1
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper-Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021; 60:14355-14359. [PMID: 33847459 PMCID: PMC8252434 DOI: 10.1002/anie.202103259] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/15/2022]
Abstract
Quinazolinones are common substructures in molecules of medicinal importance. We report an enantioselective copper-catalyzed borylative cyclization for the assembly of privileged pyrroloquinazolinone motifs. The reaction proceeds with high enantio- and diastereocontrol, and can deliver products containing quaternary stereocenters. The utility of the products is demonstrated through further manipulations.
Collapse
Affiliation(s)
- Quentin Dherbassy
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Srimanta Manna
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Chunling Shi
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- School of Material and Chemical EngineeringXuzhou University of TechnologyXuzhou221018P.R. China
| | | | | | - Gregory J. P. Perry
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
2
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper‐Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quentin Dherbassy
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Srimanta Manna
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Chunling Shi
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou 221018 P.R. China
| | | | | | - Gregory J. P. Perry
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
3
|
Pan T, Shi P, Chen B, Zhou DG, Zeng YL, Chu WD, He L, Liu QZ, Fan CA. CuH-Catalyzed Asymmetric 1,6-Conjugate Reduction of p-Quinone Methides: Enantioselective Synthesis of Triarylmethanes and 1,1,2-Triarylethanes. Org Lett 2019; 21:6397-6402. [PMID: 31389704 DOI: 10.1021/acs.orglett.9b02308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ting Pan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Pan Shi
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Ya-Li Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Long He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
4
|
Peng H, Ma J, Duan L, Zhang G, Yin B. CuH-Catalyzed Synthesis of 3-Hydroxyindolines and 2-Aryl-3H-indol-3-ones from o-Alkynylnitroarenes, Using Nitro as Both the Nitrogen and Oxygen Source. Org Lett 2019; 21:6194-6198. [DOI: 10.1021/acs.orglett.9b01849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Peng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China, 510640
| | - Jinhui Ma
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lingfei Duan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China, 510640
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China, 510640
| |
Collapse
|
5
|
Theoretical Calculations on the Mechanism of Enantioselective Copper(I)-Catalyzed Addition of Enynes to Ketones. Catalysts 2018. [DOI: 10.3390/catal8090359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Computational investigations on the bisphospholanoethane (BPE)-ligated Cu-catalyzed enantioselective addition of enynes to ketones were performed with the density functional theory (DFT) method. Two BPE-mesitylcopper (CuMes) catalysts, BPE-CuMes and (S,S)-Ph-BPE–CuMes, were employed to probe the reaction mechanism with the emphasis on stereoselectivity. The calculations on the BPE-CuMes system indicate that the active metallized enyne intermediate acts as the catalyst for the catalytic cycle. The catalytic cycle involves two steps: (1) ketone addition to the alkene moiety of the metallized enyne; and (2) metallization of the enyne followed by the release of product with the recovery of the active metallized enyne intermediate. The first step accounts for the distribution of the products, and therefore is the stereo-controlling step in chiral systems. In the chiral (S,S)-Ph-BPE–CuMes system, the steric hindrance is vital for the distribution of products and responsible for the stereoselectivity of this reaction. The steric hindrance between the phenyl ring of the two substrates and groups at the chiral centers in the ligand skeleton is identified as the original of the stereoselectivity for the titled reaction.
Collapse
|
6
|
Athira C, Changotra A, Sunoj RB. Rhodium Catalyzed Asymmetric Hydroamination of Internal Alkynes with Indoline: Mechanism, Origin of Enantioselectivity, and Role of Additives. J Org Chem 2018; 83:2627-2639. [PMID: 29437393 DOI: 10.1021/acs.joc.7b03047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive mechanistic study on the title reaction by using DFT(B3LYP-D3) computational method is reported. Explicit consideration of mono- (m-xylylic) and dicarboxylic acid (phthalic) in the key transition states reveals active participation of the carboxylic acid, beginning with the generation of a monomeric Rh(I) active catalyst and in the ensuing catalytic steps. In the early catalytic event, uptake of alkyne is predicted to take place only after the oxidative addition of the Rh(I) active catalyst to the carboxylic acid. The hydrometalation of the alkyne bound to the Rh(III)-H intermediate then generates a Rh(III)-vinyl intermediate, which in turn converts to a Rh(III)-allyl species. The inclusion of m-xylylic acid results in a two-step pathway to Rh(III)-allyl species via Rh-allene intermediate. A number of weak noncovalent interactions (hydrogen bonding and C-H···π) between the catalyst and the substrates and that involving m-xylylic acid are found to have a direct impact on the regiochemical preference toward the branched product and the enantiocontrolling hydroamination step involving C-N bond formation leading to the major enantiomer (S-allylic amine). The chiral induction is enabled by cumulative effect of noncovalent interactions, which is an insight that could aid future developments of chiral ligands for asymmetric hydroamination.
Collapse
Affiliation(s)
- C Athira
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Vergote T, Nahra F, Merschaert A, Riant O, Peeters D, Leyssens T. Mechanistic Insight into the (NHC)copper(I)-Catalyzed Hydrosilylation of Ketones. Organometallics 2014. [DOI: 10.1021/om401097q] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Vergote
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Fady Nahra
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Alain Merschaert
- UCB Pharma, 60 Allée
de la recherche, 1070 Braine l’Alleud, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Daniel Peeters
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Tom Leyssens
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
|
9
|
Vergote T, Nahra F, Peeters D, Riant O, Leyssens T. NHC–copper(I) bifluoride complexes: “Auto-activating” catalysts. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
|