1
|
Xu X, Huang X, Xu W. Marine actinomycetes-derived angucyclines and angucyclinones with biosynthesis and activity--past 10 years (2014-2023). Eur J Med Chem 2024; 283:117161. [PMID: 39700875 DOI: 10.1016/j.ejmech.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Actinomycete bacteria derived from marine environments are a good source of natural products with diverse biological activities such as cytotoxicity, antiviral, and antimicrobial actions. This review summarizes 191 angucyclines and angucyclinones derived from marine actinomycetes reported in the literature from 2014 to 2023 and introduced the latest developments in actinomycete-silenced biosynthetic gene cluster activation, including heterologous recombination and in situ activation. The key role of redox post-modifications in the biosynthetic process of atypical angucyclines. This review provides insights into the discovery and biosynthesis of valuable angucyclines and angucyclinones from marine-associated actinomycetes and potential lead compounds for the research and development of new drugs.
Collapse
Affiliation(s)
- Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Wenhua Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
2
|
Zhang X, Zhang F, Li C, Li J, Xu X, Zhu T, Che Q, Li D, Zhang G. Heterologous Expression of Type II PKS Gene Cluster Leads to Diversified Angucyclines in Streptomyces albus J1074. Mar Drugs 2024; 22:480. [PMID: 39590760 PMCID: PMC11595736 DOI: 10.3390/md22110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Heterologous expression has emerged as an effective strategy in activating Streptomyces cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000 in the chassis host Streptomyces albus J1074. The structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as theoretical NMR calculations and electronic circular dichroism (ECD) calculations. Interestingly, compound WS009 Z (2) contains a rare thiomethyl group, angumycinone T (4) has a novel oxo-bridge formed between C12a and C4, and angumycinone X (3) showed cytotoxicity toward K562 and NCI-H446/EP cell lines.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiayi Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Deihai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| |
Collapse
|
3
|
Fatima E, Gautam Y, Thapa B, Das R, Singh A, Trivedi L, Singh P, Singh K, Bhatt D, Vasudev PG, Gupta A, Chanda D, Bawankule DU, Shanker K, Khan F, Negi AS. 5H-benzo[c]fluorene derivative exhibits antiproliferative activity via microtubule destabilization. Bioorg Chem 2024; 153:107891. [PMID: 39454495 DOI: 10.1016/j.bioorg.2024.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Present study aimed at a single component cyclization of 2-benzylidene-1-tetralones for the preparation of 5H-benzo[c]fluorenes and their antiproliferative activity. This ring closure reaction underwent via reductive cyclization in the presence of a sodium borohydride-aluminium chloride system. Ten diverse 5H-benzo[c]fluorene derivatives were prepared and evaluated for antiproliferative activity against three human cancer cell lines by SRB assay. Four of these benzofluorenes exhibited significant antiproliferative effect with an IC50 < 10.75 µM. The best representative compound 21, exhibited IC50 against K562 leukemic cells at 3.27 µM in SRB assay and 7.68 µM in Soft agar colony assay. It exhibited a microtubule destabilization effect in tubulin kinetics and inhibited 82.9 % microtubule polymer mass at 10 µM concentration in Protein Sedimentation assay (Microtubule). Compound 21 exerted G0/G1 phase arrest in cell division cycle analysis in K562 cells. It also induced apoptosis in K562 cells via activation of Caspase cascade pathway. Furthermore, compound 21 also possessed anti-inflammatory activity by inhibiting TNF-α and IL-6 moderately. It exhibited significant in vivo efficacy and reduced K562 tumour in xenograft mice by 47 % at an 80 mg/kg oral dose. Further, it was found to be safe and well tolerable up to 1000 mg/kg in Swiss albino mice. Compound 21 needs to be optimized for better in vivo efficacy in rodent models for further development.
Collapse
Affiliation(s)
- Eram Fatima
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Yashveer Gautam
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Department of Chemistry, Pandit Prithi Nath PG College, 96/12 Mahatma Gandhi Marg, Kanpur 208001, India
| | - Barsha Thapa
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Ranjana Das
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Amrita Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Laxmikant Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Palak Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Kavita Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Divya Bhatt
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Prema G Vasudev
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Atul Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Dnyaneshwar U Bawankule
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| |
Collapse
|
4
|
Vysloužilová D, Kováč O. The Chemistry of Angucyclines. Chempluschem 2024; 89:e202400307. [PMID: 38958029 DOI: 10.1002/cplu.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Angucyclines and angucyclinones represent a class of natural compounds that belong to the group of aromatic polyketides. They exhibit a wide array of biological properties, such as antimicrobial, antiviral, and cytotoxic. Their considerable therapeutic potential and diverse scaffolds have attracted many synthetic chemists to devise novel strategies to construct their intricate molecular architecture. Over 300 class members have been isolated from natural sources, mainly from bacterial strains of Streptomyces species. This review highlights recent advancements in their synthesis, such as oxidative cyclization, photooxidation, and metal-catalyzed [4+2]-cycloaddition, which has facilitated the efficient and practical total syntheses of various angucycline and angucyclinone natural products.
Collapse
Affiliation(s)
- Denisa Vysloužilová
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Ondřej Kováč
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| |
Collapse
|
5
|
Hu G, Doerksen RS, Ambler BR, Krische MJ. Total Synthesis of the Phenylnaphthacenoid Type II Polyketide Antibiotic Formicamycin H via Regioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer [4 + 2] Cycloaddition. J Am Chem Soc 2024; 146:26351-26359. [PMID: 39265189 PMCID: PMC11470536 DOI: 10.1021/jacs.4c09068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The first total synthesis of the pentacyclic phenylnaphthacenoid type II polyketide antibiotic formicamycin H is described. A key feature of the synthesis involves the convergent, regioselective assembly of the tetracyclic core via ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition. Double dehydration of the diol-containing cycloadduct provides an achiral enone, which upon asymmetric nucleophilic epoxidation and further manipulations delivers the penultimate tetracyclic trichloride in enantiomerically enriched form. Subsequent chemo- and atroposelective Suzuki cross-coupling of the tetracyclic trichloride introduces the E-ring to complete the total synthesis. Single-crystal X-ray diffraction analyses of two model compounds suggest that the initially assigned stereochemistry of the axially chiral C6-C7 linkage may require revision.
Collapse
Affiliation(s)
| | | | - Brett R. Ambler
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
6
|
Xu X, Chang Y, Chen Y, Zhou L, Zhang F, Ma C, Che Q, Zhu T, Pfeifer BA, Zhang G, Li D. Biosynthesis of Atypical Angucyclines Unveils New Ring Rearrangement Reactions Catalyzed by Flavoprotein Monooxygenases. Org Lett 2024; 26:7489-7494. [PMID: 39194005 DOI: 10.1021/acs.orglett.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Six new angucycline structures, including spirocyclione A (1), which contains an unusual oxaspiro[5.5]undecane architecture, and its ring-A-cleaved product spirocyclione B (2), were discovered by heterologous expression of a type II polyketide biosynthetic gene cluster captured from a marine actinomycete strain Streptomyces sp. HDN155000. Three flavoprotein monooxygenases are confirmed to be responsible for the oxidative carbon skeleton rearrangements in the biosynthesis of compounds 1 and 2. The obtained compounds showed promising cytotoxicity against different types of cancer cells.
Collapse
Affiliation(s)
- Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266101, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266101, People's Republic of China
| |
Collapse
|
7
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
8
|
Chappell TC, Maiello KG, Tierney AJ, Yanagi K, Lee JA, Lee K, Mace CR, Bennett CS, Nair NU. Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential. Biotechnol Bioeng 2024; 121:2648-2661. [PMID: 38686918 PMCID: PMC11324409 DOI: 10.1002/bit.28725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Microbial-derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug-resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low-yield biosynthetic gene clusters in the genus Streptomyces. However, low natural product yields-improvements to which have been hindered by the lack of high throughput methods-have slowed the discovery and development of many potential therapeutics. Here, we describe our efforts to improve yields of landomycins-angucycline family polyketides under investigation as cancer therapeutics-by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products are absorbed in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by the exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces, as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.
