1
|
Loro C, Papis M, Foschi F, Broggini G, Poli G, Oble J. Copper(II)-Catalyzed Three-Component Arylation/Hydroamination Cascade from Allyl Alcohol: Access to 1-Aryl-2-sulfonylamino-propanes. J Org Chem 2023; 88:13995-14003. [PMID: 37747795 PMCID: PMC10563128 DOI: 10.1021/acs.joc.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 09/27/2023]
Abstract
A new straightforward approach to 1-aryl-2-aminopropanes using easily accessible substrates has been developed. Simple allyl alcohol is shown to be an ideal synthetic equivalent of the C3 propane-1,2-diylium bis-cation synthon in three-component cascade reactions with arenes and sulfonamide nucleophiles to regioselectively afford 1-aryl-2-aminopropanes. The reaction is catalyzed by Cu(OTf)2 and is expected to involve a Friedel-Crafts-type allylation of the arene, followed by hydroamination.
Collapse
Affiliation(s)
- Camilla Loro
- Dipartimento
di Scienza e Alta Tecnologia, Università
dell’Insubria, via Valleggio 11, 22100 Como, Italy
| | - Marta Papis
- Dipartimento
di Scienza e Alta Tecnologia, Università
dell’Insubria, via Valleggio 11, 22100 Como, Italy
| | - Francesca Foschi
- Dipartimento
di Scienza e Alta Tecnologia, Università
dell’Insubria, via Valleggio 11, 22100 Como, Italy
| | - Gianluigi Broggini
- Dipartimento
di Scienza e Alta Tecnologia, Università
dell’Insubria, via Valleggio 11, 22100 Como, Italy
| | - Giovanni Poli
- Faculté
des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie
Moléculaire, IPCM, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Julie Oble
- Faculté
des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie
Moléculaire, IPCM, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
2
|
Detection and Identification of Amphetamine-Type Stimulants and Analogs via Recognition-Enabled “Chromatographic” 19F NMR. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Wang T, Liu C, Xu D, Xu J, Yang Z. Iridium-Catalyzed and pH-Dependent Reductions of Nitroalkenes to Ketones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227822. [PMID: 36431923 PMCID: PMC9696932 DOI: 10.3390/molecules27227822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
A highly chemoselective conversion of α,β-disubstituted nitroalkenes to ketones is developed. An acid-compatible iridium catalyst serves as the key to the conversion. At a 2500 S/C ratio, nitroalkenes were readily converted to ketones in up to 72% isolated yields. A new mechanistic mode involving the reduction of nitroalkene to nitrosoalkene and N-alkenyl hydroxylamine is proposed. This conversion is ready to amplify to a gram-scale synthesis. The pH value plays an indispensable role in controlling the chemoselectivity.
Collapse
|
4
|
Chitosan Capped Copper Oxide Nanocomposite: Efficient, Recyclable, Heterogeneous Base Catalyst for Synthesis of Nitroolefins. Catalysts 2022. [DOI: 10.3390/catal12090964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this article, chitosan copper oxide nanocomposite was synthesized by the solution casting method under microwave irradiation. The nanocomposite solution was microwave irradiated at 300 watt for 3 min under optimal irradiation conditions. By suppressing particle agglomeration, the chitosan matrix was successfully used as a metal oxide stabilizer. The goal of this research was to create, characterize, and test the catalytic potency of these hybrid nanocomposites in a number of well-known organic processes. The prepared CS-CuO nanocomposites were analyzed by different techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Moreover, energy-dispersive X-ray spectroscopy (EDS) was used to measure the copper content in the prepared nanocomposite film. The finger-print peaks in the FTIR spectrum at around 632–502 cm−1 confirmed the existence of the CuO phase. The CS-CuO nanocomposite has been shown to be an efficient base promoter for nitroolefin synthesis via the nitroaldol reaction (Henry reaction) in high yields. The reaction variables were studied to improve the catalytic approach. Higher reaction yields, shorter reaction times, and milder reaction conditions are all advantages of the technique, as is the catalyst’s reusability for several uses.
