1
|
Neusch A, Wiedwald U, Novoselova IP, Kuckla DA, Tetos N, Sadik S, Hagemann P, Farle M, Monzel C. Semisynthetic ferritin-based nanoparticles with high magnetic anisotropy for spatial magnetic manipulation and inductive heating. NANOSCALE 2024; 16:15113-15127. [PMID: 39054876 DOI: 10.1039/d4nr01652a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The human iron storage protein ferritin represents an appealing template to obtain a semisynthetic magnetic nanoparticle (MNP) for spatial manipulation or inductive heating applications on a nanoscale. Ferritin consists of a protein cage of well-defined size (12 nm), which is genetically modifiable and biocompatible, and into which a magnetic core is synthesised. Here, we probed the magnetic response and hence the MNP's suitability for (bio-)nanotechnological or nanomedical applications when the core is doped with 7% cobalt or 7% zinc in comparison with the undoped iron oxide MNP. The samples exhibit almost identical core and hydrodynamic sizes, along with their tunable magnetic core characteristics as verified by structural and magnetic characterisation. Cobalt doping significantly increased the MNP's anisotropy and hence the heating power in comparison with other magnetic cores with potential application as a mild heat mediator. Spatial magnetic manipulation was performed with MNPs inside droplets, the cell cytoplasm, or the cell nucleus, where the MNP surface conjugation with mEGFP and poly(ethylene glycol) gave rise to excellent intracellular stability and traceability within the complex biological environment. A magnetic stimulus (smaller than fN forces) results in the quick and reversible redistribution of the MNPs. The obtained data suggest that semisynthetic ferritin MNPs are highly versatile nanoagents and promising candidates for theranostic or (bio-)nanotechnological applications.
Collapse
Affiliation(s)
- Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Iuliia P Novoselova
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Daniel A Kuckla
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Nikolaos Tetos
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Sarah Sadik
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Philipp Hagemann
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Zhang J, Li Y, Guo S, Zhang W, Fang B, Wang S. Moving beyond traditional therapies: the role of nanomedicines in lung cancer. Front Pharmacol 2024; 15:1363346. [PMID: 38389925 PMCID: PMC10883231 DOI: 10.3389/fphar.2024.1363346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Amidst a global rise in lung cancer occurrences, conventional therapies continue to pose substantial side effects and possess notable toxicities while lacking specificity. Counteracting this, the incorporation of nanomedicines can notably enhance drug delivery at tumor sites, extend a drug's half-life and mitigate inadvertent toxic and adverse impacts on healthy tissues, substantially influencing lung cancer's early detection and targeted therapy. Numerous studies signal that while the nano-characteristics of lung cancer nanomedicines play a pivotal role, further interplay with immune, photothermal, and genetic factors exist. This review posits that the progression towards multimodal combination therapies could potentially establish an efficacious platform for multimodal targeted lung cancer treatments. Current nanomedicines split into active and passive targeting. Active therapies focus on a single target, often with unsatisfactory results. Yet, developing combination systems targeting multiple sites could chart new paths in lung cancer therapy. Conversely, low drug delivery rates limit passive therapies. Utilizing the EPR effect to bind specific ligands on nanoparticles to tumor cell receptors might create a new regime combining active-passive targeting, potentially elevating the nanomedicines' concentration at target sites. This review collates recent advancements through the lens of nanomedicine's attributes for lung cancer therapeutics, the novel carrier classifications, targeted therapeutic modalities and their mechanisms, proposing that the emergence of multi-target nanocomposite therapeutics, combined active-passive targeting therapies and multimodal combined treatments will pioneer novel approaches and tools for future lung cancer clinical therapies.
Collapse
Affiliation(s)
- Jingjing Zhang
- Medical College of Qingdao Binhai University, Qingdao, China
- The Affiliated Hospital of Qindao Binhai University (Qingdao Military-Cvil Integration Hospital), Qingdao, China
| | - Yanzhi Li
- Medical College of Qingdao Binhai University, Qingdao, China
| | - Sa Guo
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weifen Zhang
- Medical College, Weifang University, Weifang, China
| | - Bing Fang
- The Affiliated Hospital of Qindao Binhai University (Qingdao Military-Cvil Integration Hospital), Qingdao, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
4
|
Zhu Y, Zhu Y, Cao T, Liu X, Liu X, Yan Y, Shi Y, Wang JC. Ferritin-based nanomedicine for disease treatment. MEDICAL REVIEW (2021) 2023; 3:49-74. [PMID: 37724111 PMCID: PMC10471093 DOI: 10.1515/mr-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 09/20/2023]
Abstract
Ferritin is an endogenous protein which is self-assembled by 24 subunits into a highly uniform nanocage structure. Due to the drug-encapsulating ability in the hollow inner cavity and abundant modification sites on the outer surface, ferritin nanocage has been demonstrated great potential to become a multi-functional nanomedicine platform. Its good biocompatibility, low toxicity and immunogenicity, intrinsic tumor-targeting ability, high stability, low cost and massive production, together make ferritin nanocage stand out from other nanocarriers. In this review, we summarized ferritin-based nanomedicine in field of disease diagnosis, treatment and prevention. The different types of drugs to be loaded in ferritin, as well as drug-loading methods were classified. The strategies for site-specific and non-specific functional modification of ferritin were investigated, then the application of ferritin for disease imaging, drug delivery and vaccine development were discussed. Finally, the challenges restricting the clinical translation of ferritin-based nanomedicines were analyzed.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefeng Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianmiao Cao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
5
|
Ferritin - a multifaceted protein scaffold for biotherapeutics. Exp Mol Med 2022; 54:1652-1657. [PMID: 36192487 PMCID: PMC9527718 DOI: 10.1038/s12276-022-00859-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
The ferritin nanocage is an endogenous protein that exists in almost all mammals. Its hollow spherical structure that naturally stores iron ions has been diversely exploited by researchers in biotherapeutics. Ferritin has excellent biosafety profiles, and the nanosized particles exhibit rapid dispersion and controlled/sustained release pharmacokinetics. Moreover, the large surface-to-volume ratio and the disassembly/reassembly behavior of the 24 monomer subunits into a sphere allow diverse modifications by chemical and genetic methods on the surface and inner cage of ferritin. Here, we critically review ferritin and its applications. We (i) introduce the application of ferritin in drug delivery; (ii) present an overview of the use of ferritin in imaging and diagnosis for biomedical purposes; (iii) discuss ferritin-based vaccines; and (iv) review ferritin-based agents currently in clinical trials. Although there are no currently approved drugs based on ferritin, this multifunctional protein scaffold shows immense potential in drug development in diverse categories, and ferritin-based drugs have recently entered phase I clinical trials. This golden shortlist of recent developments will be of immediate benefit and interest to researchers studying ferritin and other protein-based biotherapeutics.
