1
|
Tanaka K, Vong K. The Journey to In Vivo Synthetic Chemistry: From Azaelectrocyclization to Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Richardson MB, Gabriel KN, Garcia JA, Ashby SN, Dyer RP, Kim JK, Lau CJ, Hong J, Le Tourneau RJ, Sen S, Narel DL, Katz BB, Ziller JW, Majumdar S, Collins PG, Weiss GA. Pyrocinchonimides Conjugate to Amine Groups on Proteins via Imide Transfer. Bioconjug Chem 2020; 31:1449-1462. [PMID: 32302483 DOI: 10.1021/acs.bioconjchem.0c00143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in bioconjugation, the ability to link biomolecules to each other, small molecules, surfaces, and more, can spur the development of advanced materials and therapeutics. We have discovered that pyrocinchonimide, the dimethylated analogue of maleimide, undergoes a surprising transformation with biomolecules. The reaction targets amines and involves an imide transfer, which has not been previously reported for bioconjugation purposes. Despite their similarity to maleimides, pyrocinchonimides do not react with free thiols. Though both lysine residues and the N-termini of proteins can receive the transferred imide, the reaction also exhibits a marked preference for certain amines that cannot solely be ascribed to solvent accessibility. This property is peculiar among amine-targeting reactions and can reduce combinatorial diversity when many available reactive amines are available, such as in the formation of antibody-drug conjugates. Unlike amides, the modification undergoes very slow reversion under high pH conditions. The reaction offers a thermodynamically controlled route to single or multiple modifications of proteins for a wide range of applications.
Collapse
Affiliation(s)
- Mark B Richardson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kristin N Gabriel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph A Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shareen N Ashby
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Rebekah P Dyer
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joshua K Kim
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Calvin J Lau
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - John Hong
- School of Medicine, University of California, Irvine, Irvine, California 92697, United States
| | - Ryan J Le Tourneau
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sanjana Sen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - David L Narel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Philip G Collins
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Vargas DF, Larghi EL, Kaufman TS. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields. Nat Prod Rep 2019; 36:354-401. [PMID: 30090891 DOI: 10.1039/c8np00014j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2006 to 2018 The application of the 6π-azaelectrocyclization of azatrienes as a key strategy for the synthesis of natural products, their analogs and related bioactive or biomedically-relevant compounds (from 2006 to date) is comprehensively reviewed. Details about reaction optimization studies, relevant reaction mechanisms and conditions are also discussed.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | | | | |
Collapse
|
4
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
5
|
Subbareddy CV, Sumathi S. One-pot three-component protocol for the synthesis of indolyl-4H-chromene-3-carboxamides as antioxidant and antibacterial agents. NEW J CHEM 2017. [DOI: 10.1039/c7nj00980a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of newly synthesized 4-(1H-indol-3-yl)-2-methyl-N-phenyl-4H-chromene-3-carboxamide derivatives catalyzed by 1,4-Diazabicyclo [2.2.2]octane (DABCO) (30 mol%) at room temperature.
Collapse
|
6
|
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UAK, Avrutina O, Scrima A, Fuchsbauer H, Kolmar H. Locked by Design: A Conformationally Constrained Transglutaminase Tag Enables Efficient Site‐Specific Conjugation. Angew Chem Int Ed Engl 2015; 54:13420-4. [DOI: 10.1002/anie.201504851] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa Siegmund
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Stefan Schmelz
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Inhoffenstr. 7, 38124 Braunschweig (Germany)
| | - Stephan Dickgiesser
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Jan Beck
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Aileen Ebenig
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Heiko Fittler
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Holm Frauendorf
- Institut für Organische und Biomolekulare Chemie, Zentrale Analytik/Massenspektrometrie, Georg‐August‐Universität Göttingen, Tammannstr. 2, 37077 Göttingen (Germany)
| | - Birgit Piater
- Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt (Germany)
| | | | - Olga Avrutina
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Andrea Scrima
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Inhoffenstr. 7, 38124 Braunschweig (Germany)
| | - Hans‐Lothar Fuchsbauer
- Fachbereich Chemie‐ und Biotechnologie, Hochschule Darmstadt, Schnittspahnstraße 12, 64287 Darmstadt (Germany)
| | - Harald Kolmar
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| |
Collapse
|
7
|
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UAK, Avrutina O, Scrima A, Fuchsbauer H, Kolmar H. Durch Design verbrückt: ein konformativ eingeschränkter Transglutaminase‐Marker ermöglicht effiziente ortsspezifische Konjugation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanessa Siegmund
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Stefan Schmelz
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | - Stephan Dickgiesser
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Jan Beck
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Aileen Ebenig
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Heiko Fittler
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Holm Frauendorf
