1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Garbagnoli M, Linciano P, Listro R, Rossino G, Vasile F, Collina S. Biophysical Assays for Investigating Modulators of Macromolecular Complexes: An Overview. ACS OMEGA 2024; 9:17691-17705. [PMID: 38680367 PMCID: PMC11044174 DOI: 10.1021/acsomega.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Drug discovery is a lengthy and intricate process, and in its early stage, crucial steps are the selection of the therapeutic target and the identification of novel ligands. Most targets are dysregulated in pathogenic cells; typically, their activation or deactivation leads to the desired effect, while in other cases, interfering with the target-natural binder complex achieves the therapeutic results. Biophysical assays are a suitable strategy for finding new ligands or interferent agents, being able to evaluate ligand-protein interactions and assessing the effect of small molecules (SMols) on macromolecular complexes. This mini-review provides a detailed analysis of widely used biophysical methods, including fluorescence-based approaches, circular dichroism, isothermal titration calorimetry, microscale thermophoresis, and NMR spectroscopy. After a brief description of the methodologies, examples of interaction and competition experiments are described, together with an analysis of the advantages and disadvantages of each technique. This mini-review provides an overview of the most relevant biophysical technologies that can help in identifying SMols able not only to bind proteins but also to interfere with macromolecular complexes.
Collapse
Affiliation(s)
- Martina Garbagnoli
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Giacomo Rossino
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Francesca Vasile
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
3
|
Fittolani G, Tyrikos-Ergas T, Poveda A, Yu Y, Yadav N, Seeberger PH, Jiménez-Barbero J, Delbianco M. Synthesis of a glycan hairpin. Nat Chem 2023; 15:1461-1469. [PMID: 37400598 PMCID: PMC10533408 DOI: 10.1038/s41557-023-01255-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
The primary sequence of a biopolymer encodes the essential information for folding, permitting to carry out sophisticated functions. Inspired by natural biopolymers, peptide and nucleic acid sequences have been designed to adopt particular three-dimensional (3D) shapes and programmed to exert specific functions. In contrast, synthetic glycans capable of autonomously folding into defined 3D conformations have so far not been explored owing to their structural complexity and lack of design rules. Here we generate a glycan that adopts a stable secondary structure not present in nature, a glycan hairpin, by combining natural glycan motifs, stabilized by a non-conventional hydrogen bond and hydrophobic interactions. Automated glycan assembly enabled rapid access to synthetic analogues, including site-specific 13C-labelled ones, for nuclear magnetic resonance conformational analysis. Long-range inter-residue nuclear Overhauser effects unequivocally confirmed the folded conformation of the synthetic glycan hairpin. The capacity to control the 3D shape across the pool of available monosaccharides has the potential to afford more foldamer scaffolds with programmable properties and functions.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Ana Poveda
- CICbioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Yang Yu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Nishu Yadav
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research and Technology Alliance, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
4
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
5
|
Pham J, Hernandez A, Cioce A, Achilli S, Goti G, Vivès C, Thepaut M, Bernardi A, Fieschi F, Reichardt NC. Chemo-Enzymatic Synthesis of S. mansoni O-Glycans and Their Evaluation as Ligands for C-Type Lectin Receptors MGL, DC-SIGN, and DC-SIGNR. Chemistry 2020; 26:12818-12830. [PMID: 32939912 DOI: 10.1002/chem.202000291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.
Collapse
Affiliation(s)
- Julie Pham
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Alvaro Hernandez
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,Asparia Glycomics S.L., Mikeletegi 83, 20009, San Sebastian, Spain
| | - Anna Cioce
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Silvia Achilli
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France.,Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Giulio Goti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Michel Thepaut
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,CIBER-BBN, Paseo Miramón 182, 20014, San Sebastian, Spain.,Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, San Sebastian, Spain
| |
Collapse
|
6
|
Affiliation(s)
- Anna Bernardi
- Department of Chemistry; Università degli Studi di Milano; via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry; Università degli Studi di Milano; via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
7
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
8
|
Shanthamurthy CD, Jain P, Yehuda S, Monteiro JT, Leviatan Ben-Arye S, Subramani B, Lepenies B, Padler-Karavani V, Kikkeri R. ABO Antigens Active Tri- and Disaccharides Microarray to Evaluate C-type Lectin Receptor Binding Preferences. Sci Rep 2018; 8:6603. [PMID: 29700341 PMCID: PMC5920051 DOI: 10.1038/s41598-018-24333-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Understanding blood group antigen binding preferences for C-type lectin receptors holds promise for modulating immune responses, since several Gram-negative bacteria express blood group antigens as molecular mimicry to evade immune responses. Herein, we report the synthesis of ABO blood group antigen active tri and disaccharides to investigate the binding specificity with various C-type lectin receptors using glycan microarray. The results of binding preferences show that distinct glycosylation on the galactose and fucose motifs are key for C-type lectin receptor binding and that these interactions occur in a Ca2+-dependent fashion.