Collapse
|
6
|
Liu Q, Dai G, Wu Y, Zhang M, Yang M, Wang X, Song M, Li X, Xia R, Wu Z. iRGD-modified exosomes-delivered BCL6 siRNA inhibit the progression of diffuse large B-cell lymphoma. Front Oncol 2022; 12:822805. [PMID: 35982974 PMCID: PMC9378967 DOI: 10.3389/fonc.2022.822805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
Clinical applications of siRNA therapeutics have been limited by the immunogenicity of the siRNA and low efficiency of siRNA delivery to target cells. Recently, evidence have shown that exosomes, endogenous nano-vesicles, can deliver siRNA to the tumor tissues in mice. Here, to reduce immunogenicity, we selected immature dendritic cells (DCs) to produce exosomes. In addition, tumor targeting was achieved by engineering the DCs to express exosomal membrane protein (Lamp2b), fused to av integrin-specific iRGD peptide (CRGDKGPDC). Next, iRGD targeted exosomes (iRGD-Exo) were isolated from the transfected DCs, and then the isolated exosomes were loaded with BCL6 siRNA by electroporation. Our results found that integrin (αvβ3) receptors were highly expressed on OCI-Ly8 cells. In addition, iRGD-Exo showed high targeting ability with avβ3 integrins positive OCI-Ly8 cells. Significantly, iRGD-Exo loaded with BCL6 siRNA suppressed DLBCL cell proliferation in vitro. Furthermore, intravenously injected iRGD-Exo delivered BCL6 siRNA to tumor tissues, resulting in inhibition of tumor growth in DLBCL. Meanwhile, exosomes mediated BCL6 siRNA delivery did not exhibit appreciable toxicity in mice. Collectively, our study demonstrates a therapeutic potential of exosomes as a promising vehicle for RNAi delivery to treat DLBCL.
Collapse
|
7
|
Zhang J, Cheng D, He J, Hong J, Yuan C, Liang M. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat Protoc 2021; 16:4878-4896. [PMID: 34497386 DOI: 10.1038/s41596-021-00602-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Ferritins are spherical iron storage proteins within cells, composed of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin. Ferritins auto-assemble naturally into hollow nanocages with an outer diameter of 12 nm and an interior cavity 8 nm in diameter. Since the intrinsic tumor-targeting property of human HFn was first reported in 2012, HFn has been extensively explored for tumor-targeted delivery of anticancer drugs and diagnostic molecules, including radioisotopes and fluorophores, as well as inorganic nanoparticles (NPs) and chemotherapeutic drugs. This protocol provides four detailed procedures describing how to load four types of cargoes within HFn nanocages that are capable of accurately controlling cargo loading: synthesis of inorganic metal nanoparticles within the cavity of a wild-type human HFn nanocage (Procedure 1, requires ~5 h); loading of doxorubicin into the cavity of a wild-type human HFn nanocage (Procedure 2, requires ~3 d); loading Gd3+ into the cavity of a genetically engineered human HFn nanocage (Procedure 3, requires ~20 h); and loading 64Cu2+ radioisotope into the cavity of a genetically engineered human HFn nanocage (Procedure 4, requires ~3 h). Subsequent use of these HFn-based formulations is advantageous as they have intrinsic tumor-targeting capability and lack immunogenicity. Human HFn generated as described in this protocol can therefore be used to deliver therapeutic drugs and diagnostic signals as multifunctional nanomedicines.
Collapse
Affiliation(s)
- Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jiuyang He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Chang Yuan
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
8
|
Kumar M, Markiewicz-Mizera J, Janna Olmos JD, Wilk P, Grudnik P, Biela AP, Jemioła-Rzemińska M, Górecki A, Chakraborti S, Heddle JG. A single residue can modulate nanocage assembly in salt dependent ferritin. NANOSCALE 2021; 13:11932-11942. [PMID: 34195748 DOI: 10.1039/d1nr01632f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cage forming proteins have numerous potential applications in biomedicine and biotechnology, where the iron storage ferritin is a widely used example. However, controlling ferritin cage assembly/disassembly remains challenging, typically requiring extreme conditions incompatible with many desirable cargoes, particularly for more fragile biopharmaceuticals. Recently, a ferritin from the hyperthermophile bacterium Thermotoga maritima (TmFtn) has been shown to have reversible assembly under mild conditions, offering greater potential biocompatibility in terms of cargo access and encapsulation. Like Archeoglobus fulgidus ferritin (AfFtn), TmFtn forms 24mer cages mediated by metal ions (Mg2+). We have solved the crystal structure of the wild type TmFtn and several mutants displaying different assembly/disassembly properties. These data combined with other biophysical studies allow us to suggest candidate interfacial amino acids crucial in controlling assembly. This work deepens our understanding of how these ferritin complexes assemble and is a useful step towards production of triggerable ferritins in which these properties can be finely designed and controlled.
Collapse
Affiliation(s)
- Mantu Kumar
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang Y, Li Y, Zhang J, Chen X, Zhang R, Sun G, Jiang B, Fan K, Li Z, Yan X. Nanocage-Based Capture-Detection System for the Clinical Diagnosis of Autoimmune Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101655. [PMID: 34028968 DOI: 10.1002/smll.202101655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The detection of autoantibodies is critical for diagnosis of autoimmune diseases. However, the sensitivity is often limited by the properties of the antigens and the detection systems such as enzyme-linked immunosorbent assay (ELISA). Here, employing the multidisplay ability of ferritin, a highly sensitive nanocage-based capture-detection system is designed, of which the sensitivity is 100-1000-fold higher than that of conventional ELISA methods. The capture nanocages are constructed by displaying the primary Sjögren's syndrome (pSS)-related antigenic peptides on ferritin nanocage, which present epitopes effectively and high affinity, leading to tenfold higher capture capability for autoantibodies. Human IgG Fc-binding peptides are also engineered on ferritin nanocage, which enable high binding affinity and efficient horseradish peroxidase (HRP)-labeling. Compared with commercial HRP-conjugated anti-human IgG antibody, the nanocage-based detecting probe exhibited more than tenfold increased sensitivity. Autoantibodies are then examined in 91 sera from patients with pSS, 51 from rheumatoid arthritis, 54 from systemic lupus erythematosus, and 55 from healthy individuals by using the nanocage-based ELISA. The results indicate that the nanocage-based capture-detection system is an effective detection platform and provide a novel and more sensitive method for the diagnosis of autoimmune diseases.
