1
|
Novikova D, Sagaidak A, Vorona S, Tribulovich V. A Visual Compendium of Principal Modifications within the Nucleic Acid Sugar Phosphate Backbone. Molecules 2024; 29:3025. [PMID: 38998973 PMCID: PMC11243533 DOI: 10.3390/molecules29133025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.
Collapse
Affiliation(s)
- Daria Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Aleksandra Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Svetlana Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Vyacheslav Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| |
Collapse
|
2
|
Dejmek M, Brazdova A, Otava T, Polidarova MP, Klíma M, Smola M, Vavrina Z, Buděšínský M, Dračínský M, Liboska R, Boura E, Birkuš G, Nencka R. Vinylphosphonate-based cyclic dinucleotides enhance STING-mediated cancer immunotherapy. Eur J Med Chem 2023; 259:115685. [PMID: 37567057 DOI: 10.1016/j.ejmech.2023.115685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Cyclic dinucleotides (CDNs) trigger the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which plays a key role in cytosolic DNA sensing and thus in immunomodulation against infections, cell damage and cancer. However, cancer immunotherapy trials with CDNs have shown immune activation, but not complete tumor regression. Nevertheless, we designed a novel class of CDNs containing vinylphosphonate based on a STING-affinity screening assay. In vitro, acyloxymethyl phosphate/phosphonate prodrugs of these vinylphosphonate CDNs were up to 1000-fold more potent than the clinical candidate ADU-S100. In vivo, the lead prodrug induced tumor-specific T cell priming and facilitated tumor regression in the 4T1 syngeneic mouse model of breast cancer. Moreover, we solved the crystal structure of this ligand bound to the STING protein. Therefore, our findings not only validate the therapeutic potential of vinylphosphonate CDNs but also open up opportunities for drug development in cancer immunotherapy bridging innate and adaptive immunity.
Collapse
Affiliation(s)
- Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 128 44, Prague, Czech Republic
| | - Tomáš Otava
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28, Prague 6, Czech Republic
| | - Marketa Pimkova Polidarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 128 44, Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Miroslav Smola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Zdenek Vavrina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Faculty of Science, Charles University, Albertov 6, Prague 2, 128 00, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Radek Liboska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic.
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic.
| |
Collapse
|
3
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
4
|
Lášek T, Petrová M, Košiová I, Šimák O, Buděšínský M, Kozák J, Snášel J, Vavřina Z, Birkuš G, Rosenberg I, Páv O. 5′-Phosphonate modified oligoadenylates as potent activators of human RNase L. Bioorg Med Chem 2022; 56:116632. [DOI: 10.1016/j.bmc.2022.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
|
5
|
Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol 2021; 2:94-150. [PMID: 34458777 PMCID: PMC8341215 DOI: 10.1039/d0cb00136h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, several drugs derived from nucleic acids have been approved for commercialization and many more are in clinical trials. The sensitivity of these molecules to nuclease digestion in vivo implies the need to exploit resistant non-natural nucleotides. Among all the possible modifications, the one concerning the internucleoside linkage is of particular interest. Indeed minor changes to the natural phosphodiester may result in major modifications of the physico-chemical properties of nucleic acids. As this linkage is a key element of nucleic acids' chemical structures, its alteration can strongly modulate the plasma stability, binding properties, solubility, cell penetration and ultimately biological activity of nucleic acids. Over the past few decades, many research groups have provided knowledge about non-natural internucleoside linkage properties and participated in building biologically active nucleic acid derivatives. The recent renewing interest in nucleic acids as drugs, demonstrated by the emergence of new antisense, siRNA, aptamer and cyclic dinucleotide molecules, justifies the review of all these studies in order to provide new perspectives in this field. Thus, in this review we aim at providing the reader insights into modified internucleoside linkages that have been described over the years whose impact on annealing properties and resistance to nucleases have been evaluated in order to assess their potential for biological applications. The syntheses of modified nucleotides as well as the protocols developed for their incorporation within oligonucleotides are described. Given the intended biological applications, the modifications described in the literature that have not been tested for their resistance to nucleases are not reported.
