1
|
Tang L, Zhang J, Oumata N, Mignet N, Sollogoub M, Zhang Y. Sialyl Lewis X (sLe x):Biological functions, synthetic methods and therapeutic implications. Eur J Med Chem 2025; 287:117315. [PMID: 39919437 DOI: 10.1016/j.ejmech.2025.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Carbohydrates are shown to be crucial to several biological processes. They are essential mediators of cell-cell recognition processes. Among them, Sialyl Lewis X (sLex) is a very significant structure in the human body. It is a critical tetrasaccharide that plays a pivotal role in various biological processes, including cell adhesion, immune response, and cancer metastasis. Known as the blood group antigen, sLex is also referred to as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1). sLex is not only a prominent blood group antigen, but also involved in the attraction of sperm to the egg during fertilization, prominently displayed at the terminus of glycolipids on the cell surface. By describing the synthetic methods and biological functions of sLex, this review underscores the importance of sLex in both fundamental and applied sciences and its potential to impact clinical practice.
Collapse
Affiliation(s)
- Leyu Tang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Nassima Oumata
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
2
|
Fukase K, Manabe Y, Shimoyama A. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Front Chem 2023; 11:1319883. [PMID: 38116104 PMCID: PMC10728286 DOI: 10.3389/fchem.2023.1319883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.
Collapse
Affiliation(s)
- Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Lin MH, Wolf JB, Sletten ET, Cambié D, Danglad-Flores J, Seeberger PH. Enabling Technologies in Carbohydrate Chemistry: Automated Glycan Assembly, Flow Chemistry and Data Science. Chembiochem 2023; 24:e202200607. [PMID: 36382494 DOI: 10.1002/cbic.202200607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Indexed: 11/17/2022]
Abstract
The synthesis of defined oligosaccharides is a complex task. Several enabling technologies have been introduced in the last two decades to facilitate synthetic access to these valuable biomolecules. In this concept, we describe the technological solutions that have advanced glycochemistry using automated glycan assembly, flow chemistry and data science as examples. We highlight how the synergies between these different technologies can further advance the field, with progress toward the realization of a self-driving lab for glycan synthesis.
Collapse
Affiliation(s)
- Mei-Huei Lin
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jakob B Wolf
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Dario Cambié
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
4
|
Phase-Transfer Catalyzed Microfluidic Glycosylation: A Small Change in Concentration Results in a Dramatic Increase in Stereoselectivity. Catalysts 2023. [DOI: 10.3390/catal13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phase-transfer catalysis (PTC) is widely used in glycochemistry for the preparation of aryl glycosides by the glycosylation reaction. While investigating the possibility of synthesis of 4-(3-chloropropoxy)phenyl sialoside (Neu5Ac-OCPP) from N-acetylsialyl chloride with O-acetyl groups (1), we have recently discovered a strong dependence of the PTC glycosylation outcome on the mixing mode: under batch conditions, only α-anomer of Neu5Ac-OCPP was obtained, albeit in low yield (13%), while under microfluidic conditions the yield of Neu5Ac-OCPP increased to 36%, although stereoselectivity decreased (α/β ≤ 6.2). Here, we report that the outcome of this reaction, performed under microfluidic conditions using a Comet X-01 micromixer (at 2 μL/min flow rate), non-linearly depends on the concentration of N-acetylsialyl chloride 1 (5–200 mmol/L). The target Neu5Ac-OCPP was obtained in a noticeably higher yield (up to 66%) accompanied by enhanced stereoselectivity (α/β = 17:1–32:1) in the high concentration range (C > 50 mmol/L), whereas the yield (10–36%) and especially, stereoselectivity (α/β = 0.9:1–6.2:1) were lower in the low concentration range (C ≤ 50 mmol/L). This dramatic stepwise increase in stereoselectivity above critical concentration (50 mmol/L) is apparently related to the changes in the presentation of molecules on the surface of supramers of glycosyl donor, which exist in different concentration ranges.
Collapse
|
5
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
6
|
Myachin IV, Mamirgova ZZ, Stepanova EV, Zinin AI, Chizhov AO, Kononov L. Black swan in phase transfer catalysis: influence of mixing mode on the stereoselectivity of glycosylation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya V. Myachin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Zarina Z. Mamirgova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Elena V. Stepanova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboraory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander I. Zinin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander O. Chizhov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Leonid Kononov
- N.D. Zelinsky Institute of Organic Chemistry Laboratory of Glycochemistry Leninsky prosp., 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
7
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
8
|
Konishi N, Shirahata T, Yoshida Y, Sato N, Kaji E, Kobayashi Y. Efficient synthesis of diverse C-3 monodesmosidic saponins by a continuous microfluidic glycosylation/batch deprotection method. Carbohydr Res 2021; 510:108437. [PMID: 34597978 DOI: 10.1016/j.carres.2021.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
Triterpene and steroid saponins have various pharmacological activities but the synthesis of C-3 monodesmosidic saponins remains challenging. Herein, a series of C-3 glycosyl monodesmosidic saponins was synthesized via the microfluidic glycosylation of triterpenoids or steroids at the C-3 position, without the formation of orthoester byproducts, and subsequent deprotection of the benzoyl (Bz) group. This microfluidic glycosylation/batch deprotection sequence enabled the efficient synthesis of C-3 saponins with fewer purification steps and a shorter reaction time than conventional batch synthesis and stepwise microfluidic glycosylation. Furthermore, this system minimized the consumption of the imidate donor. Using this reaction system, 18 different C-3 saponins and 13 different C-28-benzyl-C-3 saponins, including 8 new compounds, were synthesized from various sugars and triterpenes or steroids. Our synthetic approach is expected to be suitable for further expanding the C-3 saponin library for pharmacological studies.