Collapse
Affiliation(s)
- Yanan Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, 100044, China
| | - Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuehui Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoming Sun
- Nanjing Nanozyme Tech Co., Ltd., Nanjing, 211500, China
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, 100044, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
10
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Kim JW, Lee KK, Park KW, Kim M, Lee CS. Genetically Modified Ferritin Nanoparticles with Bone-Targeting Peptides for Bone Imaging. Int J Mol Sci 2021; 22:ijms22094854. [PMID: 34063731 PMCID: PMC8125493 DOI: 10.3390/ijms22094854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Bone homeostasis plays a major role in supporting and protecting various organs as well as a body structure by maintaining the balance of activities of the osteoblasts and osteoclasts. Unbalanced differentiation and functions of these cells result in various skeletal diseases, such as osteoporosis, osteopetrosis, and Paget’s disease. Although various synthetic nanomaterials have been developed for bone imaging and therapy through the chemical conjugation, they are associated with serious drawbacks, including heterogeneity and random orientation, in turn resulting in low efficiency. Here, we report the synthesis of bone-targeting ferritin nanoparticles for bone imaging. Ferritin, which is a globular protein composed of 24 subunits, was employed as a carrier molecule. Bone-targeting peptides that have been reported to specifically bind to osteoblast and hydroxyapatite were genetically fused to the N-terminus of the heavy subunit of human ferritin in such a way that the peptides faced outwards. Ferritin nanoparticles with fused bone-targeting peptides were also conjugated with fluorescent dyes to assess their binding ability using osteoblast imaging and a hydroxyapatite binding assay; the results showed their specific binding with osteoblasts and hydroxyapatite. Using in vivo analysis, a specific fluorescent signal from the lower limb was observed, demonstrating a highly selective affinity of the modified nanoparticles for the bone tissue. These promising results indicate a specific binding ability of the nanoscale targeting system to the bone tissue, which might potentially be used for bone disease therapy in future clinical applications.
Collapse
Affiliation(s)
- Jong-Won Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-K.L.); (K.-W.P.)
| | - Kyung-Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-K.L.); (K.-W.P.)
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kyoung-Woo Park
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-K.L.); (K.-W.P.)
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Korea
| | - Moonil Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-K.L.); (K.-W.P.)
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Korea
- Correspondence: (M.K.); (C.-S.L.); Tel.: +82-42-879-8446 (C.-S.L.)
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-W.K.); (K.-K.L.); (K.-W.P.)
- Department of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Korea
- Correspondence: (M.K.); (C.-S.L.); Tel.: +82-42-879-8446 (C.-S.L.)
| |
Collapse
|
12
|
Factors deciding the assembly and thermostability of the DmrB cage. Int J Biol Macromol 2021; 182:959-967. [PMID: 33872614 DOI: 10.1016/j.ijbiomac.2021.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Abstract
Dihydromethanopterin reductase (DmrB), is a naturally occurring cage protein found in various archaeal and a few bacterial species. It exists as 24mer with cubic geometry where 8 trimeric subunits are present at the corners of each cube. Each trimer is made up of three monomeric units and six FMN, where two molecules of FMN are present at the interface of each monomer. DmrB is involved in the conversion of dihydromethanopterin to tetrahydromethanopterin using FMN as a redox equivalent. In the present study, we have used spectroscopic and biochemical techniques along with complementary bio-informatic work to understand the assembly principles of the DmrB. Our results show a concentration dependant self-assembly of DmrB which is mediated by ionic interactions. The co-factor FMN stabilizes and preserves the secondary and quaternary structure of DmrB against thermal insult, indicating that the higher order assembly of DmrB is very thermostable. Our work provides an interesting piece of information regarding the role of the co-factors in the thermostability of these classes of cage proteins. The understanding of the assembly and disassembly of this thermostable cage would enable the downstream usage of this system in various nano-biotechnological applications.
Collapse
|
13
|
Xu S, Wang J, Wei Y, Zhao H, Tao T, Wang H, Wang Z, Du J, Wang H, Qian J, Ma K, Wang J. In Situ One-Pot Synthesis of Fe 2O 3@BSA Core-Shell Nanoparticles as Enhanced T 1-Weighted Magnetic Resonance Imagine Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56701-56711. [PMID: 33296181 DOI: 10.1021/acsami.0c13825] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultra-small-sized iron oxide nanoparticles with good biocompatibility are regarded as promising alternatives for the gadolinium-based contrast agents, which are widely used as a positive contrast agent in magnetic resonance imaging (MRI). However, the current preparation of the iron oxide magnetic nanoparticles with small sizes usually involves organic solvents, increasing the complexity of hydrophilic ligand replacement and reducing the synthesis efficiency. It remains a great challenge to explore new iron oxide nanoparticles with good biocompatibility and a high T1 contrast effect. Here, we reported a cage-like protein architecture self-assembled by approximately 6-7 BSA (bovine serum albumin) subunits. The BSA nanocage was then used as a biotemplate to synthesize uniformed and monodispersed Fe2O3@BSA nanoparticles with ultra-small sizes (∼3.5 nm). The Fe2O3@BSA nanoparticle showed a high r1 value of 6.8 mM-1 s-1 and a low r2/r1 ratio of 10.6 at a 3 T magnetic field. Compared to Gd-DTPA, the brighter signal and prolonged angiographic effect of Fe2O3@BSA nanoparticles could greatly benefit steady-state and high-resolution imaging. The further in vivo and in vitro assessments of stability, toxicity, and renal clearance indicated a substantial potential as a T1 contrast agent in preclinical MRI.