Collapse
Affiliation(s)
- Chethan D Shanthamurthy
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sharon Yehuda
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel
| | - João T Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Shani Leviatan Ben-Arye
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel
| | - Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany.
| | - Vered Padler-Karavani
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv, 69978, Israel.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
9
|
Guzzi C, Colombo L, Luigi AD, Salmona M, Nicotra F, Airoldi C. Flavonoids and Their Glycosides as Anti-amyloidogenic Compounds: Aβ1-42 Interaction Studies to Gain New Insights into Their Potential for Alzheimer's Disease Prevention and Therapy. Chem Asian J 2016; 12:67-75. [DOI: 10.1002/asia.201601291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/19/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Cinzia Guzzi
- Department of Biotecnology and Bioscience; University of Milano-Bicocca; Piazza della Scienza 2 I-20126 Milan Italy
| | - Laura Colombo
- Department Biochemistry and Molecular Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”; Via Giuseppe La Masa, 19 20156 Milan Italy
| | - Ada De Luigi
- Department Biochemistry and Molecular Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”; Via Giuseppe La Masa, 19 20156 Milan Italy
| | - Mario Salmona
- Department Biochemistry and Molecular Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”; Via Giuseppe La Masa, 19 20156 Milan Italy
| | - Francesco Nicotra
- Department of Biotecnology and Bioscience; University of Milano-Bicocca; Piazza della Scienza 2 I-20126 Milan Italy
- Milan Center of Neuroscience (NeuroMI); 20126 Milan Italy
| | - Cristina Airoldi
- Department of Biotecnology and Bioscience; University of Milano-Bicocca; Piazza della Scienza 2 I-20126 Milan Italy
- Milan Center of Neuroscience (NeuroMI); 20126 Milan Italy
| |
Collapse
|
10
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
11
|
Guzzi C, Alfarano P, Sutkeviciute I, Sattin S, Ribeiro-Viana R, Fieschi F, Bernardi A, Weiser J, Rojo J, Angulo J, Nieto PM. Detection and quantitative analysis of two independent binding modes of a small ligand responsible for DC-SIGN clustering. Org Biomol Chem 2016; 14:335-44. [DOI: 10.1039/c5ob02025e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple binding modes at the same binding site can explain the higher binding affinity of a pseudotrimannotrioside compared to a pseudomannobioside.
Collapse
Affiliation(s)
- C. Guzzi
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
- Dept. of Biotechnology and Biosciences University of Millano-Bicocca Piazza della Scienza 2 20126
- Milan
| | - P. Alfarano
- Anterio Consult & Research GmbH
- Augustaanlage 23 68165 Mannheim
- Germany
| | - I. Sutkeviciute
- Univ. Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- F-38044 Grenoble
- France
- CNRS
| | - S. Sattin
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- 20133 Milano
- Italy
| | - R. Ribeiro-Viana
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| | - F. Fieschi
- Univ. Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- F-38044 Grenoble
- France
- CNRS
| | - A. Bernardi
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- 20133 Milano
- Italy
| | - J. Weiser
- Anterio Consult & Research GmbH
- Augustaanlage 23 68165 Mannheim
- Germany
| | - J. Rojo
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| | - J. Angulo
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
- School of Pharmacy
- University of East Anglia
| | - P. M. Nieto
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| |
Collapse
|
12
|
Marciani DJ. Is fucose the answer to the immunomodulatory paradox of Quillaja saponins? Int Immunopharmacol 2015; 29:908-913. [PMID: 26603552 DOI: 10.1016/j.intimp.2015.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Quillaja saponins, e.g. QS-21, are immunomodulating aldehyde-carrying triterpene glycosides, which depending on the acylation state of their single fucosyl residue (Fucp) induce either Th1/Th2 or Th2 immunity. Indeed, their changes in immunomodulation or adjuvanticity from Th1/Th2 to sole Th2 immunity, correlate with the presence of acylated and de-acylated Fucp residues, respectively. Thus, it is possible to infer that the single Fucp residue is responsible for the Th2 immunity biasing induced by de-acylated Q. saponins (QT-0101). That removal of the fucosylated oligosaccharide from de-acylated Q. saponins results once more in the induction of Th1/Th2 immunity supports the Fucp role in polarizing the response toward Th2 immunity. From structural and functional analogies with the helminths' fucosylated glycans, it is possible to infer that these saponins' Fucp must bind to the lectin DC-SIGN on dendritic cells (DC). This binding to DC-SIGN, a C-type lectin that shows significant pliability in its binding interactions, must result in polarization toward Th2 while inhibiting Th1 immunity. Apparently, acylation of the Fucp by large fatty acids sterically hinders this sugar from binding to DC-SIGN, preventing a biasing to Th2 immunity. Evidently, de-acylation of Q. saponins may negatively affect vaccines requiring Th1 immunity for immune protection, particularly those against pathogens that use DC-SIGN to infect DCs and modulate Th2 immunity. However, it could be valuable in vaccines that require a sole Th2 immunity, like those against proteinopathies, e.g. Alzheimer's disease. Hence, it would valuable to elucidate the possible interactions between DC-SIGN and the QT-0101 immunomodulator.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