Collapse
Affiliation(s)
| | - Maeva Reverte
- IBMM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | |
Collapse
|
6
|
A theoretical study on the elimination reaction of acrylonitrile from 2′-O-cyanoethylated nucleosides by Bu4NF. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Kaiser MM, Novák P, Rosenbergová Š, Poštová-Slavětínská L, Rosenberg I, Janeba Z. Acyclic Nucleoside Phosphonates Bearing (R
)- or (S
)-9-[3-Hydroxy-2-(phosphonoethoxy)propyl] (HPEP) Moiety as Monomers for the Synthesis of Modified Oligonucleotides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martin Maxmilian Kaiser
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Pavel Novák
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Šárka Rosenbergová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Lenka Poštová-Slavětínská
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
8
|
Liu C, Cozens C, Jaziri F, Rozenski J, Maréchal A, Dumbre S, Pezo V, Marlière P, Pinheiro VB, Groaz E, Herdewijn P. Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers. J Am Chem Soc 2018; 140:6690-6699. [DOI: 10.1021/jacs.8b03447] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chao Liu
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - Faten Jaziri
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - Shrinivas Dumbre
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Valérie Pezo
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Philippe Marlière
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Vitor B. Pinheiro
- University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, U.K
| | - Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| |
Collapse
|
9
|
Páv O, Barvík I, Liboska R, Petrová M, Šimák O, Rosenbergová Š, Novák P, Buděšínský M, Rosenberg I. Tuning the hybridization properties of modified oligonucleotides: from flexible to conformationally constrained phosphonate internucleotide linkages. Org Biomol Chem 2018; 15:701-707. [PMID: 27995239 DOI: 10.1039/c6ob02571d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of conformational restriction leading to the preorganization of modified strands has proven to be successful and has afforded nucleic acid analogues with many interesting properties suitable for various biochemical applications. We utilized this concept to prepare a set of constrained oligonucleotides derived from 1,4-dioxane and 1,3-dioxolane-locked nucleoside phosphonates and evaluated their hybridization affinities towards their complementary RNA strands. With an increase of ΔTm per modification up to +5.2 °C, the hybridization experiments revealed the (S)-2',3'-O-phosphonomethylidene internucleotide linkage as one of the most Tm-increasing modifications reported to date. Moreover, we introduced a novel prediction tool for the pre-selection of potentially interesting chemical modifications of oligonucleotides.
Collapse
Affiliation(s)
- Ondřej Páv
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Ivan Barvík
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Radek Liboska
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Ondřej Šimák
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic. and Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Šárka Rosenbergová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Pavel Novák
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610 Prague, Czech Republic.
| |
Collapse
|
10
|
Fukal J, Páv O, Buděšínský M, Šebera J, Sychrovský V. The benchmark of 31P NMR parameters in phosphate: a case study on structurally constrained and flexible phosphate. Phys Chem Chem Phys 2017; 19:31830-31841. [DOI: 10.1039/c7cp06969c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A benchmark for structural interpretation of the 31P NMR shift and the 2JP,C spin–spin coupling in the phosphate group was obtained by means of theoretical calculations and measurements in diethylphosphate and 5,5-dimethyl-2-hydroxy-1,3,2-dioxaphosphinane 2-oxide.