Collapse
Affiliation(s)
- Shuai Xu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230036, P.R. China
| | - Jiarong Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Yuan Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P.R. China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Tongxiang Tao
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230036, P.R. China
| | - Hui Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Zhen Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230036, P.R. China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P.R. China
| | - Hongzhi Wang
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Kun Ma
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230036, P.R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
14
|
Silver nanoparticle synthesis in human ferritin by photochemical reduction. J Inorg Biochem 2020; 206:111016. [DOI: 10.1016/j.jinorgbio.2020.111016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
|
15
|
Nasrollahi F, Sana B, Paramelle D, Ahadian S, Khademhosseini A, Lim S. Incorporation of Graphene Quantum Dots, Iron, and Doxorubicin in/on Ferritin Nanocages for Bimodal Imaging and Drug Delivery. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fatemeh Nasrollahi
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California—Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
- School of Chemical Engineering, College of EngineeringUniversity of Tehran P.O. Box: 11155/4563 Tehran Iran
| | - Barindra Sana
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457
- p53 LaboratoryAgency for Science Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - David Paramelle
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California—Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California—Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
- Department of Radiological Sciences, David Geffen School of MedicineDepartment of Chemical and Biomolecular EngineeringUniversity of California—Los Angeles Los Angeles CA 90095 USA
| | - Sierin Lim
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive, Block N1.3 Singapore 637457
- NTU‐Northwestern Institute for Nanomedicine (NNIN)Nanyang Technological University 50 Nanyang Drive, Block N3.1, #01‐03 Singapore 637553
| |
Collapse
|
16
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
17
|
Bulutoglu B, Macazo FC, Bale J, King N, Baker D, Minteer SD, Banta S. Multimerization of an Alcohol Dehydrogenase by Fusion to a Designed Self-Assembling Protein Results in Enhanced Bioelectrocatalytic Operational Stability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20022-20028. [PMID: 31066271 DOI: 10.1021/acsami.9b04256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Proteins designed for supramolecular assembly provide a simple means to immobilize and organize enzymes for biotechnology applications. We have genetically fused the thermostable alcohol dehydrogenase D (AdhD) from Pyrococcus furiosus to a computationally designed cage-forming protein (O3-33). The trimeric form of the O3-33-AdhD fusion protein was most active in solution. The immobilization of the fusion protein on bioelectrodes leads to a doubling of the electrochemical operational stability as compared to the unfused control proteins. Thus, the fusion of enzymes to the designed self-assembling domains offers a simple strategy to increase the stability in biocatalytic systems.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States
| | - Florika C Macazo
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112 , United States
| | | | | | | | - Shelley D Minteer
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112 , United States
| | - Scott Banta
- Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
18
|
Mukherjee A, Paul M, Mukherjee S. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers (Basel) 2019; 11:cancers11050597. [PMID: 31035440 PMCID: PMC6562381 DOI: 10.3390/cancers11050597] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) causes around 80% to 90% of deaths. The lack of an early diagnosis and inefficiency in conventional therapies causes poor prognosis and overall survival of lung cancer patients. Recent progress in nanomedicine has encouraged the development of an alternative theranostics strategy using nanotechnology. The interesting physico-chemical properties in the nanoscale have generated immense advantages for nanoparticulate systems for the early detection and active delivery of drugs for a better theranostics strategy for lung cancer. This present review provides a detailed overview of the recent progress in the theranostics application of nanoparticles including liposomes, polymeric, metal and bio-nanoparticles. Further, we summarize the advantages and disadvantages of each approach considering the improvement for the lung cancer theranostics.
Collapse
Affiliation(s)
- Anubhab Mukherjee
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Providence Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA.
| | - Manash Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, The University of California, Los Angeles (UCLA) Factor Bldg. 10-240, 621 Charles E. Young Dr., Los Angeles, CA 90095, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
19
|
Fan K, Jiang B, Guan Z, He J, Yang D, Xie N, Nie G, Xie C, Yan X. Fenobody: A Ferritin-Displayed Nanobody with High Apparent Affinity and Half-Life Extension. Anal Chem 2018; 90:5671-5677. [PMID: 29634235 DOI: 10.1021/acs.analchem.7b05217] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanobodies consist of a single domain variable fragment of a camelid heavy-chain antibody. Nanobodies have potential applications in biomedical fields because of their simple production procedures and low cost. Occasionally, nanobody clones of interest exhibit low affinities for their target antigens, which, together with their short half-life limit bioanalytical or therapeutic applications. Here, we developed a novel platform we named fenobody, in which a nanobody developed against H5N1 virus is displayed on the surface of ferritin in the form of a 24mer. We constructed a fenobody by substituting the fifth helix of ferritin with the nanobody. TEM analysis showed that nanobodies were displayed on the surface of ferritin in the form of 6 × 4 bundles, and that these clustered nanobodies are flexible for antigen binding in spatial structure. Comparing fenobodies with conventional nanobodies currently used revealed that the antigen binding apparent affinity of anti-H5N1 fenobody was dramatically increased (∼360-fold). Crucially, their half-life extension in a murine model was 10-fold longer than anti-H5N1 nanobody. In addition, we found that our fenobodies are highly expressed in Escherichia coli, and are both soluble and thermo-stable nanocages that self-assemble as 24-polymers. In conclusion, our results demonstrate that fenobodies have unique advantages over currently available systems for apparent affinity enhancement and half-life extension of nanobodies. Our fenobody system presents a suitable platform for various large-scale biotechnological processes and should greatly facilitate the application of nanobody technology in these areas.
Collapse
Affiliation(s)
- Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Bing Jiang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Zhe Guan
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences , Peking University , Beijing 100871 , China
| | - Jiuyang He
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Ni Xie
- Institute of Translation Medicine , Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen , 518035 , China
| | - Guohui Nie
- Institute of Translation Medicine , Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen , 518035 , China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences , Peking University , Beijing 100871 , China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology , Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
20
|
Abstract
Ferritin subunits of heavy and light polypeptide chains self-assemble into a spherical nanocage that serves as a natural transport vehicle for metals but can include diverse cargoes. Ferritin nanoparticles are characterized by remarkable stability, small and uniform size. Chemical modifications and molecular re-engineering of ferritin yield a versatile platform of nanocarriers capable of delivering a broad range of therapeutic and imaging agents. Targeting moieties conjugated to the ferritin external surface provide multivalent anchoring of biological targets. Here, we highlight some of the current work on ferritin as well as examine potential strategies that could be used to functionalize ferritin via chemical and genetic means to enable its utility in vascular drug delivery.
Collapse
|
21
|
Khoshnejad M, Greineder CF, Pulsipher KW, Villa CH, Altun B, Pan DC, Tsourkas A, Dmochowski IJ, Muzykantov VR. Ferritin Nanocages with Biologically Orthogonal Conjugation for Vascular Targeting and Imaging. Bioconjug Chem 2018; 29:1209-1218. [PMID: 29429330 DOI: 10.1021/acs.bioconjchem.8b00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied this approach to ferritin, a ubiquitous iron-storage protein that self-assembles into multimeric nanocages with remarkable stability, size uniformity (12 nm), and endogenous capacity for loading and transport of a variety of inorganic and organic cargoes. The unnatural amino acid, 4-azidophenylalanine (4-AzF), was incorporated at different sites in the human ferritin light chain (hFTL) to allow site-specific conjugation of alkyne-containing small molecules or affinity ligands to the exterior surface of the nanocage. The optimal positioning of the 4-AzF residue was evaluated by screening a library of variants for the efficiency of copper-free click conjugation. One of the engineered ferritins, hFTL-5X, was found to accommodate ∼14 small-molecule fluorophores (AlexaFluor 488) and 3-4 IgG molecules per nanocage. Intravascular injection in mice of radiolabeled hFTL-5X carrying antibody to cell adhesion molecule ICAM-1, but not control IgG, enabled specific targeting to the lung due to high basal expression of ICAM-1 (43.3 ± 6.99 vs 3.48 ± 0.14%ID/g for Ab vs IgG). Treatment of mice with endotoxin known to stimulate inflammatory ICAM-1 overexpression resulted in 2-fold enhancement of pulmonary targeting (84.4 ± 12.89 vs 43.3 ± 6.99%ID/g). Likewise, injection of fluorescent, ICAM-targeted hFTL-5X nanocages revealed the effect of endotoxin by enhancement of near-infrared signal, indicating potential utility of this approach for both vascular targeting and imaging.
