1
|
Hazra R, Bera N, Layek S, Sarkar N. Efficiency of Encapsulation of Thioflavin T (ThT) into Polar and Nonpolar Environments of Different Bile Salt Aggregates: A Femtosecond Fluorescence Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16272-16282. [PMID: 39042864 DOI: 10.1021/acs.langmuir.4c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The binding of Thioflavin T (ThT) with various bile salts, a potential host molecule, has been analyzed by steady-state and time-resolved fluorescence spectroscopy. A comparative study has been executed to investigate the influence of confinement of different bile salts, namely, sodium cholate (NaCh), sodium taurocholate (NaTC), and sodium deoxycholate (NaDC) on binding and excited state torsional motion of ThT molecules. The changes in absorption and emission properties of probe molecules were found to be sensitive to increasing bile salt concentration in aqueous 0.2 (M) NaCl solutions. The photophysics of ThT mainly depends on hydrophobicity, morphology, and size of bile salt aggregates in solution. In the presence of bile salts, the emission intensity and emission lifetime of ThT increase significantly, indicating encapsulation of dye. Moreover, we have also investigated the effect of the ionic strength of the medium by sodium chloride (NaCl) on the spectroscopic properties of ThT in the restricted surroundings of aqueous bile salts. It is observed that the fluorescence lifetime of ThT in bile salts increases significantly in the presence of NaCl. The encapsulation efficiency of ThT in bile salt aggregates has been assessed by iodide (I-) as an external ionic quencher. We found that NaDC aggregates are more efficient in the modulation of photophysical properties of ThT and also provide better protection efficiency to decrease the nonradiative deactivation processes.
Collapse
Affiliation(s)
- Ritwik Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
2
|
Menandro AS, Péres LO, Bohne C. Solubilization and Photostabilization in a Sodium Deoxycholate Hydrogel of a Neutral Conjugated Thiophene Oligomer and Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11215-11227. [PMID: 38748867 DOI: 10.1021/acs.langmuir.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Oligo(3-hexylthiophene-co-1,4-phenylene) and poly(3-hexylthiophene) were solubilized in sodium deoxycholate self-assemblies in water solutions and hydrogels, with the goal of solubilizing sufficient material in a hydrogel for fluorescence applications. The neutral conjugated oligomer and polymer were incorporated as monomers into the self-assemblies with sodium deoxycholate aggregates, leading to the photoprotection of these neutral conjugated and water-insoluble molecules. Dynamic light scattering, rheology, and fluorescence experiments established that the deoxycholate aggregation and gel formation properties were not altered with the incorporation of the oligomer or polymer into the deoxycholate self-assemblies, showing that this adaptable host system with some molecular recognition elements is a viable strategy to incorporate into hydrogels neutral conjugated molecules as isolated monomers. This strategy has the potential to be used when conjugated molecules are used for fluorescence applications in hydrogels.
Collapse
Affiliation(s)
- Alessandra S Menandro
- Laboratory of Hybrid Materials, Federal University of São Paulo, Diadema, SP 09913-030, Brazil
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| | - Laura O Péres
- Laboratory of Hybrid Materials, Federal University of São Paulo, Diadema, SP 09913-030, Brazil
| | - Cornelia Bohne
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
3
|
Swain J, Mishra J, Ghosh G, Mishra AK. Quantification of micropolarity and microviscosity of aggregation and salt-induced gelation of sodium deoxycholate (NaDC) using Nile red fluorescence. Photochem Photobiol Sci 2019; 18:2773-2781. [DOI: 10.1039/c9pp00293f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nile red fluorescence properties can be used for the estimation of micropolarity and microviscosity of the gel medium.