Collapse
Affiliation(s)
- Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yuki Yoshida
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Eisuke Kaji
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
9
|
Shao L, Huo Z, Lei N, Yang M, He Z, Zhang Y, Wei Q, Chen C, Xiao M, Wang F, Gu G, Cai F. Reinvestigation of N, N-Diacetylimido-Protected 2-Aminothioglycosides in O-Glycosylation: Intermolecular Hydrogen Bonds Contributing to 1,2-Orthoamide Formation. J Org Chem 2021; 86:13212-13230. [PMID: 34533021 DOI: 10.1021/acs.joc.1c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N,N-Diacetylimido protection of 2-aminoglycosides is an elegant strategy but has had limited applications due to unexpected side reactions in glycosylation. We found that high acid concentrations could diminish the side reactions. We observed intermolecular hydrogen bonding among alcohols and acids could disrupt. Assuming that intermolecular hydrogen bonding accelerates the formation of 1,2-orthoamides and disrupting intermolecular hydrogen bonds could turn to the desired glycosylation, we successfully employed sulfenyl triflate pre-activation in the glycosylation of a broad scope of alcohol acceptors, as well as in a one-pot synthesis of a protected human milk oligosaccharide, lacto-N-neotetraose.
Collapse
Affiliation(s)
- Liming Shao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Zhenni Huo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Na Lei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Min Yang
- Center for Analysis and Characterization, School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd., Shanghai 201210, China
| | - Zehuan He
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yongliang Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Qinlong Wei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Mei Xiao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Fei Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
10
|
Asressu KH, Chang C, Lam S, Wang C. Donor‐Reactivity‐Controlled Sialylation Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kesatebrhan Haile Asressu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST) Academia Sinica Taipei 115 Taiwan
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Chun‐Wei Chang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Cheng‐Chung Wang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST) Academia Sinica Taipei 115 Taiwan
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| |
Collapse
|
11
|
Bizzarri M, Giuliani A, Monti N, Verna R, Pensotti A, Cucina A. Rediscovery of natural compounds acting via multitarget recognition and noncanonical pharmacodynamical actions. Drug Discov Today 2020; 25:920-927. [DOI: 10.1016/j.drudis.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
|
12
|
Tsutsui M, Sianturi J, Masui S, Tokunaga K, Manabe Y, Fukase K. Efficient Synthesis of Antigenic Trisaccharides ContainingN-Acetylglucosamine: Protection of NHAc as NAc2. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masato Tsutsui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Julinton Sianturi
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Seiji Masui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Kento Tokunaga
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Yoshiyuki Manabe
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| |
Collapse
|
13
|
|
14
|
Abstract
Investigations of methodologies aimed on improving the stereoselective synthesis of sialosides and the efficient assembly of sialic acid glycoconjugates has been the mission of dedicated research groups from the late 1960s. This review presents major accomplishments in the field, with the emphasis on significant breakthroughs and influential synthetic strategies of the last decade.
Collapse
|
15
|
Smirmov LP, Kulagina TP. Features of the kinetics of chemical reactions in a nanostructured liquid. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2017. [DOI: 10.1134/s1990793117050207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Podvalnyy NM, Malysheva NN, Panova MV, Zinin AI, Chizhov AO, Orlova AV, Kononov LO. Stereoselective sialylation with O-trifluoroacetylated thiosialosides: hydrogen bonding involved? Carbohydr Res 2017; 451:12-28. [PMID: 28934626 DOI: 10.1016/j.carres.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
A series of novel sialyl donors containing O-trifluoroacetyl (TFA) groups at various positions was synthesized. The choice of protecting groups in sialyl donors was based on hypothesis that variations in ability of different acyl groups to act as hydrogen bond acceptors would influence the supramolecular structure of reaction mixture (solution structure), hence the outcome of sialylation. These glycosyl donors were examined in the model glycosylation of the primary hydroxyl group of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose in comparison with sialyl donors without O-TFA groups. The presence of O-TFA groups in a sialyl donor strongly affected the outcome of sialylation. Several sialyl donors studied showed promising results: yields of disaccharides can be as high as 86% as can be the stereoselectivities (α/β up to 15:1). The results obtained suggest that varying acyl O-protecting groups in sialyl donor may result in dramatic changes in the outcome of sialylation although further studies are required to dissect the influence of intermolecular hydrogen bonding and intramolecular substituent effects related to variations of electron-withdrawing properties of different acyl groups.