Collapse
Affiliation(s)
- Jiří Fukal
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Praha 6
- Czech Republic
| | - Ondřej Páv
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Praha 6
- Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Praha 6
- Czech Republic
| | - Jakub Šebera
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Praha 6
- Czech Republic
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Praha 6
- Czech Republic
- Department of Electrotechnology
| |
Collapse
|
11
|
Shahsavari S, Chen J, Wigstrom T, Gooding J, Gauronskas A, Fang S. Tritylation of Alcohols under Mild Conditions without Using Silver Salts. Tetrahedron Lett 2016; 57:3877-3880. [PMID: 28042179 PMCID: PMC5193390 DOI: 10.1016/j.tetlet.2016.07.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Secondary alcohols were conveniently tritylated under mild conditions within a short running time with tritylium trifluoroacetate generated in situ from trityl alcohols and trifluoroacetic anhydride. No expensive silver salts were needed for the reactions. Four secondary alcohols were tritylated with both mono- and dimethoxy trityl alcohols giving good to excellent isolated yields. The reaction was also tested on four nucleoside derivatives that have primary alcohols. Satisfactory results were also obtained.
Collapse
Affiliation(s)
| | | | - Travis Wigstrom
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - James Gooding
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Alexander Gauronskas
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
12
|
Hocková D, Rosenbergová Š, Ménová P, Páv O, Pohl R, Novák P, Rosenberg I. N-Branched acyclic nucleoside phosphonates as monomers for the synthesis of modified oligonucleotides. Org Biomol Chem 2016; 13:4449-58. [PMID: 25766752 DOI: 10.1039/c4ob02265c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protected N-branched nucleoside phosphonates containing adenine and thymine bases were prepared as the monomers for the introduction of aza-acyclic nucleotide units into modified oligonucleotides. The phosphotriester and phosphoramidite methods were used for the incorporation of modified and natural units, respectively. The solid phase synthesis of a series of nonamers containing one central modified unit was successfully performed in both 3'→5' and 5'→3' directions. Hybridization properties of the prepared oligoribonucleotides and oligodeoxyribonucleotides were evaluated. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a considerable destabilizing effect of the introduced units. We also examined the substrate/inhibitory properties of aza-acyclic nucleoside phosphono-diphosphate derivatives (analogues of nucleoside triphosphates) but neither inhibition of human and bacterial DNA polymerases nor polymerase-mediated incorporation of these triphosphate analogues into short DNA was observed.
Collapse
Affiliation(s)
- Dana Hocková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kel'in AV, Zlatev I, Harp J, Jayaraman M, Bisbe A, O'Shea J, Taneja N, Manoharan RM, Khan S, Charisse K, Maier MA, Egli M, Rajeev KG, Manoharan M. Structural Basis of Duplex Thermodynamic Stability and Enhanced Nuclease Resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides. J Org Chem 2016; 81:2261-79. [PMID: 26940174 DOI: 10.1021/acs.joc.5b02375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers.
Collapse
Affiliation(s)
- Alexander V Kel'in
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine , Nashville, Tennessee 37232, United States
| | - Muthusamy Jayaraman
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Jonathan O'Shea
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saeed Khan
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin A Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine , Nashville, Tennessee 37232, United States
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Wang C, Zhou J, Liu J, Chu L, He H. Convenient approach to synthesize tertiary α-hydroxy cyclic phosphonates catalyzed by potassium carbonate under solvent-free conditions. PHOSPHORUS SULFUR 2014. [DOI: 10.1080/10426507.2013.860532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chubei Wang
- Institute of Energy and Fuel, Xinxiang University, Xinxiang, Henan, China
| | - Jianwei Zhou
- Institute of Energy and Fuel, Xinxiang University, Xinxiang, Henan, China
| | - Jianfeng Liu
- School of Humanities, Northwestern Polytechnical University, Xi’an, Shanxi, China
| | - Liangliang Chu