Collapse
|
5
|
Enantioselective Enzymatic Synthesis of (
R
)‐Phenyl Alkyl Esters and Their Analogue Amides using Fatty Acids as Green Acyl Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Lakó Á, Molnár Z, Mendonça R, Poppe L. Transaminase-mediated synthesis of enantiopure drug-like 1-(3',4'-disubstituted phenyl)propan-2-amines. RSC Adv 2020; 10:40894-40903. [PMID: 35519186 PMCID: PMC9057730 DOI: 10.1039/d0ra08134e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Transaminases (TAs) offer an environmentally and economically attractive method for the direct synthesis of pharmaceutically relevant disubstituted 1-phenylpropan-2-amine derivatives starting from prochiral ketones. In this work, we report the application of immobilised whole-cell biocatalysts with (R)-transaminase activity for the synthesis of novel disubstituted 1-phenylpropan-2-amines. After optimisation of the asymmetric synthesis, the (R)-enantiomers could be produced with 88-89% conversion and >99% ee, while the (S)-enantiomers could be selectively obtained as the unreacted fraction of the corresponding racemic amines in kinetic resolution with >48% conversion and >95% ee.
Collapse
Affiliation(s)
- Ágnes Lakó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
- Hovione Farmaciência, S.A., Campus do Lumiar Edifício R, Estrada do Paço do Lumiar 1649-038 Lisboa Portugal
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
| | - Ricardo Mendonça
- Hovione Farmaciência, S.A., Campus do Lumiar Edifício R, Estrada do Paço do Lumiar 1649-038 Lisboa Portugal
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics Műegyetem rkp. 3 1111 Budapest Hungary +36-1-463-3299
- Biocatalysis and Biotransformation Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca Arany János Str. 11 400028 Cluj-Napoca Romania
| |
Collapse
|
7
|
Liu L, Wang DH, Chen FF, Zhang ZJ, Chen Q, Xu JH, Wang ZL, Zheng GW. Development of an engineered thermostable amine dehydrogenase for the synthesis of structurally diverse chiral amines. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00071j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Structurally diverse chiral amines and amino alcohols were synthesized using an engineered thermostable amine dehydrogenase, demonstrating its extensive synthesis potential.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Dong-Hao Wang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Zhi-Long Wang
- State Key Laboratory of Microbial Metabolism
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
8
|
González‐Martínez D, Gotor V, Gotor‐Fernández V. Stereoselective Synthesis of 1‐Arylpropan‐2‐amines from Allylbenzenes through a Wacker‐Tsuji Oxidation‐Biotransamination Sequential Process. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel González‐Martínez
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
9
|
Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Winterton SE, Capota E, Wang X, Chen H, Mallipeddi PL, Williams NS, Posner BA, Nijhawan D, Ready JM. Discovery of Cytochrome P450 4F11 Activated Inhibitors of Stearoyl Coenzyme A Desaturase. J Med Chem 2018; 61:5199-5221. [PMID: 29869888 DOI: 10.1021/acs.jmedchem.8b00052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stearoyl-CoA desaturase (SCD) catalyzes the first step in the conversion of saturated fatty acids to unsaturated fatty acids. Unsaturated fatty acids are required for membrane integrity and for cell proliferation. For these reasons, inhibitors of SCD represent potential treatments for cancer. However, systemically active SCD inhibitors result in skin toxicity, which presents an obstacle to their development. We recently described a series of oxalic acid diamides that are converted into active SCD inhibitors within a subset of cancers by CYP4F11-mediated metabolism. Herein, we describe the optimization of the oxalic acid diamides and related N-acyl ureas and an analysis of the structure-activity relationships related to metabolic activation and SCD inhibition.
Collapse
|
11
|
EL-Atawy MA, Ferretti F, Ragaini F. A Synthetic Methodology for Pyrroles from Nitrodienes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohamed A. EL-Atawy
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
- Chemistry Department; Faculty of Science; Alexandria University; P.O. 426 Ibrahemia 21321 Alexandria Egypt
| | - Francesco Ferretti
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Fabio Ragaini
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| |
Collapse
|
12
|
Dawood AWH, de Souza ROMA, Bornscheuer UT. Asymmetric Synthesis of Chiral Halogenated Amines using Amine Transaminases. ChemCatChem 2018. [DOI: 10.1002/cctc.201701962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
13
|
Palladium-Catalyzed Intramolecular Cyclization of Nitroalkenes: Synthesis of Thienopyrroles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700165] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Ettireddy S, Chandupatla V, Veeresham C. Enantioselective Resolution of (R,S)-Carvedilol to (S)-(-)-Carvedilol by Biocatalysts. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:171-179. [PMID: 28064425 PMCID: PMC5315674 DOI: 10.1007/s13659-016-0118-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/30/2016] [Indexed: 06/06/2023]
Abstract
Among the microorganisms employed in the study, Aspergillus niger (GUFCC5443), Escherichia coli (ATCC9637), Streptomyces halstedii (CKM-2), Pseudomonas putida (NCIB9494), Cunninghamella elegans (NCIM689) and Sphingomonas paucimobilis (NCTC11030) were capable for the enantioselective conversion of racemic Carvedilol. Immobilization technique enhanced the enantioselectivity of microorganisms and thus increased the enantiomeric purity of the drug. Excellent enantiomeric ratios (E) were found in reactions catalyzed by immobilized A. niger and E. coli with values 174.44 and 104.26, respectively. Triacylglycerol lipase from Aspergillus niger was also employed in this study as a biocatalyst which resulted in the product with 83.35% enantiomeric excess (ee) and E of 11.34 while the enzyme on immobilization has yielded 99.08% ee and 216.39 E. The conversion yield (C%) of the drug by free-enzyme was 57.42%, which was enhanced by immobilization to 90.51%. Hence, our results suggest that immobilized triacylglycerol lipase from A. niger (Lipase AP6) could be an efficient biocatalyst for the enantioselective resolution of racemic Carvedilol to (S)-(-)-Carvedilol with high enantiomeric purity followed by immobilized cultures of A. niger and E. coli.
