1
|
Nagargoje AA, Deshmukh TR, Shaikh MH, Khedkar VM, Shingate BB. Anticancer perspectives of monocarbonyl analogs of curcumin: A decade (2014-2024) review. Arch Pharm (Weinheim) 2024; 357:e2400197. [PMID: 38895952 DOI: 10.1002/ardp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Monocarbonyl analogs of curcumin (MACs) represent structurally modified versions of curcumin. The existing literature indicates that MACs exhibit enhanced anticancer properties compared with curcumin. Numerous research articles in recent years have emphasized the significance of MACs as effective anticancer agents. This review focuses on the latest advances in the anticancer potential of MACs, from 2014 to 2024, including discussions on their mechanism of action, structure-activity relationship (SAR), and in silico molecular docking studies.
Collapse
Affiliation(s)
- Amol A Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Khopoli Municipal Council College, Khopoli, Maharashtra, India
| | - Tejshri R Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| | - Mubarak H Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Vijay M Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| |
Collapse
|
2
|
Chandra A, Basu P, Raha S, Dhibar P, Bhattacharya S. Development of ruthenium complexes with S-donor ligands for application in synthesis, catalytic acceptorless alcohol dehydrogenation and crossed-aldol condensation. Dalton Trans 2024; 53:10675-10685. [PMID: 38860941 DOI: 10.1039/d4dt00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The reaction of [Ru(dmso)4Cl2] with a potassium salt of four xanthate (RO-C(S)S-; R = Me, Et, iPr and tBu) ligands (depicted as Ln; n = 1-4) in hot methanol afforded a group of mixed-ligand complexes of type [Ru(Ln)2(dmso)2]. The crystal structures of all the four complexes have been determined, which show that the xanthate ligands are bound to the metal center forming four-membered chelates and dmso is coordinated through sulfur and they are mutually cis. The relative thermodynamic stability of this cis and the other possible trans-isomers of these complexes has been assessed with the help of DFT calculations, which have revealed that the cis-isomer is the more stable isomer. The coordinated dmso in the [Ru(Ln)2(dmso)2] complexes could be easily displaced by chelating bidentate ligands (depicted as L') to furnish complexes of type [Ru(Ln)2(L')], as demonstrated through isolation of two such complexes, viz. [Ru(L3)2(bpy)] and [Ru(L2)2(phen)] (bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline). The crystal structure of [Ru(L3)2(bpy)] has been determined and the structure of [Ru(L2)2(phen)] has been optimized by the DFT method. The electronic spectra of the four [Ru(Ln)2(dmso)2] complexes and the two derivatives ([Ru(Ln)2(L')]; n = 3, L' = bpy; n = 2, L' = phen), recorded in dichloromethane solutions, show intense absorptions spanning the visible and ultraviolet regions, which have been analyzed by the TDDFT method. The [Ru(Ln)2(dmso)2] complexes are found to serve as efficient catalyst precursors for the acceptorless dehydrogenation of 2-propanol followed by crossed-aldol condensation with substituted benzaldehydes (and related aldehydes), using tert-butoxide as the co-catalyst, producing dibenzylideneacetone derivatives in good yields.