Collapse
Affiliation(s)
- Todd C Chappell
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | | | - Allison J Tierney
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Karin Yanagi
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jessica A Lee
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Kyongbum Lee
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
9
|
Singh A, Kaliappan KP. Asymmetric Total Synthesis of 4-Hydroxy-8- O-methyltetrangomycin, 4-Hydroxytetrangomycin, and 4-Keto-8- O-methyltetrangomycin. J Org Chem 2024; 89:10965-10973. [PMID: 39037742 DOI: 10.1021/acs.joc.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Herein, we report the first asymmetric total synthesis of 4-hydroxy-8-O-methyltetrangomycin (1), 4-hydroxytetrangomycin (2), and 4-keto-8-O-methyltetrangomycin (3), angucyclinones featuring a highly oxidized nonaromatic A ring. A sequential enyne metathesis/Diels-Alder approach was utilized successfully to construct the tetracyclic skeleton of the angucyclinones. Late-stage acetonide deprotection challenges were overcome by A ring functional group manipulation, yielding a dihydroxy intermediate prior to the benzylic photo-oxidation, facilitating the total syntheses of angucyclinones 1-3. The key stereocenter was established through a known Sharpless asymmetric epoxidation/regioselective epoxide opening reaction.
Collapse
Affiliation(s)
- Ajad Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Xie H, Breit B. Nickel-Catalyzed Regioselective Hydrothiolation of Allenes Enabled by Visible-Light Photoredox Catalysis. Org Lett 2024; 26:4438-4442. [PMID: 38767303 DOI: 10.1021/acs.orglett.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hydrothiolation presents an attractive way to transform allenes into allylic thioethers. Herein, we described an efficient visible-light photoredox-promoted nickel-catalyzed hydrothiolation of allenes with functionalized aromatic and aliphatic thiols. This synergistic catalytic system exhibits unprecedentedly high reactivities and regiocontrol for the construction of allylic thioethers, representing the unique synthetic utility of the earth-abundant Ni-catalyzed method compared with the related noble-metal-catalyzed allylation reactions.
Collapse
Affiliation(s)
- Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
11
|
Gao J, Li L, Shen S, Ai G, Wang B, Guo F, Yang T, Han H, Xu Z, Pan G, Fan K. Cofactor-independent C-C bond cleavage reactions catalyzed by the AlpJ family of oxygenases in atypical angucycline biosynthesis. Beilstein J Org Chem 2024; 20:1198-1206. [PMID: 38887580 PMCID: PMC11181247 DOI: 10.3762/bjoc.20.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Biosynthesis of atypical angucyclines involves unique oxidative B-ring cleavage and rearrangement reactions, which are catalyzed by AlpJ-family oxygenases, including AlpJ, JadG, and GilOII. Prior investigations established the essential requirement for FADH2/FMNH2 as cofactors when utilizing the quinone intermediate dehydrorabelomycin as a substrate. In this study, we unveil a previously unrecognized facet of these enzymes as cofactor-independent oxygenases when employing the hydroquinone intermediate CR1 as a substrate. The enzymes autonomously drive oxidative ring cleavage and rearrangement reactions of CR1, yielding products identical to those observed in cofactor-dependent reactions of AlpJ-family oxygenases. Furthermore, the AlpJ- and JadG-catalyzed reactions of CR1 could be quenched by superoxide dismutase, supporting a catalytic mechanism wherein the substrate CR1 reductively activates molecular oxygen, generating a substrate radical and the superoxide anion O2 •-. Our findings illuminate a substrate-controlled catalytic mechanism of AlpJ-family oxygenases, expanding the realm of cofactor-independent oxygenases. Notably, AlpJ-family oxygenases stand as a pioneering example of enzymes capable of catalyzing oxidative reactions in either an FADH2/FMNH2-dependent or cofactor-independent manner.
Collapse
Affiliation(s)
- Jinmin Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Liyuan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Shijie Shen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Fang Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Tongjian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Hui Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| |
Collapse
|
12
|
Nuutila A, Xiao X, van der Heul HU, van Wezel GP, Dinis P, Elsayed SS, Metsä-Ketelä M. Divergence of Classical and C-Ring-Cleaved Angucyclines: Elucidation of Early Tailoring Steps in Lugdunomycin and Thioangucycline Biosynthesis. ACS Chem Biol 2024; 19:1131-1141. [PMID: 38668630 PMCID: PMC11106748 DOI: 10.1021/acschembio.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[a]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8-O-methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.
Collapse
Affiliation(s)
- Aleksi Nuutila
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| | - Xiansha Xiao
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Helga U. van der Heul
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Pedro Dinis
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| | - Somayah S. Elsayed
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Mikko Metsä-Ketelä
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| |
Collapse
|
13
|
Jalali E, Wang F, Overbay BR, Miller MD, Shaaban KA, Ponomareva LV, Ye Q, Saghaeiannejad-Esfahani H, Bhardwaj M, Steele AD, Teijaro CN, Shen B, Van Lanen SG, She QB, Voss SR, Phillips GN, Thorson JS. Biochemical and Structural Studies of the Carminomycin 4- O-Methyltransferase DnrK. JOURNAL OF NATURAL PRODUCTS 2024; 87:798-809. [PMID: 38412432 PMCID: PMC11623920 DOI: 10.1021/acs.jnatprod.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.
Collapse
Affiliation(s)
| | - Fengbin Wang
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
| | | | - Mitchell D Miller
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
| | | | | | - Qing Ye
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | | | | | | | | | | | - Qing-Bai She
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - S Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40536, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | | |
Collapse
|
14
|
Wang Y, Zhou L, Pan X, Liao Z, Qi N, Sun M, Zhang H, Ju J, Ma J. Metabolic Blockade-Based Genome Mining of Sea Anemone-Associated Streptomyces sp. S1502 Identifies Atypical Angucyclines WS-5995 A-E: Isolation, Identification, Biosynthetic Investigation, and Bioactivities. Mar Drugs 2024; 22:195. [PMID: 38786587 PMCID: PMC11122949 DOI: 10.3390/md22050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Marine symbiotic and epiphyte microorganisms are sources of bioactive or structurally novel natural products. Metabolic blockade-based genome mining has been proven to be an effective strategy to accelerate the discovery of natural products from both terrestrial and marine microorganisms. Here, the metabolic blockade-based genome mining strategy was applied to the discovery of other metabolites in a sea anemone-associated Streptomyces sp. S1502. We constructed a mutant Streptomyces sp. S1502/Δstp1 that switched to producing the atypical angucyclines WS-5995 A-E, among which WS-5995 E is a new compound. A biosynthetic gene cluster (wsm) of the angucyclines was identified through gene knock-out and heterologous expression studies. The biosynthetic pathways of WS-5995 A-E were proposed, the roles of some tailoring and regulatory genes were investigated, and the biological activities of WS-5995 A-E were evaluated. WS-5995 A has significant anti-Eimeria tenell activity with an IC50 value of 2.21 μM. The production of antibacterial streptopyrroles and anticoccidial WS-5995 A-E may play a protective role in the mutual relationship between Streptomyces sp. S1502 and its host.
Collapse
Affiliation(s)
- Yuyang Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Le Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
| | - Xiaoting Pan
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhangjun Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| |
Collapse
|
15
|
H, Elliot MA. Multifactorial genetic control and magnesium levels govern the production of a Streptomyces antibiotic with unusual cell density dependence. mSystems 2024; 9:e0136823. [PMID: 38493407 PMCID: PMC11019849 DOI: 10.1128/msystems.01368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Streptomyces bacteria are renowned both for their antibiotic production capabilities and for their cryptic metabolic potential. Their metabolic repertoire is subject to stringent genetic control, with many of the associated biosynthetic gene clusters being repressed by the conserved nucleoid-associated protein Lsr2. In an effort to stimulate new antibiotic production in wild Streptomyces isolates, we leveraged the activity of an Lsr2 knockdown construct and successfully enhanced antibiotic production in the wild Streptomyces isolate WAC07094. We determined that this new activity stemmed from increased levels of the angucycline-like family member saquayamycin. Saquayamycin has both antibiotic and anti-cancer activities, and intriguingly, beyond Lsr2-mediated repression, we found saquayamycin production was also suppressed at high density on solid or in liquid growth media; its levels were greatest in low-density cultures. This density-dependent control was exerted at the level of the cluster-situated regulatory gene sqnR and was mediated in part through the activity of the PhoRP two-component regulatory system, where deleting phoRP led to both constitutive antibiotic production and sqnR expression. This suggests that PhoP functions to repress the expression of sqnR at high cell density. We further discovered that magnesium supplementation could alleviate this density dependence, although its action was independent of PhoP. Finally, we revealed that the nitrogen-responsive regulators GlnR and AfsQ1 could relieve the repression exerted by Lsr2 and PhoP. Intriguingly, we found that this low density-dependent production of saquayamycin was not unique to WAC07094; saquayamycin production by another wild isolate also exhibited low-density activation, suggesting that this spatial control may serve an important ecological function in their native environments.IMPORTANCEStreptomyces specialized metabolic gene clusters are subject to complex regulation, and their products are frequently not observed under standard laboratory growth conditions. For the wild Streptomyces isolate WAC07094, production of the angucycline-family compound saquayamycin is subject to a unique constellation of control factors. Notably, it is produced primarily at low cell density, in contrast to the high cell density production typical of most antibiotics. This unusual density dependence is conserved in other saquayamycin producers and is driven by the pathway-specific regulator SqnR, whose expression is influenced by both nutritional and genetic elements. Collectively, this work provides new insights into an intricate regulatory system governing antibiotic production and indicates there may be benefits to including low-density cultures in antibiotic screening platforms.
