimers as nanocarriers for nucleoside analogues. Eur J Pharm Biopharm 2017; 114:43-56. [DOI: 10.1016/j.ejpb.2016.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
27
|
Studzian M, Szulc A, Janaszewska A, Appelhans D, Pułaski Ł, Klajnert-Maculewicz B. Mechanisms of Internalization of Maltose-Modified Poly(propyleneimine) Glycodendrimers into Leukemic Cell Lines. Biomacromolecules 2017; 18:1509-1520. [DOI: 10.1021/acs.biomac.7b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Łukasz Pułaski
- Laboratory
of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | | |
Collapse
|
28
|
Jatczak-Pawlik I, Gorzkiewicz M, Studzian M, Appelhans D, Voit B, Pulaski L, Klajnert-Maculewicz B. Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line. Pharm Res 2016; 34:136-147. [PMID: 27766462 PMCID: PMC5174147 DOI: 10.1007/s11095-016-2049-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/03/2016] [Indexed: 01/11/2023]
Abstract
Purpose Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
| | - Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maciej Studzian
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa St., 93-232, Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| |
Collapse
|
29
|
Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, Cui Y, Savina IN, Mikhalovska LI, Sandeman SR, Howel CA, Mikhalovsky SV. Nano carriers for drug transport across the blood-brain barrier. J Drug Target 2016; 25:17-28. [PMID: 27126681 DOI: 10.1080/1061186x.2016.1184272] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.
Collapse
Affiliation(s)
- Xinming Li
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China.,b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - John Tsibouklis
- b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - Tingting Weng
- c Department of Chemical Engineering , Guangdong Petroleum and Chemical Technology Institute , Foshan , China
| | - Buning Zhang
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guoqiang Yin
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guangzhu Feng
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Yingde Cui
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Irina N Savina
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Lyuba I Mikhalovska
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Susan R Sandeman
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Carol A Howel
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Sergey V Mikhalovsky
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK.,e School of Engineering , Nazarbayev Uiversity , Astana , Kazakhstan
| |
Collapse
|
30
|
Wrońska N, Felczak A, Zawadzka K, Poszepczyńska M, Różalska S, Bryszewska M, Appelhans D, Lisowska K. Poly(Propylene Imine) Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents. Molecules 2015; 20:19330-42. [PMID: 26512634 PMCID: PMC6331957 DOI: 10.3390/molecules201019330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX) against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine) (PPI) dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3). The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Martyna Poszepczyńska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143, Pomorska Street, 90-236 Lodz, Poland.
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Street 6, 01069 Dresden, Germany.
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|
31
|
Wrobel D, Appelhans D, Signorelli M, Wiesner B, Fessas D, Scheler U, Voit B, Maly J. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1490-501. [PMID: 25843678 DOI: 10.1016/j.bbamem.2015.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/31/2023]
Abstract
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers - OS) or completely (dense shell glycodendrimers - DS) modified with maltose residues. As a model membrane, two types of 100nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.
Collapse
Affiliation(s)
- Dominika Wrobel
- Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czech Republic.
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Marco Signorelli
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Universita di Milano, Milano, Italy
| | - Brigitte Wiesner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Dimitrios Fessas
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Universita di Milano, Milano, Italy
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Jan Maly
- Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czech Republic
| |
Collapse
|
32
|
Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, Liu X, McMillan J, Mosley RL, Narasimhan B, Mallapragada SK. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:751-67. [PMID: 25645958 DOI: 10.1016/j.nano.2014.12.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/01/2022]
Abstract
Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics is immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker discovery including neuroimaging to therapeutic applications for degenerative, inflammatory and infectious disorders of the nervous system. This review focuses on the current and future potential of the field to positively affect clinical outcomes. From the clinical editor: Many nervous system disorders remain unresolved clinical problems. In many cases, drug agents simply cannot cross the blood-brain barrier (BBB) into the nervous system. The advent of nanomedicines can enhance the delivery of biologically active molecules for targeted therapy and imaging. This review focused on the use of nanotechnology for degenerative, inflammatory, and infectious diseases in the nervous system.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | - Tatiana Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Iowa State University, Ames, IA USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, IA USA
| | | | - Xinming Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA.