Collapse
Affiliation(s)
- Anushri Chandra
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Pousali Basu
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Shreya Raha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Papu Dhibar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
- Department of Chemistry, Brainware University, Kolkata 700 125, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| |
Collapse
|
3
|
Abbas H, El-Feky YA, Al-Sawahli MM, El-Deeb NM, El-Nassan HB, Zewail M. Development and optimization of curcumin analog nano-bilosomes using 2 1.3 1 full factorial design for anti-tumor profiles improvement in human hepatocellular carcinoma: in-vitro evaluation, in-vivo safety assay. Drug Deliv 2022; 29:714-727. [PMID: 35243951 PMCID: PMC8903797 DOI: 10.1080/10717544.2022.2044938] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Curcumin (CU) is a natural polyphenolic phytoingredient. CU has anti-inflammatory, anti-oxidant, and anticancer activities. The poor solubility, bioavailability, and stability of CU diminish its clinical application. Hence, structural modification of CU is highly recommended. The CU analog; 3,5-bis(4-bromobenzylidene)-1-propanoylpiperidin-4-one (PIP) exhibited high stability, safety, and more potent antiproliferative activity against hepatocellular carcinoma. In the present study, nano-bilosomes (BLs) were formulated to augment PIP delivery and enhance its solubility. A 21.31 full factorial design was adopted to prepare the synthesized PIP-loaded BLs. Optimized F4 showed a biphasic release pattern extended over 24 h, with EE%, ZP, and PS of 90.21 ± 1.0%, −27.05 ± 1.08 mV, and 111.68 ± 1.4 nm. PIP-loaded BLs were tested for safety against a non-cancerous cell line (Wi-38) and for anticancer activity against the Huh-7 human hepatocellular carcinoma cells and compared to the standard anticancer drug doxorubicin (Dox). The anticancer selectivity index of PIP-loaded BLs recorded 420.55 against Huh-7 liver cancer cells, markedly higher than a CU suspension (18.959) or the Dox (20.82). The antiproliferative activity of nano-encapsulated PIP was roughly equivalent to Dox. PIP-loaded BLs, showed enhanced drug solubility, and enhanced anticancer effect, with lower toxicity and higher selectivity against Huh-7 liver cancer cells, compared to the parent CU.
Collapse
Affiliation(s)
- Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| | - Yasmin A El-Feky
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Majid Mohammad Al-Sawahli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh, Egypt.,Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Hala Bakr El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| |
Collapse
|
4
|
Abstract
An convenient one-pot approach for the synthesis of new (E)-2-(2-oxo-4-phenylbut-3-en-1-yl)benzo[d]thiazole-3(2H)-carboxylates is demonstrated. The method is based on a three-component reaction of benzylideneacetone with electrophilic N-alkoxycarbonylbenzothiazolium species formed in situ. The newly synthesized compounds were fully characterized by 1D 1H, 13C- NMR, IR and MS.
Collapse
|
5
|
Bhattacharjee P, Chatterjee S, Achari A, Saha A, Nandi D, Acharya C, Chatterjee K, Ghosh S, Swarnakar S, Jaisankar P. A bis-indole/carbazole based C5-curcuminoid fluorescent probe with large Stokes shift for selective detection of biothiols and application to live cell imaging. Analyst 2020; 145:1184-1189. [DOI: 10.1039/c9an02190f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of heterocyclic C5-Curcuminoid (PJ1–PJ6) having large Stokes shift (Δλ= 104–173 nm) have been synthesized under the microwave irradiation andPJ1has been utilized for selective detection of thiols in A375 cells and apoptosis in AGS cells.
Collapse
|
6
|
Bioactive Molecules and Their Mechanisms of Action. Molecules 2019; 24:molecules24203752. [PMID: 31635224 PMCID: PMC6832559 DOI: 10.3390/molecules24203752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
|
7
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin Drug Discov 2019; 14:821-842. [DOI: 10.1080/17460441.2019.1614560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eirini Chainoglou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Nagargoje AA, Akolkar SV, Siddiqui MM, Bagade AV, Kodam KM, Sangshetti JN, Damale MG, Shingate BB. Synthesis and evaluation of pyrazole‐incorporated monocarbonyl curcumin analogues as antiproliferative and antioxidant agents. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amol A. Nagargoje
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Satish V. Akolkar
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Madiha M. Siddiqui
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Aditi V. Bagade
- Department of ChemistrySavitribai Phule Pune University Pune India
| | - Kisan M. Kodam
- Department of ChemistrySavitribai Phule Pune University Pune India
| | | | - Manoj G. Damale
- Department of Pharmaceutical ChemistrySrinath College of Pharnacy Aurangabad India
| | - Bapurao B. Shingate
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad India
| |
Collapse
|
9
|