- Institute of Energy and Fuel, Xinxiang University, Xinxiang, Henan, China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Šipova H, Špringer T, Rejman D, Šimak O, Petrová M, Novák P, Rosenbergová Š, Páv O, Liboska R, Barvík I, Štěpanek J, Rosenberg I, Homola J. 5'-O-Methylphosphonate nucleic acids--new modified DNAs that increase the Escherichia coli RNase H cleavage rate of hybrid duplexes. Nucleic Acids Res 2014; 42:5378-89. [PMID: 24523351 PMCID: PMC4005664 DOI: 10.1093/nar/gku125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several oligothymidylates containing various ratios of phosphodiester and isopolar 5'-hydroxyphosphonate, 5'-O-methylphosphonate and 3'-O-methylphosphonate internucleotide linkages were examined with respect to their hybridization properties with oligoriboadenylates and their ability to induce RNA cleavage by ribonuclease H (RNase H). The results demonstrated that the increasing number of 5'-hydroxyphosphonate or 5'-O-methylphosphonate units in antisense oligonucleotides (AOs) significantly stabilizes the heteroduplexes, whereas 3'-O-methylphosphonate AOs cause strong destabilization of the heteroduplexes. Only the heteroduplexes with 5'-O-methylphosphonate units in the antisense strand exhibited a significant increase in Escherichia coli RNase H cleavage activity by up to 3-fold (depending on the ratio of phosphodiester and phosphonate linkages) in comparison with the natural heteroduplex. A similar increase in RNase H cleavage activity was also observed for heteroduplexes composed of miRNA191 and complementary AOs containing 5'-O-methylphosphonate units. We propose for this type of AOs, working via the RNase H mechanism, the abbreviation MEPNA (MEthylPhosphonate Nucleic Acid).
Collapse
Affiliation(s)
- Hana Šipova
- Institute of Photonics and Electronics AS CR, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague, Czech Republic and Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jang MY, Song XP, Froeyen M, Marlière P, Lescrinier E, Rozenski J, Herdewijn P. A synthetic substrate of DNA polymerase deviating from the bases, sugar, and leaving group of canonical deoxynucleoside triphosphates. ACTA ACUST UNITED AC 2013; 20:416-23. [PMID: 23521798 DOI: 10.1016/j.chembiol.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/15/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
The selection of artificial nucleic acids to be used for synthetic biology purposes is based on their structural and biochemical orthogonality to the natural system. We describe the example of a nucleotide mimic that functions as a substrate for polymerases and in which the carbohydrate moiety as well as the base moiety and the leaving group are different from that of the natural building blocks. The nucleotides themselves have two anomeric centers, and different leaving group properties of substituents at both anomeric centers need to be exploited to perform selective glycosylation reactions for their synthesis. In addition, the reversibility of the polymerase reaction at the level of the template has been demonstrated when pyrophosphate functions as leaving group and not with the alternative leaving groups.
Collapse
Affiliation(s)
- Mi-Yeon Jang
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Maláč K, Barvík I. Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study. J Mol Graph Model 2013; 44:81-90. [DOI: 10.1016/j.jmgm.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
18
|
|
19
|
Páv O, Panova N, Snášel J, Zborníková E, Rosenberg I. Activation of human RNase L by 2'- and 5'-O-methylphosphonate-modified oligoadenylates. Bioorg Med Chem Lett 2011; 22:181-5. [PMID: 22169265 DOI: 10.1016/j.bmcl.2011.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
Abstract
To determine the influence of internucleotide linkage and sugar ring conformation, and the role of 5'-terminal phosphate, on the activation of human RNase L, a series of 2'- and 5'-O-methylphosphonate-modified tetramers were synthesized from appropriate monomeric units and evaluated for their ability to activate human RNase L. Tetramers pAAAp(c)X modified by ribo, arabino or xylo 5'-phosphonate unit p(c)X activated RNase L with efficiency comparable to that of natural activator. Moreover, incorporation of phosphonate linkages ensured the stability against cleavage by nucleases. The substitution of 5'-terminal phosphate for 5'-terminal phosphonate in tetramer p(c)XAAA afforded tetramers with excellent activation efficiency and with complete stability against cleavage by phosphomonoesterases.
Collapse
Affiliation(s)
- Ondřej Páv
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|