Collapse
Affiliation(s)
- Nikita M Podvalnyy
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Anna V Orlova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
17
|
Konishi N, Shirahata T, Yokoyama M, Katsumi T, Ito Y, Hirata N, Nishino T, Makino K, Sato N, Nagai T, Kiyohara H, Yamada H, Kaji E, Kobayashi Y. Synthesis of Bisdesmosidic Oleanolic Acid Saponins via a Glycosylation-Deprotection Sequence under Continuous Microfluidic/Batch Conditions. J Org Chem 2017; 82:6703-6719. [DOI: 10.1021/acs.joc.7b00841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Naruki Konishi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaki Yokoyama
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Katsumi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshikazu Ito
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nozomu Hirata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Nishino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Noriko Sato
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takayuki Nagai
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroaki Kiyohara
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruki Yamada
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eisuke Kaji
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
18
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
19
|
Slow large-scale supramolecular structuring as a cause of kinetic anomalies in the liquid-phase oxidation with nitric acid. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1401-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Nagasaki M, Manabe Y, Minamoto N, Tanaka K, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of a Complex-Type N-Glycan Containing a Core Fucose. J Org Chem 2016; 81:10600-10616. [PMID: 27775350 DOI: 10.1021/acs.joc.6b02106] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A chemical synthesis of a core fucose containing N-glycan was achieved. Asparagine was introduced at an early stage of the synthesis, and the sugar chain was convergently elongated. As for the fragment synthesis, we reinvestigated α-sialylation, β-mannosylation, and N-glycosylation to reveal that precise temperature control was essential for these glycosylations. Intermolecular hydrogen bonds involving acetamide groups were found to reduce the reactivity in glycosylations: the protection of NHAc as NAc2 dramatically improved the reactivity. The dodecasaccharide-asparagine framework was constructed via the (4 + 4) glycosylation and the (4 + 8) glycosylation using the tetrasaccharide donor and the tetrasaccharide-asparagine acceptor. An ether-type solvent enhanced the yields of these key glycosylations between large substrates. After the whole deprotection of the dodecasaccharide, the target N-glycan was obtained.
Collapse
Affiliation(s)
- Masahiro Nagasaki
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Minamoto
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Biofunctional Synthetic Chemistry Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
21
|
Zhou J, Manabe Y, Tanaka K, Fukase K. Efficient Synthesis of the Disialylated Tetrasaccharide Motif in N-Glycans through an Amide-Protection Strategy. Chem Asian J 2016; 11:1436-40. [DOI: 10.1002/asia.201600139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jiazhou Zhou
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory; RIKEN; Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
22
|
Fukase K, Shimoyama A, Manabe Y. Effective Synthesis of Oligosaccharide under Microfluidic Conditions. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Abstract
Reagent molecules inside solution domains {R1} and {R2} cannot contact hence react. For this reason solution structure may influence chemical reactivity.
Collapse
Affiliation(s)
- L. O. Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| |
Collapse
|
24
|
Salmasan RM, Manabe Y, Kitawaki Y, Chang TC, Fukase K. Efficient Glycosylation Using In(OTf)3 as a Lewis Acid: Activation of N-Phenyltrifluoroacetimidate or Thioglycosides with Halogenated Reagents or PhIO. CHEM LETT 2014. [DOI: 10.1246/cl.140167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Yuriko Kitawaki
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
25
|
Uchinashi Y, Tanaka K, Manabe Y, Fujimoto Y, Fukase K. Practical and Efficient Method for α-Sialylation with an Azide Sialyl Donor Using a Microreactor. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.880116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Manelis GB, Lagodzinskaya GV, Kazakov AI, Chernyak AV, Yunda NG, Kurochkina LS. Influence of the supramolecular structure of the liquid reaction medium on the kinetics of acetone oxidation with aqueous solutions of nitric acid. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0130-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
|
28
|
Abstract
The development and application of continuous flow chemistry methods for synthesis is a rapidly growing area of research. In particular, natural products provide demanding challenges to this developing technology. This review highlights successes in the area with an emphasis on new opportunities and technological advances.
Collapse
Affiliation(s)
- Julio C Pastre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | |
Collapse
|
29
|
Kononov LO, Malysheva NN, Orlova AV, Zinin AI, Laptinskaya TV, Kononova EG, Kolotyrkina NG. Concentration Dependence of Glycosylation Outcome: A Clue to Reproducibility and Understanding the Reasons Behind. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101613] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Fukase K, Fujimoto Y, Shimoyama A, Tanaka K. Synthesis of Bacterial Glycoconjugates and Their Bio-functional Studies in Innate Immunity. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|