- Institut für Organische und Biomolekulare Chemie, Zentrale Analytik/Massenspektrometrie, Universität Göttingen (Deutschland)
| | | | | | - Olga Avrutina
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Andrea Scrima
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | | | - Harald Kolmar
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| |
Collapse
|
8
|
Tanaka K, Kitadani M, Tsutsui A, Pradipta AR, Imamaki R, Kitazume S, Taniguchi N, Fukase K. A cascading reaction sequence involving ligand-directed azaelectrocyclization and autooxidation-induced fluorescence recovery enables visualization of target proteins on the surfaces of live cells. Org Biomol Chem 2014; 12:1412-8. [PMID: 24435553 DOI: 10.1039/c3ob42267d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A general probe designed to induce a cascading sequence of reactions on a target protein was efficiently synthesized. The cascading reaction sequence involved (i) ligand-directed azaelectrocyclization with lysine and (ii) the autooxidation-induced release of a fluorescence quencher from the labeled protein. The probe was linked to a cyclic RGDyK peptide to enable the selective visualization of integrin αVβ3 on the surfaces of live cells.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sudakow A, Papke U, Lindel T. Water compatible photoarylation of amino acids and peptides. Chemistry 2014; 20:10223-6. [PMID: 25042820 DOI: 10.1002/chem.201402959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 12/15/2022]
Abstract
A novel photoarylation of amino acids and peptides is described, which tolerates the presence of water. Irradiation of Boc-protected amino acids in the presence of N-protected 2-azidobenzimidazoles leads to selective arylation of carboxy termini or side chains. The new reaction also works for peptides. Irradiation of the nonapeptide H-SPSYVYHQF-OH also resulted in selective arylation of the tyrosine side chains, as indicated by ESI-MS/MS fragmentation. Chemo- and regioselectivity could add the title reaction to the repertoire of photoaffinity labeling methods.
Collapse
Affiliation(s)
- Alex Sudakow
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig (Germany), Fax: (+49) 531-391-7744
| | | | | |
Collapse
|
10
|
Tsutsui A, Tanaka K. 2,6,9-Triazabicyclo[3.3.1]nonanes as overlooked amino-modification products by acrolein. Org Biomol Chem 2013; 11:7208-11. [PMID: 24057436 DOI: 10.1039/c3ob41285g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of several primary amines with acrolein smoothly provided the corresponding 2,6,9-triazabicyclo[3.3.1]nonanes through a formal [4 + 4] reaction of the intermediary unsaturated imines. The reactivity profiles in aqueous media and the results from cytotoxic activity assays suggested that the caged products may be relevant in biological systems and may contribute to the mechanisms underlying the oxidative stress response to acrolein.
Collapse
Affiliation(s)
- Ayumi Tsutsui
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | |
Collapse
|
11
|
Takaoka Y, Ojida A, Hamachi I. Organische Proteinchemie und ihre Anwendung für Markierungen und Engineering in Lebendzellsystemen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207089] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Takaoka Y, Ojida A, Hamachi I. Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew Chem Int Ed Engl 2013; 52:4088-106. [PMID: 23426903 DOI: 10.1002/anie.201207089] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Indexed: 12/11/2022]
Abstract
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry-based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test-tube settings; 2) the bioorthogonal reactions of proteins with non-natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag-probe pair for labeling natural amino acids; and 4) ligand-directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2-4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
13
|
Fukase K, Tanaka K. Bio-imaging and cancer targeting with glycoproteins and N-glycans. Curr Opin Chem Biol 2012. [DOI: 10.1016/j.cbpa.2012.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Tanaka K, Siwu ER, Hirosaki S, Iwata T, Matsumoto R, Kitagawa Y, Pradipta AR, Okumura M, Fukase K. Efficient synthesis of 2,6,9-triazabicyclo[3.3.1]nonanes through amine-mediated formal [4+4] reaction of unsaturated imines. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.08.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Fujishima SH, Yasui R, Miki T, Ojida A, Hamachi I. Ligand-Directed Acyl Imidazole Chemistry for Labeling of Membrane-Bound Proteins on Live Cells. J Am Chem Soc 2012; 134:3961-4. [DOI: 10.1021/ja2108855] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sho-hei Fujishima
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | - Ryosuke Yasui
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | - Takayuki Miki
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | - Akio Ojida
- Graduate School of
Pharmaceutical
Sciences, Kyushu University, 3-1-1 Maidashi,
Higashi-ku, Fukuoka 812-8582, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| |
Collapse
|
16
|
Tanaka K, Fukase K. Development of Azaelectrocyclization-Based Labeling and Application to Noninvasive Imaging and Targeting Using N-Glycan Derivatives—In Pursuit of N-Glycan Functions on Proteins, Dendrimers, and Living Cells—. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Discovery and application of 6π-azaelectrocyclization to natural product synthesis and synthetic biology. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4466-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Tanaka K. Exploring A Unique Reactivity of 6π-Azaelectrocyclization: Discovery and Application to Natural Products Synthesis and Synthetic Chemical Biology. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.1389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|