| |
Collapse
|
33
|
Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015; 44:3968-96. [DOI: 10.1039/c4cs00339j] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
Collapse
Affiliation(s)
- Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Anna Janaszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Joanna Lazniewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Organic Chemistry of Polymers
- Technische Universität Dresden
| |
Collapse
|
34
|
How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. J Control Release 2014; 181:40-52. [PMID: 24607663 DOI: 10.1016/j.jconrel.2014.02.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
35
|
|
36
|
McCarthy JM, Appelhans D, Tatzelt J, Rogers MS. Nanomedicine for prion disease treatment: new insights into the role of dendrimers. Prion 2014; 7:198-202. [PMID: 23764833 DOI: 10.4161/pri.24431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite their devastating impact, no effective therapeutic yet exists for prion diseases at the symptomatic stage in humans or animals. Progress is hampered by the difficulty in identifying compounds that affect PrP (Sc) and the necessity of any potential therapeutic to gain access to the CNS. Synthetic polymers known as dendrimers are a particularly promising candidate in this area. Studies with cell culture models of prion disease and prion infected brain homogenate have demonstrated that numerous species of dendrimers eliminate PrP (Sc) in a dose and time dependent fashion and specific glycodendrimers are capable of crossing the CNS. However, despite their potential a number of important questions remained unanswered such as what makes an effective dendrimer and how dendrimers eliminate prions intracellularly. In a number of recent studies we have tackled these questions and revealed for the first time that a specific dendrimer can inhibit the intracellular conversion of PrP (C) to PrP (Sc) and that a high density of surface reactive groups is a necessity for dendrimers in vitro anti-prion activity. Understanding how a therapeutic works is a vital component in maximising its activity and these studies therefore represent a significant development in the race to find effective treatments for prion diseases.
Collapse
Affiliation(s)
- James M McCarthy
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
37
|
Klementieva O, Aso E, Filippini D, Benseny-Cases N, Carmona M, Juvés S, Appelhans D, Cladera J, Ferrer I. Effect of Poly(propylene imine) Glycodendrimers on β-Amyloid Aggregation in Vitro and in APP/PS1 Transgenic Mice, as a Model of Brain Amyloid Deposition and Alzheimer’s Disease. Biomacromolecules 2013; 14:3570-80. [DOI: 10.1021/bm400948z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- O. Klementieva
- Institute of Neuropathology,
Pathologic Anatomy Service, IDIBELL-University Hospital Bellvitge, Feixa Llarga
sn, 08907 L’Hospitalet
de Llobregat, Spain
| | - E. Aso
- Institute of Neuropathology,
Pathologic Anatomy Service, IDIBELL-University Hospital Bellvitge, Feixa Llarga
sn, 08907 L’Hospitalet
de Llobregat, Spain
| | - D. Filippini
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - N. Benseny-Cases
- Polygone
Scientifique Louis Néel, ESRF, 6 rue Jules Horowitz, 38000, Grenoble, France
| | - M. Carmona
- Institute of Neuropathology,
Pathologic Anatomy Service, IDIBELL-University Hospital Bellvitge, Feixa Llarga
sn, 08907 L’Hospitalet
de Llobregat, Spain
| | - S. Juvés
- Institute of Neuropathology,
Pathologic Anatomy Service, IDIBELL-University Hospital Bellvitge, Feixa Llarga
sn, 08907 L’Hospitalet
de Llobregat, Spain
| | - D. Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - J. Cladera
- Biophysics Unit
and Center of Studies in Biophysics, Department of Biochemistry
and Molecular Biology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - I. Ferrer
- Institute of Neuropathology,
Pathologic Anatomy Service, IDIBELL-University Hospital Bellvitge, Feixa Llarga
