Doyle LM, Meany FB, Murphy PV. Lewis acid promoted anomerisation of alkyl O- and S-xylo-, arabino- and fucopyranosides.
Carbohydr Res 2019;
471:85-94. [PMID:
30508660 DOI:
10.1016/j.carres.2018.11.010]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Pentopyranoside and 6-deoxyhexopyranosides, such as those from d-xylose, l-arabinose and l-fucose are components of natural products, oligosaccharides or polysaccharides. Lewis acid promoted anomerisation of some of their alkyl O- and S-glycopyranosides is reported here. SnCl4 was more successful than TiCl4, with the latter giving the glycosyl chloride by-product in some cases, and both were superior to BF3OEt2. Kinetics study using 1H NMR spectroscopy showed an order of reactivity: O-xylopyranoside > O-arabinopyranoside > O-fucopyranoside. Benzoylated glycosides were more reactive than acetylated glycosides. The reactivity of S-glycosides was greater than that of O-glycosides for both arabinose and fucose derivatives; the reactivity of O- and S-xylopyranosides was similar. The highest stereoselectivities were observed for fucopyranosides. The β-d-xylopyranoside and α-l-arabinopyranoside reactants are conformationally more flexible than β-l-fucopyranosides.
Collapse