Pomarański P, Roszkowski P, Maurin JK, Czarnocki Z. Regio-and atropselective synthesis of selected ortho-phenyl substituted arylpyridine derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Santos FA, Abegão LM, Fonseca RD, Alcântara AM, Mendonça CR, Valle MS, Alencar M, Kamada K, De Boni L, Rodrigues J. Bromo-and chloro-derivatives of dibenzylideneacetone: Experimental and theoretical study of the first molecular hyperpolarizability and two-photon absorption. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Synthesis, mechanistic and synergy studies of diarylidenecyclohexanone derivatives as new antiplasmodial pharmacophores. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2237-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Subhedar DD, Shaikh MH, Nawale L, Sarkar D, Khedkar VM, Shingate BB. Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: Synthesis and molecular docking study. Bioorg Med Chem Lett 2017; 27:922-928. [DOI: 10.1016/j.bmcl.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
|
13
|
Guo T, Liu Y, Zhao YH, Zhang PK, Han SL, Liu HM. Palladium-catalyzed external-oxidant-free coupling reactions between isoquinoline/quinoline N-oxides with olefins. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Wang R, Chen C, Zhang X, Zhang C, Zhong Q, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. Structure-Activity Relationship and Pharmacokinetic Studies of 1,5-Diheteroarylpenta-1,4-dien-3-ones: A Class of Promising Curcumin-Based Anticancer Agents. J Med Chem 2015; 58:4713-26. [PMID: 25961334 DOI: 10.1021/acs.jmedchem.5b00470] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Forty-three 1,5-diheteroaryl-1,4-pentadien-3-ones were designed as potential curcumin mimics, structurally featuring a central five-carbon dienone linker and two identical nitrogen-containing aromatic rings. They were synthesized using a Horner-Wadsworth-Emmons reaction as the critical step and evaluated for their cytotoxicity and antiproliferative activities toward both androgen-insensitive and androgen-sensitive prostate cancer cell lines and an aggressive cervical cancer cell line. Most of the synthesized compounds showed distinctly better in vitro potency than curcumin in the four cancer cell lines. The structure-activity data acquired from the study validated (1E,4E)-1,5-dihereroaryl-1,4-pentadien-3-ones as an excellent scaffold for in-depth development for clinical treatment of prostate and cervical cancers. 1-Alkyl-1H-imidazol-2-yl, ortho pyridyl, 1-alkyl-1H-benzo[d]imidazole-2-yl, 4-bromo-1-methyl-1H-pyrazol-3-yl, thiazol-2-yl, and 2-methyl-4-(trifluoromethyl)thiazol-5-yl were identified as optimal heteroaromatic rings for the promising in vitro potency. (1E,4E)-1,5-Bis(2-methyl-4-(trifluoromethyl)thiazol-5-yl)penta-1,4-dien-3-one, featuring thiazole rings and trifluoromethyl groups, was established as the optimal lead compound because of its good in vitro potency and attractive in vivo pharmacokinetic profiles.
Collapse
Affiliation(s)
- Rubing Wang
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | - Chengsheng Chen
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | - Xiaojie Zhang
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | | | | | - Guanglin Chen
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| | | | | | | | - Qiao-Hong Chen
- †Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, California 93740, United States
| |
Collapse
|
15
|
Shetty D, Kim YJ, Shim H, Snyder JP. Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Molecules 2014; 20:249-92. [PMID: 25547726 PMCID: PMC4312668 DOI: 10.3390/molecules20010249] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs). A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK) profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria.
Collapse
Affiliation(s)
- Dinesh Shetty
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 790-784, Korea.
| | - Yong Joon Kim
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA.
| | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Samaan N, Zhong Q, Fernandez J, Chen G, Hussain AM, Zheng S, Wang G, Chen QH. Design, synthesis, and evaluation of novel heteroaromatic analogs of curcumin as anti-cancer agents. Eur J Med Chem 2014; 75:123-31. [PMID: 24531225 DOI: 10.1016/j.ejmech.2014.01.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/12/2014] [Accepted: 01/18/2014] [Indexed: 01/03/2023]
Abstract
To improve the potential of curcumin to treat advanced hormone-refractory prostate cancer, three series (A-C) of heteroaromatic analogs (thirty two compounds) with different monoketone linkers have been synthesized and evaluated for cytotoxicity against two human androgen-independent prostate cancer cell lines (PC-3 and DU-145). Among them, thirty analogs are more potent than curcumin against PC-3 cells, and twenty one analogs are more cytotoxic towards DU-145 cells relative to curcumin. The most potent compounds (44, 45, 51, and 52) also showed impressive cytotoxicity against three other metastatic cancer cell lines (MDA-MB-231, HeLa, and A549), with IC50 values ranging from 50 nM to 390 nM. All four most potent analogs exhibited no apparent cytotoxicity towards the MCF-10A normal mammary epithelial cells. Taken together, selective enhancement of cell death in prostate cancer cell lines and other aggressive cancer cell lines suggests that nitrogen-containing heteroaromatic rings are promising bioisosteres of the substituted phenyl ring in curcumin.