Collapse
Affiliation(s)
- Hindra
- Institute of Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marie A. Elliot
- Institute of Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Nuñez Santiago I, Machushynets NV, Mladic M, van Bergeijk DA, Elsayed SS, Hankemeier T, van Wezel GP. nanoRAPIDS as an analytical pipeline for the discovery of novel bioactive metabolites in complex culture extracts at the nanoscale. Commun Chem 2024; 7:71. [PMID: 38561415 PMCID: PMC10984978 DOI: 10.1038/s42004-024-01153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Microbial natural products form the basis of most of the antibiotics used in the clinic. The vast majority has not yet been discovered, among others because the hidden chemical space is obscured by previously identified (and typically abundant) antibiotics in culture extracts. Efficient dereplication is therefore key to the discovery of our future medicines. Here we present an analytical platform for the efficient identification and prioritization of low abundance bioactive compounds at nanoliter scale, called nanoRAPIDS. NanoRAPIDS encompasses analytical scale separation and nanofractionation of natural extracts, followed by the bioassay of interest, automated mass spectrometry identification, and Global Natural Products Social molecular networking (GNPS) for dereplication. As little as 10 μL crude extract is fractionated into 384 fractions. First, bioactive congeners of iturins and surfactins were identified in Bacillus, based on their bioactivity. Subsequently, bioactive molecules were identified in an extensive network of angucyclines elicited by catechol in cultures of Streptomyces sp. This allowed the discovery of a highly unusual N-acetylcysteine conjugate of saquayamycin, despite low production levels in an otherwise abundant molecular family. These data underline the utility and broad application of the technology for the prioritization of minor bioactive compounds in complex extracts.
Collapse
Affiliation(s)
- Isabel Nuñez Santiago
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Marija Mladic
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- DSM-Firmenich, Delft, The Netherlands
| | - Doris A van Bergeijk
- Department of Microbiology, KU Leuven, Immunology and Transplantation (Laboratory of Molecular Bacteriology), Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Somayah S Elsayed
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
17
|
Huang H, Zhang Y, Song Y, Ling C, Peng S, Ding B, Tao Y, Ju J. Deciphering the Glycosylation Steps in the Biosynthesis of P-1894B and Grincamycin Isolated from Marine-Derived Streptomyces lusitanus SCSIO LR32. Mar Drugs 2024; 22:32. [PMID: 38248657 PMCID: PMC10817425 DOI: 10.3390/md22010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Recently, we re-isolated the glycosylated angucycline antibiotics P-1894B (1) and grincamycin (1') from the marine-derived Streptomyces lusitanus SCSIO LR32 as potent antitumor agents and identified their biosynthesis gene cluster gcn. Both P-1894B (1) and grincamycin (1') possess a trisaccharide and a disaccharide moiety comprised of five deoxysugars. In this work, three genes encoding glycosyltransferases (GcnG1, GcnG2, and GcnG3) responsible for the assembly of deoxysugars into angucycline aglycone were identified from the biosynthesis gene cluster gcn. Gene inactivations of gcnG1, gcnG2, gcnG3, and gcnG1G2 by lambda-RED-mediated gene replacements led to the construction of four mutants, in which the glycosyltransferase genes were disrupted, respectively. The metabolites from the mutants were purified and identified, including two new analogues designated as grincamycin U (3a) and V (3'). The sequential glycosylation steps in the biosynthesis of P-1894B (1) and grincamycin (1') catalyzed by GcnG3, GcnG1, and GcnG2 were elucidated.
Collapse
Affiliation(s)
- Hongbo Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chunyao Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Siyan Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Bo Ding
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiwen Tao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- School of Pharmaceutical Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Cao PR, Ren X, Lin J, Mu YL, Shan YQ, Zhu JT, Xu RY, Zhang XX, Hu WG, Lu XH. Angucyclinones with IDO and TDO inhibitory activities isolated from the actinomycetes Umezawaea beigongshangensis. Fitoterapia 2024; 172:105716. [PMID: 37926399 DOI: 10.1016/j.fitote.2023.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Four previously undescribed angucyclinones umezawaones A-D (1-4) were isolated from the liquid cultures of Umezawaea beigongshangensis. Their structures were determined by spectroscopic analyses, single crystal X-ray diffraction, quantum chemical 13C NMR and electronic circular dichroism calculations. All compounds displayed strong inhibitory activities against indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in enzymatic assay, especially compound 2.
Collapse
Affiliation(s)
- Peng-Ran Cao
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Xiao Ren
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Jie Lin
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Yun-Long Mu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Yue-Qi Shan
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Jing-Tong Zhu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Rong-Yi Xu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Xue-Xia Zhang
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Wei-Guo Hu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China
| | - Xin-Hua Lu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang Microbial Drug Technology Innovation Center, Shijiazhuang 050015, PR China.
| |
Collapse
|
19
|
Kumar N, Yadav M, Kashyap S. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydr Res 2024; 535:108992. [PMID: 38091695 DOI: 10.1016/j.carres.2023.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
2,6-Dideoxy sugars constitute an important class of anticancer antibiotics natural products and serve as essential medicinal tools for carbohydrate-based drug discovery and vaccine development. In particular, 2-deoxy ʟ-fucose or ʟ-oliose is a rare sugar and vital structural motif of several potent antifungal and immunosuppressive bioactive molecules. Herein, we devised a reagent-controlled stereo and chemoselective activation of ʟ-fucal, enabling the distinctive glycosylation pathways to access the rare ʟ-oliose and 2,3-unsaturated ʟ-fucoside. The milder oxo-philic Bi(OTf)3 catalyst induced the direct 1,2-addition predominantly, whereas B(C6F5)3 promoted the allylic Ferrier-rearrangement of the enol-ether moiety in ʟ-fucal glycal donor, distinguishing the competitive mechanisms. The reagent-tunable modular approach is highly advantageous, employing greener catalysts and atom-economical transformations, expensive ligand/additive-free, and probed for a diverse range of substrates comprising monosaccharides, amino-acids, bioactive natural products, and drug scaffolds embedded with susceptible or labile functionalities.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Monika Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India.
| |
Collapse
|
20
|
Li Y, Gong N, Zhou L, Yang Z, Zhang H, Gu Y, Ma J, Ju J. OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived Streptomyces globisporus SCSIO LCY30. Mar Drugs 2023; 22:21. [PMID: 38248647 PMCID: PMC10817512 DOI: 10.3390/md22010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
The one strain many compounds (OSMAC) strategy is an effective method for activating silent gene clusters by cultivating microorganisms under various conditions. The whole genome sequence of the marine-derived strain Streptomyces globisporus SCSIO LCY30 revealed that it contains 30 biosynthetic gene clusters (BGCs). By using the OSMAC strategy, three types of secondary metabolites were activated and identified, including three angucyclines, mayamycin A (1), mayamycin B (2), and rabolemycin (3); two streptophenazines (streptophenazin O (4) and M (5)); and a macrolide dimeric dinactin (6), respectively. The biosynthetic pathways of the secondary metabolites in these three families were proposed based on the gene function prediction and structural information. The bioactivity assays showed that angucycline compounds 1-3 exhibited potent antitumor activities against 11 human cancer cell lines and antibacterial activities against a series of Gram-positive bacteria. Mayamycin (1) selectively exhibited potent cytotoxicity activity against triple-negative breast cancer (TNBC) cell lines such as MDA-MB-231, MDA-MB-468, and Bt-549, with IC50 values of 0.60-2.22 μM.