13
|
Ardá A, Canales A, Cañada FJ, Jiménez-Barbero J. Carbohydrate–Protein Interactions: A 3D View by NMR. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NMR spectroscopy is a key tool for carbohydrate research. In studies with complex oligosaccharides there are limits to the amount of relevant structural information provided by these observables due to problems of signal overlapping, strong coupling and/or the scarcity of the key NOE information. Thus, there is an increasing need for additional parameters with structural information, such as residual dipolar couplings (RDCs), paramagnetic relaxation enhancements (PREs) or pseudo contact shifts (PCSs). Carbohydrates are rather flexible molecules. Therefore, NMR observables do not always correlate with a single conformer but with an ensemble of low free-energy conformers that can be accessed by thermal fluctuations. Depending on the system under study, different NMR approaches can be followed to characterize protein–carbohydrate interactions: the standard methodologies can usually be classified as “ligand-based” or “receptor-based”. The selection of the proper methodology is usually determined by the size of the receptor, the dissociation constant of the complex (KD), the availability of the labelled protein (15N, 13C) and the access to soluble receptors at enough concentration for NMR measurements.
Collapse
Affiliation(s)
- Ana Ardá
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Angeles Canales
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - F. Javier Cañada
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edif. 801A-1 48160 Derio-Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
14
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
15
|
Abstract
The recent introduction of saturation transfer difference (STD) NMR has increased the tools for the study of protein–carbohydrate complexes. This is useful when it is combined with transfer nuclear Overhauser enhancement spectroscopy (NOESY) measurement, or when it is interpreted using the expected calculated values of transference, yielding additional, very valuable information for the study of this type of complex. The objective of this work is to cover the advances of the STD technique as exemplified by the investigations of DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin) recognition by simple carbohydrates or mimics of them, based on structures containing a terminal mannose or fucose. We also will discuss the methods for quantification of the STD values based on the initial growing rates with the saturation time.
Collapse
|
16
|
Probert F, Whittaker SBM, Crispin M, Mitchell DA, Dixon AM. Solution NMR analyses of the C-type carbohydrate recognition domain of DC-SIGNR protein reveal different binding modes for HIV-derived oligosaccharides and smaller glycan fragments. J Biol Chem 2013; 288:22745-57. [PMID: 23788638 PMCID: PMC3829359 DOI: 10.1074/jbc.m113.458299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/13/2013] [Indexed: 01/08/2023] Open
Abstract
The C-type lectin DC-SIGNR (dendritic cell-specific ICAM-3-grabbing non-integrin-related; also known as L-SIGN or CD299) is a promising drug target due to its ability to promote infection and/or within-host survival of several dangerous pathogens (e.g. HIV and severe acute respiratory syndrome coronavirus (SARS)) via interactions with their surface glycans. Crystallography has provided excellent insight into the mechanism by which DC-SIGNR interacts with small glycans, such as (GlcNAc)2Man3; however, direct observation of complexes with larger, physiological oligosaccharides, such as Man9GlcNAc2, remains elusive. We have utilized solution-state nuclear magnetic resonance spectroscopy to investigate DC-SIGNR binding and herein report the first backbone assignment of its active, calcium-bound carbohydrate recognition domain. Direct interactions with the small sugar fragments Man3, Man5, and (GlcNAc)2Man3 were investigated alongside Man9GlcNAc derived from recombinant gp120 (present on the HIV viral envelope), providing the first structural data for DC-SIGNR in complex with a virus-associated ligand, and unique binding modes were observed for each glycan. In particular, our data show that DC-SIGNR has a different binding mode for glycans on the HIV viral envelope compared with the smaller glycans previously observed in the crystalline state. This suggests that using the binding mode of Man9GlcNAc, instead of those of small glycans, may provide a platform for the design of DC-SIGNR inhibitors selective for high mannose glycans (like those on HIV). (15)N relaxation measurements provided the first information on the dynamics of the carbohydrate recognition domain, demonstrating that it is a highly flexible domain that undergoes ligand-induced conformational and dynamic changes that may explain the ability of DC-SIGNR to accommodate a range of glycans on viral surfaces.