Collapse
|
22
|
Song MM, Xiang HH, Fei MY, Lu DP, Jiang TC, Yu YQ, Liu R, Shen YX. Facile fabrication of water-dispersible nanocomposites based on hexa-peri-hexabenzocoronene and Fe3O4 for dual mode imaging (fluorescent/MR) and drug delivery. RSC Adv 2018; 8:40554-40563. [PMID: 35557926 PMCID: PMC9091618 DOI: 10.1039/c8ra08425d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023] Open
Abstract
Water-dispersible, stable and biocompatible dandelion-like Fe3O4/HBC@F127 nanocomposites were facilely developed for dual mode imaging (fluorescent/MR) and drug delivery.
Collapse
Affiliation(s)
- Meng-Meng Song
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- Biopharmaceutical Research Institute
| | - Hui-Hui Xiang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- The First Affiliated Hospital
| | - Meng-Yu Fei
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- The First Affiliated Hospital
| | - Da-Peng Lu
- School of Pharmacy
- Anhui Medical University
- Hefei
- PR China
| | - Tong-Cui Jiang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- Biopharmaceutical Research Institute
| | - Yong-Qiang Yu
- The First Affiliated Hospital
- Anhui Medical University
- Hefei
- PR China
| | - Rui Liu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
| | - Yu-Xian Shen
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- PR China
- Biopharmaceutical Research Institute
| |
Collapse
|
23
|
Kim JW, Heu W, Jeong S, Kim HS. Genetically functionalized ferritin nanoparticles with a high-affinity protein binder for immunoassay and imaging. Anal Chim Acta 2017; 988:81-88. [PMID: 28916107 DOI: 10.1016/j.aca.2017.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
Molecular detection of target molecules with high sensitivity and specificity is of great significance in bio and medical sciences. Here, we present genetically functionalized ferritin nanoparticles with a high-affinity protein binder, and their utility as a signal generator in a variety of immunoassays and imaging. As a high-affinity protein binder, human IgG-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was used. The repebody was genetically fused to the N-terminal heavy-chain ferritin, and the resulting subunits were self-assembled to the repebody-ferritin nanoparticles composed of 24 subunits. The repebody-ferritin nanoparticles were shown to have a three-order of magnitude higher binding affinity toward human IgG than free repebody mainly owing to a decreased dissociation rate constant. The repebody-ferritin nanoparticles were conjugated with fluorescent dyes, and the resulting nanoparticles were used for western blotting, cell imaging, and flow cytometric analysis. The dye-labeled repebody-ferritin nanoparticles were shown to generate about 3-fold stronger fluorescent signals in immunoassays than monovalent repebody. The repebody-functionalized ferritin nanoparticles can be effectively used for sensitive and specific immunoassays and imaging in many areas.
Collapse
Affiliation(s)
- Jong-Won Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Woosung Heu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Sukyo Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea.
| |
Collapse
|
24
|
Kumari S, Häring M, Gupta SS, Díaz Díaz D. Catalytic Macroporous Biohydrogels Made of Ferritin-Encapsulated Gold Nanoparticles. Chempluschem 2017; 82:225-232. [PMID: 31961537 DOI: 10.1002/cplu.201600454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/28/2016] [Indexed: 11/11/2022]
Abstract
Reported is a modular approach for the incorporation and stabilization of gold nanoparticles inside a three-dimensional macroporous hydrogel made of ferritin. The strategy, which involves the dynamic templating of surfactant H1 domains, demineralization, and remineralization helps to overcome aggregation and degradation issues usually associated with bare-metal-based nanocatalysts. The catalytic activity of the so-synthesized bionanocomposite hydrogel was demonstrated in both nitroaldol (Henry) and nitroreduction model reactions in aqueous solution at room temperature. An interesting synergistic effect between basic residues of the protein and the gold nanoparticles was found in the nitroaldol reaction when carried out in water in the presence of a phase-transfer catalyst. Furthermore, the reduction of 4-nitrophenol and 4-nitroaniline catalyzed by the nanocomposite scaffold in the presence of NaBH4 proceeded significantly faster than that using other known Au- and Ag-based catalysts under similar conditions.
Collapse
Affiliation(s)
- Sushma Kumari
- CReST Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Marleen Häring
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg, 93053, Germany
| | - Sayam Sen Gupta
- CReST Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India.,Current affiliation: Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur, West Bengal, 741 246, India
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg, 93053, Germany.,IQAC-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain
| |
Collapse
|
25
|
Abstract
Iron is very important in many biological processes and the ferritin protein family has evolved to store iron and to maintain cellular iron homeostasis. The deletion of the coding gene for the H subunit of ferritin leads to early embryonic death in mice and mutations in the gene for the L subunits in humans has been observed in neurodegenerative diseases, such as neuroferritinopathy. Thus, understanding how ferritin works is imperative and many studies have been conducted to delineate the molecular mechanism of ferritins and bacterioferritins. In the ferritin protein family, it is clear that a catalytic center for iron oxidation, the routes for iron to reach this center and the ability to nucleate an iron core, are common requirements for all ferritins. However, there are differences in the structural and mechanistic details of iron oxidation and mineralization. Although a common mechanism has been proposed for all ferritins, this mechanism needs to be further explored. There is a mechanistic diversity related to structural variation in the ferritin protein family. It is clear that other factors appear to affect the mechanism of iron oxidation and mineralization. This review focusses on the structural features of the ferritin protein family and its role in the mechanism of iron mineralization.
Collapse
Affiliation(s)
- Alejandro Yévenes
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Zheng XT, Xu HV, Tan YN. Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Hesheng Victor Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
27
|
Tan H, Cheng D. Using magnetoferritin nanoprobes for both nuclear and magnetic-resonance imaging. Nanomedicine (Lond) 2017; 12:9-11. [PMID: 27876442 DOI: 10.2217/nnm-2016-0369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Fenglin Road 180, Shanghai 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Fenglin Road 180, Shanghai 200032, China
| |
Collapse
|
28
|
Bioengineered protein-based nanocage for drug delivery. Adv Drug Deliv Rev 2016; 106:157-171. [PMID: 26994591 DOI: 10.1016/j.addr.2016.03.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
Nature, in its wonders, presents and assembles the most intricate and delicate protein structures and this remarkable phenomenon occurs in all kingdom and phyla of life. Of these proteins, cage-like multimeric proteins provide spatial control to biological processes and also compartmentalizes compounds that may be toxic or unstable and avoids their contact with the environment. Protein-based nanocages are of particular interest because of their potential applicability as drug delivery carriers and their perfect and complex symmetry and ideal physical properties, which have stimulated researchers to engineer, modify or mimic these qualities. This article reviews various existing types of protein-based nanocages that are used for therapeutic purposes, and outlines their drug-loading mechanisms and bioengineering strategies via genetic and chemical functionalization. Through a critical evaluation of recent advances in protein nanocage-based drug delivery in vitro and in vivo, an outlook for de novo and in silico nanocage design, and also protein-based nanocage preclinical and future clinical applications will be presented.