Collapse
Affiliation(s)
- Yanqing Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Naying Gong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China (H.Z.)
| | - Le Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China (H.Z.)
| | - Yucheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
21
|
Schaenzer AJ, Rodriguez Hernandez A, Tsai K, Hobson C, Fujimori DG, Wright GD. Angucyclinones rescue PhLOPS A antibiotic activity by inhibiting Cfr-dependent antibiotic resistance. mBio 2023; 14:e0179123. [PMID: 38014974 PMCID: PMC10746278 DOI: 10.1128/mbio.01791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Cfr is an antibiotic resistance enzyme that inhibits five clinically important antibiotic classes, is genetically mobile, and has a minimal fitness cost, making Cfr a serious threat to antibiotic efficacy. The significance of our work is in discovering molecules that inhibit Cfr-dependent methylation of the ribosome, thus protecting the efficacy of the PhLOPSA antibiotics. These molecules are the first reported inhibitors of Cfr-mediated ribosome methylation and, as such, will guide the further discovery of chemical scaffolds against Cfr-mediated antibiotic resistance. Our work acts as a foundation for further development of molecules that safeguard the PhLOPSA antibiotics from Cfr.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Annia Rodriguez Hernandez
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Kaitlyn Tsai
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Christian Hobson
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Gerard D. Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Elsayed SS, van der Heul HU, Xiao X, Nuutila A, Baars LR, Wu C, Metsä-Ketelä M, van Wezel GP. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Commun Chem 2023; 6:281. [PMID: 38110491 PMCID: PMC10728087 DOI: 10.1038/s42004-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Helga U van der Heul
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Laura R Baars
- Department of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237, Qingdao, P.R. China
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Chappell TC, Maiello KG, Tierney AJ, Yanagi K, Lee JA, Lee K, Mace CR, Bennett CS, Nair NU. Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566088. [PMID: 37986805 PMCID: PMC10659386 DOI: 10.1101/2023.11.07.566088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Microbial derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have potential as new therapeutics to target drug resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low yield biosynthetic gene clusters in the genus Streptomyces . Here, we describe our efforts to improve yields of landomycins - angucycline family polyketides under investigation as cancer therapeutics - by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products absorb in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces , as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.
Collapse
|
24
|
Heo KT, Lee B, Hwang GJ, Park B, Jang JP, Hwang BY, Jang JH, Hong YS. A unique dual acyltransferase system shared in the polyketide chain initiation of kidamycinone and rubiflavinone biosynthesis. Front Microbiol 2023; 14:1274358. [PMID: 38029143 PMCID: PMC10646177 DOI: 10.3389/fmicb.2023.1274358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
The pluramycin family of natural products has diverse substituents at the C2 position, which are closely related to their biological activity. Therefore, it is important to understand the biosynthesis of C2 substituents. In this study, we describe the biosynthesis of C2 moieties in Streptomyces sp. W2061, which produces kidamycin and rubiflavinone C-1, containing anthrapyran aglycones. Sequence analysis of the loading module (Kid13) of the PKS responsible for the synthesis of these anthrapyran aglycones is useful for confirming the incorporation of atypical primer units into the corresponding products. Kid13 is a ketosynthase-like decarboxylase (KSQ)-type loading module with unusual dual acyltransferase (AT) domains (AT1-1 and AT1-2). The AT1-2 domain primarily loads ethylmalonyl-CoA and malonyl-CoA for rubiflavinone and kidamycinone and rubiflavinone, respectively; however, the AT1-1 domain contributed to the functioning of the AT1-2 domain to efficiently load ethylmalonyl-CoA for rubiflavinone. We found that the dual AT system was involved in the production of kidamycinone, an aglycone of kidamycin, and rubiflavinone C-1 by other shared biosynthetic genes in Streptomyces sp. W2061. This study broadens our understanding of the incorporation of atypical primer units into polyketide products.
Collapse
Affiliation(s)
- Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Gwi Ja Hwang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Beomcheol Park
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| |
Collapse
|
25
|
Kim JG, Lee B, Han JS, Oh T, Park B, Cho YB, An BK, Choi JW, Ko SK, Lee MK, Hong YS, Hwang BY. Targeted Isolation of N-Acetylcysteine-Containing Angucycline Derivatives from Streptomyces sp. MC16 and Their Antiproliferative Effects. ACS OMEGA 2023; 8:38263-38271. [PMID: 37867696 PMCID: PMC10586447 DOI: 10.1021/acsomega.3c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS/MS)-based molecular networking analysis was applied to Streptomyces sp. MC16. The automatic classification of the MolNetEnhancer module revealed that its major constituent was an angucycline derivative. By targeted isolation of unique clusters in the molecular network, which showed different patterns from typical angucycline compounds, two new N-acetylcysteine-attached angucycline derivatives (1 and 2) were isolated. The structures were elucidated based on intensive NMR analysis and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). All isolated compounds (1-4) were tested for their inhibitory effects on the proliferation of A431, A549, and HeLa cell lines. Antibiotics 100-1 (3) and vineomycinone B2 (4) showed moderate inhibitory effects on these three cell lines with IC50 values ranging from 18.5 to 59.0 μM, while compounds 1 and 2 with an additional N-acetylcysteine residue showed weak inhibitory effects only on the HeLa cell line with IC50 values of 54.7 and 65.2 μM, respectively.
Collapse
Affiliation(s)
- Jun Gu Kim
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Byeongsan Lee
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Jae Sang Han
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Taehoon Oh
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Beomcheol Park
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Yong Beom Cho
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Beom Kyun An
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jin Won Choi
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sung-Kyun Ko
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Mi Kyeong Lee
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Young-Soo Hong
- Chemical
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Bang Yeon Hwang
- College
of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| |
Collapse
|
26
|
Huynh TH, Bae ES, Heo BE, Lee J, An JS, Kwon Y, Nam SJ, Oh KB, Jang J, Lee SK, Oh DC. Tandocyclinones A and B, Ether Bridged C-Glycosyl Benz[ a]anthracenes from an Intertidal Zone Streptomyces sp. Mar Drugs 2023; 21:500. [PMID: 37755113 PMCID: PMC10533038 DOI: 10.3390/md21090500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Two new proton-deficient metabolites, tandocyclinones A and B (1 and 2), were discovered via the chemical profiling of the Streptomyces sp. strain TDH03, which was isolated from a marine sediment sample collected from the intertidal mudflat in Tando Port, the Republic of Korea. The structures of 1 and 2 were elucidated as new ether-bridged C-glycosyl benz[a]anthracenes by using a combination of spectroscopic analyses of ultraviolet (UV) and mass spectrometry (MS) data, along with nuclear magnetic resonance (NMR) spectra, which were acquired in tetrahydrofuran (THF)-d8 selected after an extensive search for a solvent, resulting in mostly observable exchangeable protons in the 1H NMR spectrum. Their configurations were successfully assigned by applying a J-based configuration analysis, rotating-frame Overhauser enhancement spectroscopy (ROESY) NMR correlations, chemical derivatization methods based on NMR (a modified version of Mosher's method) and circular dichroism (CD) (Snatzke's method using Mo2(OAc)4-induced CD), as well as quantum-mechanics-based computational methods, to calculate the electronic circular dichroism (ECD). Tandocyclinones A and B (1 and 2) were found to have weak antifungal activity against Trichophyton mentagrophytes IFM40996 with an MIC value of 128 μg/mL (244 and 265 μM for 1 and 2, respectively). A further biological evaluation revealed that tandocyclinone A (1) displayed inhibitory activity against Mycobacterium avium (MIC50 = 40.8 μM) and antiproliferative activity against SNU638 and HCT116 cancer cells, with IC50 values of 31.9 µM and 49.4 µM, respectively.
Collapse
Affiliation(s)
- Thanh-Hau Huynh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (E.S.B.); (J.S.A.); (S.K.L.)
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (E.S.B.); (J.S.A.); (S.K.L.)
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (B.E.H.); (J.J.)
| | - Jayho Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (K.-B.O.)
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (E.S.B.); (J.S.A.); (S.K.L.)
| | - Yun Kwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (K.-B.O.)