Collapse
Affiliation(s)
- Swetha Ettireddy
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506 009, India
| | - Vijitha Chandupatla
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506 009, India
| | - Ciddi Veeresham
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506 009, India.
| |
Collapse
|
15
|
Wang J, Liu N, Cheng X, Chen L. Efficient continuous kinetic resolution of racemic 2-aminobutanol over immobilized penicillin G acylase. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1181763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jianxin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Na Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Xiaobo Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| |
Collapse
|
16
|
|
17
|
Zhang F, Li C, Wang C, Qi C. Facile synthesis of benzoindoles and naphthofurans through carbonaceous material-catalyzed cyclization of naphthylamines/naphthols with nitroolefins in water. Org Biomol Chem 2015; 13:5022-9. [DOI: 10.1039/c5ob00129c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A facile and efficient approach has been established for the synthesis of benzoindole and naphthofuran derivatives via the metal-free cyclization reaction of nitroolefins with naphthylamines/naphthols.
Collapse
Affiliation(s)
- Furen Zhang
- School of Chemistry and Chemical Engineering
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
- Shaoxing University
- Shaoxing
- China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
- Shaoxing University
- Shaoxing
- China
| | - Chen Wang
- School of Chemistry and Chemical Engineering
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
- Shaoxing University
- Shaoxing
- China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
- Shaoxing University
- Shaoxing
- China
| |
Collapse
|
18
|
Rodríguez A, Guerrero A, Gutierrez-de-Terán H, Rodríguez D, Brea J, Loza MI, Rosell G, Pilar Bosch M. New selective A2A agonists and A3 antagonists for human adenosine receptors: synthesis, biological activity and molecular docking studies. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00086f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and pharmacological characterization of a new series of adenosine derivatives on the four human adenosine receptors are reported.
Collapse
Affiliation(s)
- Anna Rodríguez
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| | - Angel Guerrero
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| | - Hugo Gutierrez-de-Terán
- Department of Cell and Molecular Biology
- Uppsala University
- Biomedical Center
- SE-751 24 Uppsala
- Sweden
| | - David Rodríguez
- Department of Biochemistry and Biophysics and Center for Biomembrane Research
- Stockholm University
- Sweden
| | - José Brea
- Biofarma Research Group, Center of Research in Molecular Medicine and Chronic Diseases (CIMUS)
- 15782 Santiago de Compostela
- Spain
| | - María I. Loza
- Biofarma Research Group, Center of Research in Molecular Medicine and Chronic Diseases (CIMUS)
- 15782 Santiago de Compostela
- Spain
| | - Gloria Rosell
- Department of Pharmacology and Medicinal Chemistry (Unit Associated to CSIC)
- Faculty of Pharmacy
- University of Barcelona
- 08028 Barcelona
- Spain
| | - M. Pilar Bosch
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
19
|
Jovanovic P, Jeremic S, Djokic L, Savic V, Radivojevic J, Maslak V, Ivkovic B, Vasiljevic B, Nikodinovic-Runic J. Chemoselective biocatalytic reduction of conjugated nitroalkenes: new application for an Escherichia coli BL21(DE3) expression strain. Enzyme Microb Technol 2014; 60:16-23. [PMID: 24835095 DOI: 10.1016/j.enzmictec.2014.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/26/2014] [Accepted: 03/20/2014] [Indexed: 11/29/2022]
Abstract
Chemoselective reduction of activated carbon-carbon double bond in conjugated nitroalkenes was achieved using Escherichia coli BL21(DE3) whole cells. Nine different substrates have been used furnishing the reduced products in moderate to good yields. 1-Nitro-4-phenyl-1,3-butadiene and (2-nitro-1-propenyl)benzene were successfully biotransformed with corresponding product yields of 54% and 45% respectively. Using this simple and environmentally friendly system 2-(2-nitropropyl)pyridine and 2-(2-nitropropyl)naphthalene were synthesized and characterized for the first time. High substrate conversion efficiency was coupled with low enantioselectivity, however 29% enantiomeric excess was detected in the case of 2-(2-nitropropyl)pyridine. It was shown that electronic properties of the aromatic ring, which affected polarity of the double bond, were not highly influential factors in the reduction process, but the presence of the nitro functionality was essential for the reaction to proceed. 