Collapse
|
29
|
Sun X, Li W, Zhang X, Qi M, Zhang Z, Zhang XE, Cui Z. In Vivo Targeting and Imaging of Atherosclerosis Using Multifunctional Virus-Like Particles of Simian Virus 40. NANO LETTERS 2016; 16:6164-6171. [PMID: 27622963 DOI: 10.1021/acs.nanolett.6b02386] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atherosclerosis is a leading cause of death globally. Targeted imaging and therapeutics are desirable for the detection and treatment of the disease. In this study, we developed trifunctional Simian virus 40 (SV40)-based nanoparticles for in vivo targeting and imaging of atherosclerotic plaques. These novel trifunctional SV40-based nanoparticles encapsulate near-infrared quantum dots and bear a targeting element and a drug component. Using trifunctional SV40-based nanoparticles, we were able to noninvasively fluorescently image atherosclerotic plaques in live intact ApoE(-/-) mice. Near-infrared quantum dots encapsulated in the SV40 virus-like particles showed prominent optical properties for in vivo imaging. When different targeting peptides for vascular cell adhesion molecule-1, macrophages, and fibrin were used, early, developmental, and late stages of atherosclerosis could be targeted and imaged in live intact ApoE(-/-) mice, respectively. Targeted SV40 virus-like particles also delivered an increased concentration of the anticoagulant drug Hirulog to atherosclerosis plaques. Our study provides novel SV40-based nanoparticles with multivalency and multifunctionality suitable for in vivo imaging, molecular targeting, and drug delivery in atherosclerosis.
Collapse
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences , Beijing 100049, China
- College of Life Science, Jiang Han University , Wuhan 430056, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| |
Collapse
|
30
|
Paramelle D, Peng T, Free P, Fernig DG, Lim S, Tomczak N. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding. PLoS One 2016; 11:e0162848. [PMID: 27622533 PMCID: PMC5021291 DOI: 10.1371/journal.pone.0162848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently available approaches and provides a new route to design tailored and well-controlled hybrid nanoparticles.
Collapse
Affiliation(s)
- David Paramelle
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- * E-mail: (DP); (NT); (SL)
| | - Tao Peng
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Paul Free
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - David G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sierin Lim
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technology University, Singapore, Singapore
- * E-mail: (DP); (NT); (SL)
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- * E-mail: (DP); (NT); (SL)
| |
Collapse
|
31
|
Protein Nanoparticles as Multifunctional Biocatalysts and Health Assessment Sensors. Curr Opin Chem Eng 2016; 13:109-118. [PMID: 30370212 DOI: 10.1016/j.coche.2016.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of protein nanoparticles for biosensing, biocatalysis and drug delivery has exploded in the last few years. The ability of protein nanoparticles to self-assemble into predictable, monodisperse structures is of tremendous value. The unique properties of protein nanoparticles such as high stability, and biocompatibility, along with the potential to modify them led to development of novel bioengineering tools. Together, the ability to control the interior loading and external functionalities of protein nanoparticles makes them intriguing nanodevices. This review will focus on a number of recent examples of protein nanoparticles that have been engineered towards imparting the particles with biocatalytic or biosensing functionality.
Collapse
|
32
|
Samanta A, Medintz IL. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. NANOSCALE 2016; 8:9037-95. [PMID: 27080924 DOI: 10.1039/c5nr08465b] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
Collapse
Affiliation(s)
- Anirban Samanta
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
33
|
Jurado R, Frączek P, Droetto M, Sánchez P, Valero E, Domínguez-Vera JM, Gálvez N. Apomaghemite as a doxorubicin carrier for anticancer drug delivery. J Inorg Biochem 2016; 157:46-51. [PMID: 26826473 DOI: 10.1016/j.jinorgbio.2016.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 11/19/2022]
Abstract
Protein cages have well-defined structures and can be chemically and biologically engineered in many ways, making them useful platforms for drug delivery applications. Taking advantage of the unique structure feature of apoferritin, a new theranostic nanocarrier is proposed herein. The apoferritin protein is effective for the encapsulation of maghemite nanoparticles and for loading a significant dose of doxorubicin (DOX) drug. This simultaneous loading of maghemite nanoparticles and DOX has been achieved using either co-encapsulation or surface-binding approaches. Maghemite nanoparticles coated with the protein apoferritin are an effective long-term MRI liver contrast agent and we report here that additionally they can serve as an anticancer drug-delivery system. In particular we show that maghemite-containing apoferritin can sustain the DOX delivery under period of 10 to 25 days depending on the environmental conditions.
Collapse
Affiliation(s)
- Rocío Jurado
- Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada. Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Paulina Frączek
- Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada. Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Mélissa Droetto
- Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada. Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Purificación Sánchez
- Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada. Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Elsa Valero
- Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada. Avda Fuentenueva s/n, 18071 Granada, Spain
| | - José M Domínguez-Vera
- Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada. Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Natividad Gálvez
- Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada. Avda Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
34
|
Yao H, Long X, Cao L, Zeng M, Zhao W, Du B, Zhou J. Multifunctional ferritin nanocages for bimodal imaging and targeted delivery of doxorubicin into cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra13845d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Schematic illustration of design of Fe3O4–AFn/DOX–Cdots composite.
Collapse
Affiliation(s)
- Hanchun Yao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation
| | - Xiaofei Long
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Li Cao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Man Zeng
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Weiwei Zhao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bin Du
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation
| | - Jie Zhou
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation
| |
Collapse
|
35
|
Guan X, Li C, Wang D, Sun W, Gai X. A tumor-targeting protein nanoparticle based on Tat peptide and enhanced green fluorescent protein. RSC Adv 2016. [DOI: 10.1039/c5ra27411g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A protein-based nanoparticle containing cell penetrating peptides (CPPs) and enhanced green fluorescent protein (EGFP) was developed through a genetic engineering method.