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (B.E.H.); (J.J.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (E.S.B.); (J.S.A.); (S.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (E.S.B.); (J.S.A.); (S.K.L.)
| |
Collapse
|
27
|
Kim H, Kim JY, Ji CH, Lee D, Shim SH, Joo HS, Kang HS. Acidonemycins A-C, Glycosylated Angucyclines with Antivirulence Activity Produced by the Acidic Culture of Streptomyces indonesiensis. JOURNAL OF NATURAL PRODUCTS 2023; 86:2039-2045. [PMID: 37561973 DOI: 10.1021/acs.jnatprod.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The genome of Streptomyces indonesiensis is highly enriched with cryptic biosynthetic gene clusters (BGCs). The majority of these cryptic BGCs are transcriptionally silent in normal laboratory culture conditions as determined by transcriptome analysis. When cultured in acidic pH (pH 5.4), this strain has been shown to produce a set of new metabolites that were not observed in cultures of neutral pH (pH 7.4). The organic extract of the acidic culture displayed an antivirulence activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report the structures of new glycosylated aromatic polyketides, named acidonemycins A-C (1-3), belonging to the family of angucyclines. Type II polyketide synthase BGC responsible for the production of 1-3 was identified by a transcriptome comparison between acidic (pH 5.4) and neutral (pH 7.4) cultures and further confirmed by heterologous expression in Streptomyces albus J1074. Of the three new compounds, acidonemycins A and B (1 and 2) displayed antivirulence activity against MRSA. The simultaneous identification of both antivirulent compounds and their BGC provides a starting point for the future effort of combinatorial biosynthesis.
Collapse
Affiliation(s)
- Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Jun-Yong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hwang-Soo Joo
- College of Science and Technology, Duksung Women's University, Seoul 01369, Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
28
|
Park KJ, Maier S, Zhang C, Dixon SAH, Rusch DB, Pupo MT, Angus SP, Gerdt JP. Ravidomycin Analogs from Streptomyces sp. Exhibit Altered Antimicrobial and Cytotoxic Selectivity. JOURNAL OF NATURAL PRODUCTS 2023; 86:1968-1979. [PMID: 37531219 PMCID: PMC10797603 DOI: 10.1021/acs.jnatprod.3c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Six new ravidomycin analogs (1-4, 6, and 7) were isolated from Streptomyces sp. Am59 using UV- and LCMS-guided separation based on Global Natural Products Social (GNPS) molecular networking analysis. Furthermore, we isolated fucomycin V (9), which possesses the same chromophore as ravidomycin but features a d-fucopyranose instead of d-ravidosamine. This is the first report of 9 as a natural product. Four new analogs (10-13) of 9 were also isolated. The structures were elucidated by combined spectroscopic and computational methods. We also found an inconsistency with the published [α]D25 of deacetylravidomycin, which is reported to have a (-) sign. Instead, we observed a (+) specific rotation for the reported absolute configuration of deacetylravidomycin (containing d-ravidosamine). We confirmed the positive sign by reisolating deacetylravidomycin from S. ravidus and by deacetylating ravidomycin. Finally, antibacterial, antifungal, and cytotoxicity activities were determined for the compounds. Compared to deacetylravidomycin, the compounds 4-6, 9, 11, and 12 exhibited greater antibacterial selectivity.
Collapse
Affiliation(s)
- Kyoung Jin Park
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah Maier
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Chengqian Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Shelley A H Dixon
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Monica T Pupo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 05508-220, Brazil
| | - Steven P Angus
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
29
|
Zargar IA, Rasool B, Sakander N, Mukherjee D. Switchable reactivity of 2-benzoyl glycals towards stereoselective access of 1-3 and 1-1 S/ O linked disaccharides. Chem Commun (Camb) 2023; 59:10448-10451. [PMID: 37555476 DOI: 10.1039/d3cc02870d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We have developed a synthesis of 1-3 and 1-1 disaccharides from 2-benzoyl glycal and anomeric thiol and/or hydroxy sugar acceptors under mild conditions at room temperature. The regio and stereo-selectivity of the newly formed inter-glycosidic linkages are dependent on the nature of the glycal donor (D or L) and anomeric acceptor.
Collapse
Affiliation(s)
- Irshad Ahmad Zargar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bisma Rasool
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Norein Sakander
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemical Sciences, Bose Institute Kolkata, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India
| |
Collapse
|
30
|
Huynh NO, Hodík T, Krische MJ. Enantioselective Transfer Hydrogenative Cycloaddition Unlocks the Total Synthesis of SF2446 B3: An Aglycone of Arenimycin and SF2446 Type II Polyketide Antibiotics. J Am Chem Soc 2023; 145:17461-17467. [PMID: 37494281 PMCID: PMC10443208 DOI: 10.1021/jacs.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The first total synthesis and structure validation of an arenimycin/SF2446 type II polyketide is described, as represented by de novo construction of SF2446 B3, the aglycone shared by this family of type II polyketides. Ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition, which occurs via successive stereoablation-stereoregeneration, affects a double dynamic kinetic asymmetric transformation wherein two racemic starting materials combine to form the congested angucycline bay region with control of regio-, diastereo-, and enantioselectivity. This work represents the first application of transfer hydrogenative cycloaddition and enantioselective intermolecular metal-catalyzed C-C bond activation in target-oriented synthesis.
Collapse
Affiliation(s)
- Nancy O Huynh
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
31
|
Csolleiova D, Javorova R, Novakova R, Feckova L, Matulova M, Opaterny F, Rezuchova B, Sevcikova B, Kormanec J. Investigating the initial steps of auricin biosynthesis using synthetic biology. AMB Express 2023; 13:83. [PMID: 37552435 PMCID: PMC10409956 DOI: 10.1186/s13568-023-01591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
Streptomyces lavendulae subsp. lavendulae CCM 3239 (formerly Streptomyces aureofaciens CCM 3239) contains a type II polyketide synthase (PKS) biosynthetic gene cluster (BGC) aur1 whose genes were highly similar to angucycline BGCs. However, its product auricin is structurally different from all known angucyclines. It contains a spiroketal pyranonaphthoquinone aglycone similar to griseusins and is modified with D-forosamine. Here, we describe the characterization of the initial steps in auricin biosynthesis using a synthetic-biology-based approach. We have created a plasmid system based on the strong kasOp* promoter, RBS and phage PhiBT1-based integration vector, where each gene in the artificial operon can be easily replaced by another gene using unique restriction sites surrounding each gene in the operon. The system was validated with the initial landomycin biosynthetic genes lanABCFDLE, leading to the production of rabelomycin after its integration into Streptomyces coelicolor M1146. However, the aur1DEFCGHA homologous genes from the auricin aur1 BGC failed to produce rabelomycin in this system. The cause of this failure was inactive aur1DE genes encoding ketosynthases α and β (KSα, KSβ). Their replacement with homologous aur2AB genes from the adjacent aur2 BGC resulted in rabelomycin production that was even higher after the insertion of two genes from the aur1 BGC, aur1L encoding 4-phosphopantetheinyl transferase (PPTase) and aur1M encoding malonyl-CoA:ACP transacylase (MCAT), suggesting that Aur1L PPTase is essential for the activation of the acyl carrier protein Aur1F. These results suggest an interesting communication of two BGCs, aur1 and aur2, in the biosynthesis of the initial structure of auricin aglycone.