1-Phenyl-4-nitro-1,3-butadiene could not be biotransformed by whole cells of Pseudomonas putida KT2440 or Bacillus subtilis 168 while it was successfully reduced by E. coli DH5α but with lower efficiency in comparison to E. coli BL21(DE3). Knockout mutant affected in nemA gene coding for N-ethylmaleimide reductase (BL21ΔnemA) could still catalyze bioreductions suggesting multiple active reductases within E. coli BL21(DE3) biocatalyst. The described biocatalytic reduction of substituted nitroalkenes provides an efficient route for the preparation of the corresponding nitroalkanes and introduces the new application of the strain traditionally utilized for recombinant protein expression.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Vladimir Savic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Radivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia; Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Veselin Maslak
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Branka Ivkovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| |
Collapse
|
20
|
de Miranda AS, Miranda LSM, de Souza ROMA. Ethyl acetate as an acyl donor in the continuous flow kinetic resolution of (±)-1-phenylethylamine catalyzed by lipases. Org Biomol Chem 2014; 11:3332-6. [PMID: 23558581 DOI: 10.1039/c3ob40437d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of chiral amines is still a challenge for organic synthesis since optically pure amines are of great importance for the pharmaceutical and agrochemical industries. Among all the methodologies developed until now, chemoenzymatic dynamic kinetic resolution has proven to be useful for the preparation of enantioenriched primary chiral amines. In our continuous efforts toward the development of a continuous flow process, herein we report our results on the continuous flow kinetic resolution of (±)-1-phenylethylamine leading to the desired products with high enantiomeric ratios (>200) and short residence times (40 minutes) using ethyl acetate as the acyl donor.
Collapse
Affiliation(s)
- Amanda S de Miranda
- Biocatalysis and Organic Synthesis Group, Federal University of Rio de Janeiro, Chemistry Institute, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
21
|
Abrahamson MJ, Wong JW, Bommarius AS. The Evolution of an Amine Dehydrogenase Biocatalyst for the Asymmetric Production of Chiral Amines. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201201030] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Shengule SR, Ryder G, Willis AC, Pyne SG. Highly diastereoselective N-acyliminium ion cyclization reactions of a tethered furan. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Hagel JM, Krizevski R, Marsolais F, Lewinsohn E, Facchini PJ. Biosynthesis of amphetamine analogs in plants. TRENDS IN PLANT SCIENCE 2012; 17:404-412. [PMID: 22502775 DOI: 10.1016/j.tplants.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Amphetamine analogs are produced by plants in the genus Ephedra and by Catha edulis, and include the widely used decongestants and appetite suppressants pseudoephedrine and ephedrine. A combination of yeast (Candida utilis or Saccharomyces cerevisiae) fermentation and subsequent chemical modification is used for the commercial production of these compounds. The availability of certain plant biosynthetic genes would facilitate the engineering of yeast strains capable of de novo pseudoephedrine and ephedrine biosynthesis. Chemical synthesis has yielded amphetamine analogs with myriad functional group substitutions and diverse pharmacological properties. The isolation of enzymes with the serendipitous capacity to accept novel substrates could allow the production of substituted amphetamines in synthetic biosystems. Here, we review the biology, biochemistry and biotechnological potential of amphetamine analogs in plants.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
24
|
Yang W, Du DM. Squaramide-catalysed enantio- and diastereoselective sulfa-Michael addition of thioacetic acid to α,β-disubstituted nitroalkenes. Org Biomol Chem 2012; 10:6876-84. [DOI: 10.1039/c2ob26068a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|