Collapse
Affiliation(s)
- Nawras Samaan
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiu Zhong
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Jayjoel Fernandez
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Ali M Hussain
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Shilong Zheng
- RCMI Cancer Research Program, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; RCMI Cancer Research Program, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
17
|
Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des 2013. [PMID: 23116312 DOI: 10.2174/138161213805289309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Curcumin is the active component of dried rhizome of Curcuma longa, a perennial herb belonging to ginger family, cultivated extensively in south and southeastern tropical Asia. It is widely consumed in the Indian subcontinent, south Asia and Japan in traditional food recipes. Extensive research over last few decades has shown that curcumin is a potent anti-inflammatory agent with powerful therapeutic potential against a variety of cancers. It suppresses proliferation and metastasis of human tumors through regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases and other enzymes. It induces apoptotic cell death and also inhibits proliferation of cancer cells by cell cycle arrest. Pharmacokinetic data has shown that curcumin undergoes rapid metabolism leading to glucuronidation and sulfation in the liver and excretion in the feces, which accounts for its poor systemic bioavailability. The compound has, therefore, been formulated and administered using different drug delivery systems such as liposomes, micelles, polysaccharides, phospholipid complexes and nanoparticles that can overcome the limitation of bioavailability to some extent. Attempts to avoid rapid metabolism of curcumin until now have been met with limited success. This has prompted researchers to look for new synthetic curcumin analogs in order to overcome the drawbacks of limited bioavailability and rapid metabolism, and gain efficacy with reduced toxicity. In this review we provide a summarized account of novel synthetic curcumin formulations and analogs, and the recent progress in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Alok Vyas
- ISTRA, Department of Chemistry, Abeda Inamdar College, University of Pune, Pune 411001, India
| | | | | | | | | |
Collapse
|
18
|
Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des 2013. [PMID: 23116312 DOI: 10.2174/1381612811319110007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin is the active component of dried rhizome of Curcuma longa, a perennial herb belonging to ginger family, cultivated extensively in south and southeastern tropical Asia. It is widely consumed in the Indian subcontinent, south Asia and Japan in traditional food recipes. Extensive research over last few decades has shown that curcumin is a potent anti-inflammatory agent with powerful therapeutic potential against a variety of cancers. It suppresses proliferation and metastasis of human tumors through regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases and other enzymes. It induces apoptotic cell death and also inhibits proliferation of cancer cells by cell cycle arrest. Pharmacokinetic data has shown that curcumin undergoes rapid metabolism leading to glucuronidation and sulfation in the liver and excretion in the feces, which accounts for its poor systemic bioavailability. The compound has, therefore, been formulated and administered using different drug delivery systems such as liposomes, micelles, polysaccharides, phospholipid complexes and nanoparticles that can overcome the limitation of bioavailability to some extent. Attempts to avoid rapid metabolism of curcumin until now have been met with limited success. This has prompted researchers to look for new synthetic curcumin analogs in order to overcome the drawbacks of limited bioavailability and rapid metabolism, and gain efficacy with reduced toxicity. In this review we provide a summarized account of novel synthetic curcumin formulations and analogs, and the recent progress in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Alok Vyas
- ISTRA, Department of Chemistry, Abeda Inamdar College, University of Pune, Pune 411001, India
| | | | | | | | | |
Collapse
|
19
|
Ahmed S, Sharif M, Shoaib K, Reimann S, Iqbal J, Patonay T, Spannenberg A, Langer P. Synthesis of 2,6-diaryl-3-(trifluoromethyl)pyridines by regioselective Suzuki–Miyaura reactions of 2,6-dichloro-3-(trifluoromethyl)pyridine. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|