Collapse
Affiliation(s)
- Dominika Csolleiova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic
| | - Rachel Javorova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic
| | - Maria Matulova
- Institute of Chemistry, Slovak Academy of Sciences, 845 38, Bratislava, Slovak Republic
| | - Filip Opaterny
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic
| | - Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovak Republic.
| |
Collapse
|
32
|
Ye JJ, Zou RJ, Zhou DD, Deng XL, Wu NL, Chen DD, Xu J. Insights into the phylogenetic diversity, biological activities, and biosynthetic potential of mangrove rhizosphere Actinobacteria from Hainan Island. Front Microbiol 2023; 14:1157601. [PMID: 37323895 PMCID: PMC10264631 DOI: 10.3389/fmicb.2023.1157601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Mangrove rhizosphere soils host diverse Actinobacteria tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of bioactive natural products, including those with potential medicinal applications. In this study, we applied an integrated strategy of combining phylogenetic diversity, biological activities, and biosynthetic gene clusters (BGCs) screening approach to investigate the biotechnological importance of Actinobacteria isolated from mangrove rhizosphere soils from Hainan Island. The actinobacterial isolates were identifified using a combination of colony morphological characteristics and 16S rRNA gene sequence analysis. Based on the results of PCR-detected BGCs screening, type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected. Crude extracts of 87 representative isolates were subjected to antimicrobial evaluation by determining the minimum inhibitory concentration of each strain against six indicator microorganisms, anticancer activities were determined on human cancer cell lines HepG2, HeLa, and HCT-116 using an MTT colorimetric assay, and immunosuppressive activities against the proliferation of Con A-induced T murine splenic lymphocytes in vitro. A total of 287 actinobacterial isolates affiliated to 10 genera in eight families of six orders were isolated from five different mangrove rhizosphere soil samples, specififically, Streptomyces (68.29%) and Micromonospora (16.03%), of which 87 representative strains were selected for phylogenetic analysis. The crude extracts of 39 isolates (44.83%) showed antimicrobial activity against at least one of the six tested indicator pathogens, especially ethyl acetate extracts of A-30 (Streptomyces parvulus), which could inhibit the growth of six microbes with MIC values reaching 7.8 μg/mL against Staphylococcus aureus and its resistant strain, compared to the clinical antibiotic ciproflfloxacin. Furthermore, 79 crude extracts (90.80%) and 48 (55.17%) of the isolates displayed anticancer and immunosuppressive activities, respectively. Besides, four rare strains exhibited potent immunosuppressive activity against the proliferation of Con A-induced T murine splenic lymphocyte in vitro with an inhibition rate over 60% at 10 μg/mL. Type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected in 49.43, 66.67, and 88.51% of the 87 Actinobacteria, respectively. Signifificantly, these strains (26 isolates, 29.89%) harbored PKS I, PKS II, and NRPS genes in their genomes. Nevertheless, their bioactivity is independent of BGCs in this study. Our findings highlighted the antimicrobial, immunosuppressive, and anticancer potential of mangrove rhizosphere Actinobacteria from Hainan Island and the biosynthetic prospects of exploiting the corresponding bioactive natural product.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Xu
- Collaborative Innovation Center of Ecological Civilization, School of Chemical Engineering and Technology, Hainan University, Haikou, China
| |
Collapse
|
33
|
Hou P, Woolner VH, Bracegirdle J, Hunt P, Keyzers RA, Owen JG. Stictamycin, an Aromatic Polyketide Antibiotic Isolated from a New Zealand Lichen-Sourced Streptomyces Species. JOURNAL OF NATURAL PRODUCTS 2023; 86:526-532. [PMID: 36795480 DOI: 10.1021/acs.jnatprod.2c00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here we describe the isolation and characterization of stictamycin, a new aromatic polyketide with activity against Staphylococcus aureus. Stictamycin was identified following metabolic profiling and bioactivity guided fractionation of organic extracts from Streptomyces sp. 438-3, an isolate from the New Zealand lichen Sticta felix. Comprehensive 1D and 2D NMR analyses were performed to determine the planar structure of stictamycin and relative configurations of stereo centers, with subsequent comparison of experimental and theoretical ECD spectra allowing elucidation of the absolute configuration. Whole-genome sequencing and biosynthetic gene cluster (BGC) analysis revealed that the Streptomyces sp. 438-3 strain contains an atypical type II polyketide (T2PKS) BGC capable of assembling polycyclic-aromatic ring skeletons. Cloning and knockout studies of this T2PKS BGC were used to confirm that it is responsible for the biosynthesis of stictamycin and elucidate a plausible biosynthetic scheme.
Collapse
Affiliation(s)
- Peng Hou
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - V Helen Woolner
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Joe Bracegirdle
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Patricia Hunt
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
34
|
Tau-aggregation inhibitors derived from Streptomyces tendae MCCC 1A01534 protect HT22 cells against okadaic acid-induced damage. Int J Biol Macromol 2023; 231:123170. [PMID: 36621732 DOI: 10.1016/j.ijbiomac.2023.123170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by tau aggregating into neurofibrillary tangles. Targeting tau aggregation is one of the most critical strategies for AD treatment and prevention. Herein, a high-throughput screening of tau-aggregation inhibitors was performed by thioflavin T (ThT) fluorescence assay and tauR3 peptides. According to bioactivity-guided isolation, homoprejadomycin (1) was obtained from the marine bacterium Streptomyces tendae MCCC 1A01534. Two new stable derivatives, 2 and 3, were yielded in a one-step reaction. By ThT assay, transmission electron microscopy, and circular dichroism, we demonstrated that the angucyclinones 2 and 3 inhibited tau aggregation and disaggregated tau fibrils. In the presence of 2, native tauR3 peptides maintained the disorder conformation, whereas the tauR3 aggregates reduced β-sheet structures. And compound 2 was confirmed to inhibit the aggregation of full-length 2N4R tau protein. Furthermore, 2 with low cytotoxicity protected HT22 cells from okadaic acid-induced damage by suppressing tau aggregates. These results indicated that 2 was a promising lead structure with tau therapeutic potency for AD treatment.
Collapse
|
35
|
Apel C, Levasseur M, Lejeune C, Korch SB, Guérard F, David M, Askora A, Litaudon M, Roussi F, Gakière B, Chaput J, Virolle MJ. Metabolic adjustments in response to ATP spilling by the small DX protein in a Streptomyces strain. Front Cell Dev Biol 2023; 11:1129009. [PMID: 36968208 PMCID: PMC10030506 DOI: 10.3389/fcell.2023.1129009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
ATP wasting is recognized as an efficient strategy to enhance metabolic activity and productivity of specific metabolites in several microorganisms. However, such strategy has been rarely implemented in Streptomyces species whereas antibiotic production by members of this genus is known to be triggered in condition of phosphate limitation that is correlated with a low ATP content. In consequence, to assess the effects of ATP spilling on the primary and specialized metabolisms of Streptomyces, the gene encoding the small synthetic protein DX, that has high affinity for ATP and dephosphorylates ATP into ADP, was cloned in the integrative vector pOSV10 under the control of the strong ErmE promoter. This construct and the empty vector were introduced into the species Streptomyces albogriseolus/viridodiastaticus yielding A37 and A36, respectively. A37 yielded higher biomass than A36 indicating that the DX-mediated ATP degradation resulted into a stimulation of A37 metabolism, consistently with what was reported in other microorganisms. The comparative analysis of the metabolomes of A36 and A37 revealed that A37 had a lower content in glycolytic and Tricarboxylic Acid Cycle intermediates as well as in amino acids than A36, these metabolites being consumed for biomass generation in A37. In contrast, the abundance of other molecules indicative either of energetic stress (ADP, AMP, UMP, ornithine and thymine), of activation (NAD and threonic acid) or inhibition (citramalic acid, fatty acids, TAG and L-alanine) of the oxidative metabolism, was higher in A37 than in A36. Furthermore, hydroxyl-pyrimidine derivatives and polycyclic aromatic polyketide antibiotics belonging to the angucycline class and thought to have a negative impact on respiration were also more abundantly produced by A37 than by A36. This comparative analysis thus revealed the occurrence in A37 of antagonistic metabolic strategies, namely, activation or slowing down of oxidative metabolism and respiration, to maintain the cellular energetic balance. This study thus demonstrated that DX constitutes an efficient biotechnological tool to enhance the expression of the specialized metabolic pathways present in the Streptomyces genomes that may include cryptic pathways. Its use thus might lead to the discovery of novel bioactive molecules potentially useful to human health.
Collapse
Affiliation(s)
- Cécile Apel
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Marceau Levasseur
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Clara Lejeune
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Shaleen B. Korch
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Florence Guérard
- Plateforme SPOmics-Métabolome, Institut des Sciences des Plantes (IPS2), UMR 9213, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Michelle David
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Ahmed Askora
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Marc Litaudon
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Fanny Roussi
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Bertrand Gakière
- Plateforme SPOmics-Métabolome, Institut des Sciences des Plantes (IPS2), UMR 9213, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - John Chaput
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Marie-Joelle Virolle
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
- *Correspondence: Marie-Joelle Virolle,
| |
Collapse
|
36
|
Cao M, Yang D, Adhikari A, Ye F, Zheng C, Yan W, Meng S, Su P, Shen B. Neogrisemycin, a Trisulfide-Bridged Angucycline, Produced upon Expressing the Thioangucycline Biosynthetic Gene Cluster in Streptomyces albus J1074. Org Lett 2023; 25:961-965. [PMID: 36735280 PMCID: PMC10115141 DOI: 10.1021/acs.orglett.2c04303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neogrisemycin (1) was isolated from recombinant Streptomyces albus J1074 strain SB4061 expressing an engineered thioangucycline (TAC) biosynthetic gene cluster (BGC). The structure and absolute configuration of 1 were established by a combination of mass spectrometry, nuclear magnetic resonance, and single-crystal X-ray diffraction analyses. Like the TACs, 1 was also proposed to derive non-enzymatically from the common epoxide (8), the nascent product encoded by the tac BGC, mediated by endogenous hydrogen trisulfide.