sn, 08907 L’Hospitalet
de Llobregat, Spain
- Department
of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, L’Hospitalet
de Llobregat, Spain
- CIBERNED, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Hemmer R, Hall A, Spaulding R, Rossow B, Hester M, Caroway M, Haskamp A, Wall S, Bullen HA, Morris C, Haik KL. Analysis of biotinylated generation 4 poly(amidoamine) (PAMAM) dendrimer distribution in the rat brain and toxicity in a cellular model of the blood-brain barrier. Molecules 2013; 18:11537-52. [PMID: 24048286 PMCID: PMC6269868 DOI: 10.3390/molecules180911537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 01/02/2023] Open
Abstract
Dendrimers are highly customizable nanopolymers with qualities that make them ideal for drug delivery. The high binding affinity of biotin/avidin provides a useful approach to fluorescently label synthesized dendrimer-conjugates in cells and tissues. In addition, biotin may facilitate delivery of dendrimers through the blood-brain barrier (BBB) via carrier-mediated endocytosis. The purpose of this research was to: (1) measure toxicity using lactate dehydrogenase (LDH) assays of generation (G)4 biotinylated and non-biotinylated poly(amidoamine) (PAMAM) dendrimers in a co-culture model of the BBB, (2) determine distribution of dendrimers in the rat brain, kidney, and liver following systemic administration of dendrimers, and (3) conduct atomic force microscopy (AFM) on rat brain sections following systemic administration of dendrimers. LDH measurements showed that biotinylated dendrimers were toxic to cell co-culture after 48 h of treatment. Distribution studies showed evidence of biotinylated and non-biotinylated PAMAM dendrimers in brain. AFM studies showed evidence of dendrimers only in brain tissue of treated rats. These results indicate that biotinylation does not decrease toxicity associated with PAMAM dendrimers and that biotinylated PAMAM dendrimers distribute in the brain. Furthermore, this article provides evidence of nanoparticles in brain tissue following systemic administration of nanoparticles supported by both fluorescence microscopy and AFM.
Collapse
Affiliation(s)
- Ruth Hemmer
- Department of Biological Sciences, Northern Kentucky University, SC 204, Highland Heights, KY 41099, USA; E-Mails: (R.H.); (A.H.); (R.S.); (B.R.); (M.H.); (M.C.)
| | - Andrew Hall
- Department of Biological Sciences, Northern Kentucky University, SC 204, Highland Heights, KY 41099, USA; E-Mails: (R.H.); (A.H.); (R.S.); (B.R.); (M.H.); (M.C.)
- Department of Chemistry, Northern Kentucky University, SC 450, Highland Heights, KY 41099, USA; E-Mails: (A.H.); (S.W.)
| | - Robert Spaulding
- Department of Biological Sciences, Northern Kentucky University, SC 204, Highland Heights, KY 41099, USA; E-Mails: (R.H.); (A.H.); (R.S.); (B.R.); (M.H.); (M.C.)
| | - Brett Rossow
- Department of Biological Sciences, Northern Kentucky University, SC 204, Highland Heights, KY 41099, USA; E-Mails: (R.H.); (A.H.); (R.S.); (B.R.); (M.H.); (M.C.)
| | - Michael Hester
- Department of Biological Sciences, Northern Kentucky University, SC 204, Highland Heights, KY 41099, USA; E-Mails: (R.H.); (A.H.); (R.S.); (B.R.); (M.H.); (M.C.)
| | - Megan Caroway
- Department of Biological Sciences, Northern Kentucky University, SC 204, Highland Heights, KY 41099, USA; E-Mails: (R.H.); (A.H.); (R.S.); (B.R.); (M.H.); (M.C.)
| | - Anthony Haskamp
- Department of Chemistry, Northern Kentucky University, SC 450, Highland Heights, KY 41099, USA; E-Mails: (A.H.); (S.W.)
| | - Steven Wall
- Department of Chemistry, Northern Kentucky University, SC 450, Highland Heights, KY 41099, USA; E-Mails: (A.H.); (S.W.)
| | - Heather A. Bullen
- Department of Chemistry, Northern Kentucky University, SC 450, Highland Heights, KY 41099, USA; E-Mails: (A.H.); (S.W.)
| | - Celeste Morris
- Department of Chemistry, Northern Kentucky University, SC 450, Highland Heights, KY 41099, USA; E-Mails: (A.H.); (S.W.)