Collapse
Affiliation(s)
- Xingang Guan
- Life Science Research Center
- Beihua University
- Jilin 132013
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Chun Li
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| | - Dan Wang
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| | - Weiqi Sun
- School of Public Health
- Beihua University
- Jilin 132013
- P. R. China
| | - Xiaodong Gai
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| |
Collapse
|
36
|
Hickman SJ, Ross JF, Paci E. Prediction of stability changes upon mutation in an icosahedral capsid. Proteins 2015; 83:1733-41. [PMID: 26178267 PMCID: PMC4737204 DOI: 10.1002/prot.24859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/24/2015] [Accepted: 07/04/2015] [Indexed: 11/08/2022]
Abstract
Identifying the contributions to thermodynamic stability of capsids is of fundamental and practical importance. Here we use simulation to assess how mutations affect the stability of lumazine synthase from the hyperthermophile Aquifex aeolicus, a T = 1 icosahedral capsid; in the simulations the icosahedral symmetry of the capsid is preserved by simulating a single pentamer and imposing crystal symmetry, in effect simulating an infinite cubic lattice of icosahedral capsids. The stability is assessed by estimating the free energy of association using an empirical method previously proposed to identify biological units in crystal structures. We investigate the effect on capsid formation of seven mutations, for which it has been experimentally assessed whether they disrupt capsid formation or not. With one exception, our approach predicts the effect of the mutations on the capsid stability. The method allows the identification of interaction networks, which drive capsid assembly, and highlights the plasticity of the interfaces between subunits in the capsid. Proteins 2015; 83:1733–1741. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc
Collapse
Affiliation(s)
- Samuel J Hickman
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - James F Ross
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
37
|
Guan X, Hu X, Cui F, Li Y, Jing X, Xie Z. EGFP-Based Protein Nanoparticles with Cell-Penetrating Peptide for Efficient siRNA Delivery. Macromol Biosci 2015; 15:1484-9. [DOI: 10.1002/mabi.201500163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Xingang Guan
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Fengchao Cui
- Key Laboratory of Synthetic Rubber; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xiabing Jing
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
38
|
Cai Y, Cao C, He X, Yang C, Tian L, Zhu R, Pan Y. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size. Int J Nanomedicine 2015; 10:2619-34. [PMID: 25878496 PMCID: PMC4388082 DOI: 10.2147/ijn.s80025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose This study is to demonstrate the nanoscale size effect of ferrimagnetic H-ferritin (M-HFn) nanoparticles on magnetic properties, relaxivity, enzyme mimetic activities, and application in magnetic resonance imaging (MRI) and immunohistochemical staining of cancer cells. Materials and methods M-HFn nanoparticles with different sizes of magnetite cores in the range of 2.7–5.3 nm were synthesized through loading different amounts of iron into recombinant human H chain ferritin (HFn) shells. Core size, crystallinity, and magnetic properties of those M-HFn nanoparticles were analyzed by transmission electron microscope and low-temperature magnetic measurements. The MDA-MB-231 cancer cells were incubated with synthesized M-HFn nanoparticles for 24 hours in Dulbecco’s Modified Eagle’s Medium. In vitro MRI of cell pellets after M-HFn labeling was performed at 7 T. Iron uptake of cells was analyzed by Prussian blue staining and inductively coupled plasma mass spectrometry. Immunohistochemical staining by using the peroxidase-like activity of M-HFn nanoparticles was carried out on MDA-MB-231 tumor tissue paraffin sections. Results The saturation magnetization (Ms), relaxivity, and peroxidase-like activity of synthesized M-HFn nanoparticles were monotonously increased with the size of ferrimagnetic cores. The M-HFn nanoparticles with the largest core size of 5.3 nm exhibit the strongest saturation magnetization, the highest peroxidase activity in immunohistochemical staining, and the highest r2 of 321 mM−1 s−1, allowing to detect MDA-MB-231 breast cancer cells as low as 104 cells mL−1. Conclusion The magnetic properties, relaxivity, and peroxidase-like activity of M-HFn nanoparticles are size dependent, which indicates that M-HFn nanoparticles with larger magnetite core can significantly enhance performance in MRI and staining of cancer cells.
Collapse
Affiliation(s)
- Yao Cai
- France-China Bio-Mineralization and Nano-Structures Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China ; Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China ; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Changqian Cao
- France-China Bio-Mineralization and Nano-Structures Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China ; Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China
| | - Xiaoqing He
- France-China Bio-Mineralization and Nano-Structures Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China
| | - Caiyun Yang
- France-China Bio-Mineralization and Nano-Structures Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China ; Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China ; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lanxiang Tian
- France-China Bio-Mineralization and Nano-Structures Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China ; Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China
| | - Rixiang Zhu
- Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China
| | - Yongxin Pan
- France-China Bio-Mineralization and Nano-Structures Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China ; Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, People's Republic of China
| |
Collapse
|
39
|
H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A 2014; 111:14900-5. [PMID: 25267615 DOI: 10.1073/pnas.1407808111] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An ideal nanocarrier for efficient drug delivery must be able to target specific cells and carry high doses of therapeutic drugs and should also exhibit optimized physicochemical properties and biocompatibility. However, it is a tremendous challenge to engineer all of the above characteristics into a single carrier particle. Here, we show that natural H-ferritin (HFn) nanocages can carry high doses of doxorubicin (Dox) for tumor-specific targeting and killing without any targeting ligand functionalization or property modulation. Dox-loaded HFn (HFn-Dox) specifically bound and subsequently internalized into tumor cells via interaction with overexpressed transferrin receptor 1 and released Dox in the lysosomes. In vivo in the mouse, HFn-Dox exhibited more than 10-fold higher intratumoral drug concentration than free Dox and significantly inhibited tumor growth after a single-dose injection. Importantly, HFn-Dox displayed an excellent safety profile that significantly reduced healthy organ drug exposure and improved the maximum tolerated dose by fourfold compared with free Dox. Moreover, because the HFn nanocarrier has well-defined morphology and does not need any ligand modification or property modulation it can be easily produced with high purity and yield, which are requirements for drugs used in clinical trials. Thus, these unique properties make the HFn nanocage an ideal vehicle for efficient anticancer drug delivery.
Collapse
|
40
|
Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Di Cesare Mannelli L, Ghelardini C, Ferretti AM, Ponti A, Sangregorio C, Ceci P. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS NANO 2014; 8:4705-19. [PMID: 24689973 DOI: 10.1021/nn500454n] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform.
Collapse
Affiliation(s)
- Elvira Fantechi
- INSTM and Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze , via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Naumova AV, Balu N, Yarnykh VL, Reinecke H, Murry CE, Yuan C. Magnetic Resonance Imaging Tracking of Graft Survival in the Infarcted Heart: Iron Oxide Particles Versus Ferritin Overexpression Approach. J Cardiovasc Pharmacol Ther 2014; 19:358-367. [PMID: 24685664 DOI: 10.1177/1074248414525999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main objective of cell therapy is the regeneration of damaged tissues. To distinguish graft from host tissue by magnetic resonance imaging (MRI), a paramagnetic label must be introduced to cells prior to transplantation. The paramagnetic label can be either exogenous iron oxide nanoparticles or a genetic overexpression of ferritin, an endogenous iron storage protein. The purpose of this work was to compare the efficacy of these 2 methods for MRI evaluation of engrafted cell survival in the infarcted mouse heart. Mouse skeletal myoblasts were labeled either by cocultivation with iron oxide particles or by engineering them to overexpress ferritin. Along with live cell transplantation, 2 other groups of mice were injected with dead-labeled cells. Both particle-labeled and ferritin-tagged grafts were detected as areas of MRI signal hypointensity in the left ventricle of the mouse heart using T2*-weighted sequences, although the signal attenuation decreased with ferritin tagging. Importantly, live cells could not be distinguished from dead cells when labeled with iron oxide particles, whereas the ferritin tagging was detected only in live grafts, thereby allowing identification of viable grafts using MRI. Thus, iron oxide particles can provide information about initial cell injection success but cannot assess graft viability. On the other hand, genetically based cell tagging, such as ferritin overexpression, despite having lower signal intensity in comparison with iron oxide particles, is able to identify live transplanted cells.