Collapse
Affiliation(s)
| | | | - Ajeeth Adhikari
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | | | | | | | | | | | - Ben Shen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| |
Collapse
|
37
|
Zhang J, Liu P, Chen J, Yao D, Liu Q, Zhang J, Zhang HW, Leung ELH, Yao XJ, Liu L. Upgrade of chrysomycin A as a novel topoisomerase II inhibitor to curb KRAS-mutant lung adenocarcinoma progression. Pharmacol Res 2023; 187:106565. [PMID: 36414124 DOI: 10.1016/j.phrs.2022.106565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Jianwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dahong Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| |
Collapse
|
38
|
Lan X, Cai C, Wang J, Zhang Q, Feng Y, Chai Y. Tf2O/TfOH Catalytic Glycosylation Using o-(p-Methoxyphenylethynyl)benzyl Glycosides as Donors and Its Application in Synthesis of Oligosaccharides. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Characterization of the Biosynthetic Gene Cluster and Shunt Products Yields Insights into the Biosynthesis of Balmoralmycin. Appl Environ Microbiol 2022; 88:e0120822. [PMID: 36350133 PMCID: PMC9746310 DOI: 10.1128/aem.01208-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[α]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC50 values ranging from 0.9 to 1.2 μg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster (bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.
Collapse
|
40
|
Fu XZ, Zhang SM, Wang GF, Yang QL, Guo L, Pescitelli G, Xie ZP. Atypical Angucyclinones with Ring Expansion and Cleavage from a Marine Streptomyces sp. J Org Chem 2022; 87:15998-16010. [PMID: 36395479 DOI: 10.1021/acs.joc.2c02134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique ring C-expanded angucyclinone, oxemycin A (1), and seven new ring-cleavage derivatives (2-5 and 9-11) were isolated from the marine actinomycete Streptomyces pratensis KCB-132, together with eight known analogues (6-8 and 12-16). Their structures were elucidated by spectroscopic analyses, single-crystal X-ray diffractions, and NMR and ECD calculations. Among these atypical angucyclinones, compound 1 represented the first seven-membered ketoester in the angucyclinone family, which sheds light on the origin of fragmented angucyclinones with C-ring cleavage at C-12/C-12a in the Baeyer-Villiger hypothesis, such as 2-4, while the related "nonoxidized" analogues 5-8 seem to originate from a diverse pathway within the Grob fragmentation hypothesis. Additionally, we have succeeded in the challenging separation of elmenols E and F (12) into their four stereoisomers, which remained stable in aprotic solvents but rapidly racemized under protic conditions. Furthermore, the absolute configurations of LS1924 and its isomers (14 and 15) were assigned by ECD calculations for the first time. Surprisingly, these two bicyclic acetals are susceptible to hydrolysis in solution, resulting in fragmented derivatives 17 and 18 with C-ring cleavage between C-6a and C-7. Compared with ring C-modified angucyclinones, ring A-cleaved 11 was more active to multiple resistant "ESKAPE" pathogens with MIC values ranging from 4.7 to 37.5 μg/mL.
Collapse
Affiliation(s)
- Xin-Zhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shu-Min Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guang-Fei Wang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Qiao-Li Yang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Ze-Ping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
41
|
New Angucycline Glycosides from a Marine-Derived Bacterium Streptomyces ardesiacus. Int J Mol Sci 2022; 23:ijms232213779. [PMID: 36430256 PMCID: PMC9698790 DOI: 10.3390/ijms232213779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Chemical investigation of the ethyl acetate extract from the culture broth of the marine-derived actinobacterium Streptomyces ardesiacus 156VN-095 led to the isolation of three hitherto undescribed angucycline glycosides, including urdamycins W and X (1 and 2) and grincamycin U (9), as well as their seven known congeners. The structures of the new compounds were elucidated by means of spectroscopic methods (HRESIMS, 1D and 2 D NMR) and comparison of their experimental data with literature values. Compounds 1-3 and 9 were evaluated for their anti-Gram-positive bacterial effect and cytotoxicity against six cancer cell lines. Compound 1 displayed significant cytotoxicity against all the tested cell lines with GI50 values of 0.019-0.104 µM. Collectively, these findings highlight the potential of angucycline glycosides as leading structures for the development of new anti-cancer drugs.
Collapse
|
42
|
Xu D, Metz J, Harmody D, Peterson T, Winder P, Guzmán EA, Russo R, McCarthy PJ, Wright AE, Wang G. Brominated and Sulfur-Containing Angucyclines Derived from a Single Pathway: Identification of Nocardiopsistins D-F. Org Lett 2022; 24:7900-7904. [PMID: 36269561 DOI: 10.1021/acs.orglett.2c02879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One novel brominated nocardiopsistin D (1) and two new sulfur-containing nocardiopsistins E-F (2-3) were identified from Nocardiopsis sp. HB-J378. The biosynthetic gene cluster ncd featuring a brominase was identified. Compounds 1-3 exhibited significant anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activities with minimum inhibitory concentrations (MICs) of 0.098, 3.125, and 0.195 μg/mL, respectively. The single bromination in 1 drastically enhanced the anti-MRSA activity by 128-fold without altering cell toxicity and acquired new activities against the bacterial pathogens vancomycin-resistant S. aureus (VRSA), Enterococcus faecium, and Bacillus cereus.
Collapse
Affiliation(s)
- Dongbo Xu
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Jackie Metz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Dedra Harmody
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Tara Peterson
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Priscilla Winder
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Esther A Guzmán
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Riccardo Russo
- Regional Bio-Containment Laboratory, Department of Medicine, Rutgers University, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Peter J McCarthy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Amy E Wright
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| |
Collapse
|
43
|
Liu CF. Recent Advances on Natural Aryl- C-glycoside Scaffolds: Structure, Bioactivities, and Synthesis-A Comprehensive Review. Molecules 2022; 27:7439. [PMID: 36364266 PMCID: PMC9654268 DOI: 10.3390/molecules27217439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/23/2023] Open
Abstract
Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl-C-glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl-C-glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities-including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects-as well as their synthesis.
Collapse
Affiliation(s)
- Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
44
|
Li J, Han N, Zhang H, Xie X, Zhu Y, Zhang E, Ma J, Shang C, Yin M, Xie W, Li X. Saquayamycin B1 Suppresses Proliferation, Invasion, and Migration by Inhibiting PI3K/AKT Signaling Pathway in Human Colorectal Cancer Cells. Mar Drugs 2022; 20:md20090570. [PMID: 36135759 PMCID: PMC9502403 DOI: 10.3390/md20090570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Moromycin B (Mor B), saquayamycin B1 (Saq B1), saquayamycin B (Saq B), and landomycin N (Lan N), four angucyclines produced by the marine-derived actinomycete Streptomyces sp., are a class of polyketone compounds containing benzanthracene. Here, the structure–activity relationship of these four compounds was analyzed in human colorectal cancer (CRC) cells. Saq B1, which showed the strongest cytotoxicity with an IC50 of 0.18–0.84 µM for CRC cells in MTT assays, was employed to test underlying mechanisms of action in SW480 and SW620 cells (two invasive CRC cell lines). Our results showed that Saq B1 inhibited CRC cell proliferation in a dose- and time-dependent manner. Notably, lower cytotoxicity was measured in normal human hepatocyte cells (QSG-7701). Furthermore, we observed proapoptosis, antimigration, and anti-invasion activities of Saq B1 in CRC cells. At the same time, the protein and mRNA expression of important markers related to the epithelial–mesenchymal transition (EMT) and apoptosis changed, including N-cadherin, E-cadherin, and Bcl-2, in Saq B1-treated CRC cells. Surprisingly, the PI3K/AKT signaling pathway was shown to be involved in Saq B1-induced apoptosis, and in inhibiting invasion and migration. Computer docking models also suggested that Saq B1 might bind to PI3Kα. Collectively, these results indicate that Saq B1 effectively inhibited growth and decreased the motor ability of CRC cells by regulating the PI3K/AKT signaling pathway, which provides more possibilities for the development of drugs in the treatment of CRC.