- Authors to whom correspondence should be addressed; E-Mails: (K.L.H.); (C.M.); Tel.: +1-859-572-1965 (K.L.H.); Fax: +1-859-572-5639(K.L.H.); Tel.: +1-859-572-5406 (C.M.); Fax: +1-859-572-5162 (C.M.)
| | - Kristi L. Haik
- Department of Biological Sciences, Northern Kentucky University, SC 204, Highland Heights, KY 41099, USA; E-Mails: (R.H.); (A.H.); (R.S.); (B.R.); (M.H.); (M.C.)
- Center for Integrative Natural Science and Mathematics (CINSAM), Northern Kentucky University, FH 519, Highland Heights, KY 41099, USA
- Authors to whom correspondence should be addressed; E-Mails: (K.L.H.); (C.M.); Tel.: +1-859-572-1965 (K.L.H.); Fax: +1-859-572-5639(K.L.H.); Tel.: +1-859-572-5406 (C.M.); Fax: +1-859-572-5162 (C.M.)
| |
Collapse
|
39
|
Ciepluch K, Weber M, Katir N, Caminade AM, El Kadib A, Klajnert B, Majoral JP, Bryszewska M. Effect of viologen–phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int J Biol Macromol 2013; 54:119-24. [DOI: 10.1016/j.ijbiomac.2012.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
|
40
|
McCarthy JM, Franke M, Resenberger UK, Waldron S, Simpson JC, Tatzelt J, Appelhans D, Rogers MS. Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc). PLoS One 2013; 8:e55282. [PMID: 23383136 PMCID: PMC3557256 DOI: 10.1371/journal.pone.0055282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/29/2012] [Indexed: 11/18/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The ‘protein only hypothesis’ advocates that PrPSc, an abnormal isoform of the cellular protein PrPC, is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrPSc in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrPC to PrPSc conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future.
Collapse
Affiliation(s)
- James M McCarthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ziemba B, Matuszko G, Appelhans D, Voit B, Bryszewska M, Klajnert B. Genotoxicity of poly(propylene imine) dendrimers. Biopolymers 2012; 97:642-8. [PMID: 22605555 DOI: 10.1002/bip.22056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendrimers are highly branched macromolecules with the potential in biomedical applications. Due to positively charged surfaces, several dendrimers reveal toxicity. Coating peripheral cationic groups with carbohydrate residues can reduce it. In this study, the cytotoxicity and genotoxicity of three types of 4th generation poly(propylene imine) dendrimers were investigated. Peripheral blood mononuclear cells (PBMCs) were treated with uncoated (PPI-g4) dendrimers, and dendrimers in which approximately 40% or 90% of peripheral amino groups were coated with maltotriose (PPI-g4-OS or PPI-g4-DS) at concentration of 0.05, 0.5, 5 mg/ml. Abbreviations OS and DS stand for open shell and dense shell respectively, that describes the structure of carbohydrate modified dendrimers. After 1 h of cell incubation at 37°C, the MTT and comet assays were performed. PPI dendrimers demonstrated surface-modification-degree dependent toxicity, although genotoxicity of PPI-g4 and PPI-g4-OS measured by the comet assay was concentration dependent up to 0.5 mg/ml and at 5 mg/ml the amount of DNA that left comet's head decreased. Results may suggest a strong interaction between dendrimers and DNA, and furthermore, that coating PPI dendrimers by maltoriose is an efficient method to reduce their genotoxicity what opens the possibilities to use them as therapeutic agents or drug carriers.
Collapse
Affiliation(s)
- Barbara Ziemba
- Department of General Biophysics, University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
42
|
Ciepluch K, Ziemba B, Janaszewska A, Appelhans D, Klajnert B, Bryszewska M, Fogel WA. Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats. J Physiol Biochem 2012; 68:447-54. [DOI: 10.1007/s13105-012-0158-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/15/2012] [Indexed: 02/02/2023]
|
43
|
Felczak A, Wrońska N, Janaszewska A, Klajnert B, Bryszewska M, Appelhans D, Voit B, Różalska S, Lisowska K. Antimicrobial activity of poly(propylene imine) dendrimers. NEW J CHEM 2012. [DOI: 10.1039/c2nj40421d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|