Collapse
Affiliation(s)
- Fay Probert
- From the Molecular Organisation and Assembly in Cells Doctoral Training Centre
| | - Sara B.-M. Whittaker
- the Henry Wellcome Building for Biomolecular NMR Spectroscopy, Birmingham Cancer Research UK Centre, School of Cancer Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, United Kingdom, and
| | - Max Crispin
- the Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Ann M. Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
17
|
Doknic D, Abramo M, Sutkeviciute I, Reinhardt A, Guzzi C, Schlegel MK, Potenza D, Nieto PM, Fieschi F, Seeberger PH, Bernardi A. Synthesis and Characterization of Linker-Armed Fucose-Based Glycomimetics. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Thépaut M, Guzzi C, Sutkeviciute I, Sattin S, Ribeiro-Viana R, Varga N, Chabrol E, Rojo J, Bernardi A, Angulo J, Nieto PM, Fieschi F. Structure of a Glycomimetic Ligand in the Carbohydrate Recognition Domain of C-type Lectin DC-SIGN. Structural Requirements for Selectivity and Ligand Design. J Am Chem Soc 2013; 135:2518-29. [DOI: 10.1021/ja3053305] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Cinzia Guzzi
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Ieva Sutkeviciute
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Sara Sattin
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Renato Ribeiro-Viana
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Norbert Varga
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Eric Chabrol
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- CEA, DSV, Grenoble, F-38000, France
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Anna Bernardi
- Dipartimento di Chimica via
Golgi 19, Universita’ di Milano,
20133 Milano, Italy
| | - Jesus Angulo
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Pedro M. Nieto
- Glycosystems
Laboratory, Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Américo Vespucio 49,
41092 Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble I, 41 rue Jules Horowitz,
Grenoble, F-38027, France
- CNRS, UMR 5075, Grenoble, F-38000, France
- Institut Universitaire de France, 103 boulevard Saint-Michel 75005 Paris, France
| |
Collapse
|
19
|
Richichi B, Imberty A, Gillon E, Bosco R, Sutkeviciute I, Fieschi F, Nativi C. Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria. Org Biomol Chem 2013; 11:4086-94. [DOI: 10.1039/c3ob40520f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Prost LR, Grim JC, Tonelli M, Kiessling LL. Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists. ACS Chem Biol 2012; 7:1603-8. [PMID: 22747463 DOI: 10.1021/cb300260p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An understanding of the biological roles of lectins will be advanced by ligands that can inhibit or even recruit lectin function. To this end, glycomimetics, noncarbohydrate ligands that function analogously to endogenous carbohydrates, are being sought. The advantage of having such ligands is illustrated by the many roles of the protein DC-SIGN. DC-SIGN is a C-type lectin displayed on dendritic cells, where it binds to mannosides and fucosides to mediate interactions with other host cells or bacterial or viral pathogens. DC-SIGN engagement can modulate host immune responses (e.g., suppress autoimmunity) or benefit pathogens (e.g., promote HIV dissemination). DC-SIGN can bind to glycoconjugates, internalize glycosylated cargo for antigen processing, and transduce signals. DC-SIGN ligands can serve as inhibitors as well as probes of the lectin's function, so they are especially valuable for elucidating and controlling DC-SIGN's roles in immunity. We previously reported a small molecule that embodies key features of the carbohydrates that bind DC-SIGN. Here, we demonstrate that this noncarbohydrate ligand acts as a true glycomimetic. Using NMR HSQC experiments, we found that the compound mimics saccharide ligands: It occupies the same carbohydrate-binding site and interacts with the same amino acid residues on DC-SIGN. The glycomimetic also is functional. It had been shown previously to antagonize DC-SIGN function, but here we use it to generate DC-SIGN agonists. Specifically, appending this glycomimetic to a protein scaffold affords a conjugate that elicits key cellular signaling responses. Thus, the glycomimetic can give rise to functional glycoprotein surrogates that elicit lectin-mediated signaling.
Collapse
Affiliation(s)
- Lynne R. Prost
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Joseph C. Grim
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Marco Tonelli
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| | - Laura L. Kiessling
- Departments of †Biochemistry and ‡Chemistry, University of Wisconsin−Madison, Madison, Wisconsin
53706, United States
| |
Collapse
|