Collapse
Affiliation(s)
- Jianjiang Li
- Marine College, Shandong University, Weihai 264209, China
| | - Ningning Han
- Marine College, Shandong University, Weihai 264209, China
| | - Hao Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoyu Xie
- Marine College, Shandong University, Weihai 264209, China
| | - Yaoyao Zhu
- Marine College, Shandong University, Weihai 264209, China
| | - E Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Jiahui Ma
- Marine College, Shandong University, Weihai 264209, China
| | | | - Mengxiong Yin
- Marine College, Shandong University, Weihai 264209, China
| | - Weidong Xie
- Marine College, Shandong University, Weihai 264209, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264209, China
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-531-88382612
| |
Collapse
|
45
|
Miyake H, Nakajima R, Kumamoto T. Asymmetric Total Synthesis of Brasiliquinones B and C via Oxidative Cyclization of a Hydroquinone-Silyl Enol Ether Hybrid. J Org Chem 2022; 87:12491-12497. [PMID: 36042538 DOI: 10.1021/acs.joc.2c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric total synthesis of angucycline antibiotics (S)-brasiliquinones B and C was accomplished. The benz[a]anthraquinone core was constructed via oxidative cyclization of a hydroquinone-silyl enol ether hybrid. The resultant pentacyclic acetal was converted to the silyl enol ether, which was treated with Pd(II)/O2 to afford brasiliquinone C, after multistep conversion including dehydrogenation, desilylation and deacetalization, and hydroquinone oxidation. The (S)-configuration of natural brasiliquinones was confirmed based on the stereochemical correlation with the synthetic products.
Collapse
Affiliation(s)
- Hiroki Miyake
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryo Nakajima
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takuya Kumamoto
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
46
|
Heo KT, Lee B, Jang JH, Hong YS. Elucidation of the di-c-glycosylation steps during biosynthesis of the antitumor antibiotic, kidamycin. Front Bioeng Biotechnol 2022; 10:985696. [PMID: 36091425 PMCID: PMC9452638 DOI: 10.3389/fbioe.2022.985696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Kidamycins belong to the pluramycin family of antitumor antibiotics that contain di-C-glycosylated angucycline. Owing to its interesting biological activity, several synthetic derivatives of kidamycins are currently being developed. However, the synthesis of these complex structural compounds with unusual C-glycosylated residues is difficult. In the kidamycin-producing Streptomyces sp. W2061 strain, the genes encoding the biosynthetic enzymes responsible for the structural features of kidamycin were identified. Two glycosyltransferase-coding genes, kid7 and kid21, were found in the kidamycin biosynthetic gene cluster (BGC). Gene inactivation studies revealed that the subsequent glycosylation steps occurred in a sequential manner, in which Kid7 first attached N,N-dimethylvancosamine to the C10 position of angucycline aglycone, following which Kid21 transferred an anglosamine moiety to C8 of the C10-glycosylated angucycline. Therefore, this is the first report to reveal the sequential biosynthetic steps of the unique C-glycosylated amino-deoxyhexoses of kidamycin. Additionally, we confirmed that all three methyltransferases (Kid4, Kid9, and Kid24) present in this BGC were involved in the biosynthesis of these amino-deoxyhexoses, N,N-dimethylvancosamine and anglosamine. Aglycone compounds and the mono-C-glycosylated compound obtained in this process will be used as substrates for the development of synthetic derivatives in the future.
Collapse
Affiliation(s)
- Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology(UST), Daejeon, South Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology(UST), Daejeon, South Korea
- *Correspondence: Jae-Hyuk Jang, ; Young-Soo Hong,
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology(UST), Daejeon, South Korea
- *Correspondence: Jae-Hyuk Jang, ; Young-Soo Hong,
| |
Collapse
|
47
|
Flavin-enabled reductive and oxidative epoxide ring opening reactions. Nat Commun 2022; 13:4896. [PMID: 35986005 PMCID: PMC9391479 DOI: 10.1038/s41467-022-32641-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Epoxide ring opening reactions are common and important in both biological processes and synthetic applications and can be catalyzed in a non-redox manner by epoxide hydrolases or reductively by oxidoreductases. Here we report that fluostatins (FSTs), a family of atypical angucyclines with a benzofluorene core, can undergo nonenzyme-catalyzed epoxide ring opening reactions in the presence of flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NADH). The 2,3-epoxide ring in FST C is shown to open reductively via a putative enol intermediate, or oxidatively via a peroxylated intermediate with molecular oxygen as the oxidant. These reactions lead to multiple products with different redox states that possess a single hydroxyl group at C-2, a 2,3-vicinal diol, a contracted five-membered A-ring, or an expanded seven-membered A-ring. Similar reactions also take place in both natural products and other organic compounds harboring an epoxide adjacent to a carbonyl group that is conjugated to an aromatic moiety. Our findings extend the repertoire of known flavin chemistry that may provide new and useful tools for organic synthesis. Epoxide ring opening reactions are important in both biological processes and synthetic applications. Here, the authors show that flavin cofactors can catalyze reductive and oxidative epoxide ring opening reactions and propose the underlying mechanisms.
Collapse
|
48
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
49
|
Wu G, Qian X, Huang Y, Liu Y, Zhou L, Wang W, Li J, Zhu T, Gu Q, Li D. Nonenzymatic Self-Assembly Access to Diverse ortho-Quinone Methide-Based Pseudonatural Products. Org Lett 2022; 24:5235-5239. [DOI: 10.1021/acs.orglett.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
| | - Yeqiang Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, People’s Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, People’s Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, People’s Republic of China
| |
Collapse
|
50
|
Ouchene R, Stien D, Segret J, Kecha M, Rodrigues AMS, Veckerlé C, Suzuki MT. Integrated Metabolomic, Molecular Networking, and Genome Mining Analyses Uncover Novel Angucyclines From Streptomyces sp. RO-S4 Strain Isolated From Bejaia Bay, Algeria. Front Microbiol 2022; 13:906161. [PMID: 35814649 PMCID: PMC9260717 DOI: 10.3389/fmicb.2022.906161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-omic approaches have recently made big strides toward the effective exploration of microorganisms, accelerating the discovery of new bioactive compounds. We combined metabolomic, molecular networking, and genomic-based approaches to investigate the metabolic potential of the Streptomyces sp. RO-S4 strain isolated from the polluted waters of Bejaia Bay in Algeria. Antagonistic assays against methicillin-resistant Staphylococcus aureus with RO-S4 organic extracts showed an inhibition zone of 20 mm by using the agar diffusion method, and its minimum inhibitory concentration was 16 μg/ml. A molecular network was created using GNPS and annotated through the comparison of MS/MS spectra against several databases. The predominant compounds in the RO-S4 extract belonged to the angucycline family. Three compounds were annotated as known metabolites, while all the others were putatively new to Science. Notably, all compounds had fridamycin-like aglycones, and several of them had a lactonized D ring analogous to that of urdamycin L. The whole genome of Streptomyces RO-S4 was sequenced to identify the biosynthetic gene cluster (BGC) linked to these angucyclines, which yielded a draft genome of 7,497,846 bp with 72.4% G+C content. Subsequently, a genome mining analysis revealed 19 putative biosynthetic gene clusters, including a grincamycin-like BGC with high similarity to that of Streptomyces sp. CZN-748, that was previously reported to also produce mostly open fridamycin-like aglycones. As the ring-opening process leading to these compounds is still not defined, we performed a comparative analysis with other angucycline BGCs and advanced some hypotheses to explain the ring-opening and lactonization, possibly linked to the uncoupling between the activity of GcnE and GcnM homologs in the RO-S4 strain. The combination of metabolomic and genomic approaches greatly improved the interpretation of the metabolic potential of the RO-S4 strain.
Collapse
Affiliation(s)
- Rima Ouchene
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
- *Correspondence: Didier Stien
| | - Juliette Segret
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Mouloud Kecha
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Alice M. S. Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Carole Veckerlé
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Marcelino T. Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
- Marcelino T. Suzuki
| |
Collapse
|