Collapse
Affiliation(s)
- Anna V Naumova
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Hans Reinecke
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Pathology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Pathology, University of Washington, Seattle, WA, USA Department of Bioengineering, University of Washington, Seattle, WA, USA Department of Medicine/Cardiology, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Falvo E, Tremante E, Fraioli R, Leonetti C, Zamparelli C, Boffi A, Morea V, Ceci P, Giacomini P. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. NANOSCALE 2013; 5:12278-12285. [PMID: 24150593 DOI: 10.1039/c3nr04268e] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4(+) melanoma cell line, but not to a CSPG4(-) breast carcinoma cell line. As compared to the cisplatin-containing ferritin nanoparticle alone (HFt-Pt), which inhibited thymidine incorporation more efficiently in breast carcinoma than melanoma cells, the mAb-derivatized HFt-Pt-Ep1 nanoparticle had a 25-fold preference for the latter. A similar preference for melanoma was observed upon systemic intravenous administration of HFt-Pt-Ep1 to nude mice xenotransplanted with pre-established, palpable melanoma and breast carcinoma tumors. Thus, we have been able to determine precise combinations and stoichiometric relationships between mAbs and nanoparticle protein cages, whereby the latter lose their tropism for ubiquitously distributed cellular receptors, and acquire instead remarkably lineage-selective binding. HFt-Pt-Ep1 is therefore an interesting model to improve the therapeutic index of antiblastic therapy in a tumor such as melanoma, which at its advanced stages is totally refractory to mono- and combination-chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Falvo
- CNR - National Research Council of Italy, Institute of Molecular Biology and Pathology, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ji T, Zhao Y, Wang J, Zheng X, Tian Y, Zhao Y, Nie G. Tumor fibroblast specific activation of a hybrid ferritin nanocage-based optical probe for tumor microenvironment imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2427-2431. [PMID: 23853124 DOI: 10.1002/smll.201300600] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/11/2013] [Indexed: 06/02/2023]
Abstract
Ferritin-based FAP-α-responsive fluorescence nanoprobes could be activated immediately as they penetrate the tumor blood vessels and come across the FAP-α molecules on the membrane of CAFs in the tumor microenvironment instead of reaching a certain depth into tumor tissue to interact with tumor cells. This probe may become a promising nanomaterial for highly specific and sensitive tumor imaging through responding to the enzymes in the tumor microenvironment.
Collapse
Affiliation(s)
- Tianjiao Ji
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, China, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. INTERNATIONAL NANO LETTERS 2013. [DOI: 10.1186/2228-5326-3-45] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Lung cancer is by far the leading cause of cancer-related mortality worldwide, most of them being active tobacco smokers. Non small cell lung cancer accounts for around 85% to 90% of deaths, whereas the rest is contributed by small cell lung cancer. The extreme lethality of lung cancer arises due to lack of suitable diagnostic procedures for early detection of lung cancer and ineffective conventional therapeutic strategies. In course with desperate attempts to address these issues independently, a multifunctional nanotherapeutic or diagnostic system is being sought as a favorable solution. The manifestation of physiochemical properties of such nanoscale systems is tuned favorably to come up with a versatile cancer cell targeted diagnostic and therapeutic system. Apart from this, the aspect of being at nanoscale by itself confers the system with an advantage of passive accumulation at the site of tumor. This review provides a broad perspective of three major subclasses of such nanoscale therapeutic and diagnostic systems which include polymeric nanoparticles-based approaches, metal nanoparticles-based approaches, and bio-nanoparticles-based approaches. This review work also serves the purpose of gaining an insight into the pros and cons of each of these approaches with a prospective improvement in lung cancer therapeutics and diagnostics.
Collapse
|
45
|
Fan K, Gao L, Yan X. Human ferritin for tumor detection and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:287-98. [PMID: 23606622 DOI: 10.1002/wnan.1221] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ferritin, a major iron storage protein found in most living organisms, is composed of a 24-subunit protein cage with a hollow interior cavity. Serum ferritin serves as a critical marker to detect total body iron status. However, recent research reveals a number of novel functions of ferritin besides iron storage; for example, a ferritin receptor, transferrin receptor 1 (TfR1), has been identified and serum ferritin levels are found to be elevated in tumors. A particular new finding is that magnetoferritin nanoparticles, biomimetically synthesized using H-chain ferritin to form a 24-subunit cage with an iron oxide core, possess intrinsic dual functionality, the protein shell specifically targeting tumors and the iron oxide core catalyzing peroxidase substrates to produce a color reaction allowing visualization of tumor tissues. Here we attempt to summarize current research on ferritin, particularly newly identified functions related to tumors, in order to address current challenges and highlight future directions.
Collapse
Affiliation(s)
- Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
46
|
Abstract
Ferritins, highly symmetrical protein nanocages, are reactors for Fe2+ and dioxygen or hydrogen peroxide that are found in all kingdoms of life and in many different cells of multicellular organisms. They synthesize iron concentrates required for cells to make cofactors of iron proteins (heme, FeS, mono and diiron). The caged ferritin biominerals, Fe2O3•H2O are also antioxidants, acting as sinks for iron and oxidants scavenged from damaged proteins; genetic regulation of ferritin biosynthesis is sensitive to both iron and oxidants. Here, the emphasis here is ferritin oxidoreductase chemistry, ferritin ion channels for Fe 2+ transit into and out of the protein cage and Fe 3+ O mineral nucleation, and uses of ferritin cages in nanocatalysis and nanomaterial synthesis. The Fe2+ and O ferritin protein reactors, likely critical in the transition from anaerobic to aerobic life on earth, play central, contemporary roles that balance iron and oxygen chemistry in biology and have emerging roles in nanotechnology.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
- Department of Nutritional Science and Toxicology, University of California, Berkeley
| | | | | |
Collapse
|
47
|
Gutiérrez L, Zubow K, Nield J, Gambis A, Mollereau B, Lázaro FJ, Missirlis F. Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster. Metallomics 2013; 5:997-1005. [DOI: 10.1039/c3mt00118k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
San BH, Lee S, Moh SH, Park JG, Lee JH, Hwang HY, Kim KK. Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells. J Mater Chem B 2013; 1:1453-1460. [DOI: 10.1039/c2tb00290f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|