Collapse
Affiliation(s)
- Jitendriya Swain
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Jhili Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Goutam Ghosh
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Ashok Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
4
|
Dey N, Maji B, Bhattacharya S. A Versatile Probe for Caffeine Detection in Real-Life Samples via Excitation-Triggered Alteration in the Sensing Behavior of Fluorescent Organic Nanoaggregates. Anal Chem 2017; 90:821-829. [DOI: 10.1021/acs.analchem.7b03520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Cheng B, Kaifer AE. Electrochemistry of viologen dications in cholate media and competition between the cholate assemblies and the cucurbit[7]uril host. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2997-3002. [PMID: 25688521 DOI: 10.1021/la505005r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cathodic voltammetric behavior of N,N'-dimethyl-4,4'-bipyridinium (methylviologen, MV(2+)), N,N'-dipropyl-4,4'-bipyridinium (propylviologen, PV(2+)), N,N'-dibutyl-4,4'-bipyridinium (butylviologen, BV(2+)), and N-heptyl-N'-ethyl-4,4'-bipyridinium (heptyl-ethylviologen, HEV(2+)) was investigated in aqueous solution containing variable concentrations of sodium cholate. In general, the presence of cholate was found to solubilize the more hydrophobic forms of the viologen probes. Among the three accessible viologen oxidation states (V(2+), V(+•), and V), the intermediate cation radical (V(+•)) was preferentially stabilized by the cholate aggregates regardless of the nature of the N-alkyl substituents. This stabilization leads to anodic shifts in the first half-wave potential (V(2+)/V(+•)) and cathodic shifts in the second half-wave potential (V(+•)/V) for viologen reduction. Both potential shifts were considerably more pronounced as the hydrophobic character of the viologen probe increased. The presence of the cucurbit[7]uril host in the solution leads to the formation of very stable inclusion complexes with the viologen probes, which tend to eliminate or substantially decrease the interactions between the viologens and the cholate micellar aggregates.
Collapse
Affiliation(s)
- Beijun Cheng
- Center for Supramolecular Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124-0431, United States
| | - Angel E Kaifer
- Center for Supramolecular Science and Department of Chemistry, University of Miami, Coral Gables, Florida 33124-0431, United States
| |
Collapse
|
6
|
Ganguly A, Ghosh S, Guchhait N. Modulated photophysics of an anthracene-based fluorophore within bile-salt aggregates: the effect of the ionic strength of the medium on the aggregation behavior. Photochem Photobiol Sci 2015; 14:2168-78. [DOI: 10.1039/c5pp00280j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding interactions of an anthracene-based fluorescent probe with a series of bile-salt aggregates of varying hydrophobicity, as well as salt induced alterations of the binding behavior have been thoroughly demonstrated.
Collapse
Affiliation(s)
| | - Soumen Ghosh
- Department of Chemistry
- University of Calcutta
- Calcutta-700009
- India
| | - Nikhil Guchhait
- Department of Chemistry
- University of Calcutta
- Calcutta-700009
- India
| |
Collapse
|
7
|
Kundu N, Banik D, Roy A, Kuchlyan J, Sarkar N. Modulation of the aggregation properties of sodium deoxycholate in presence of hydrophilic imidazolium based ionic liquid: water dynamics study to probe the structural alteration of the aggregates. Phys Chem Chem Phys 2015; 17:25216-27. [DOI: 10.1039/c5cp03906a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we have investigated the effect of hydrophilic 1-butyl-3-methylimidazolium tetrafluoroborate on the aggregation properties of sodium deoxycholate (NaDC).
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Debasis Banik
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Arpita Roy
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Jagannath Kuchlyan
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Nilmoni Sarkar
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
8
|
Santos CS, Miller AC, Pace TCS, Morimitsu K, Bohne C. Photochromism of a spiropyran and a diarylethene in bile salt aggregates in aqueous solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11319-11328. [PMID: 25203491 DOI: 10.1021/la503164e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bile salt aggregates incorporate aqueous-insoluble photochromic compounds. The photochromism of a spiropyran (1, 1',3',3'-trimethyl-6-nitrospiro[2H-1]-benzopyran-2,2'-indoline) and a diarylethene derivative (2, 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene) was quantified in different bile salt aggregates. These aggregates act as efficient hosts to solubilize aqueous insoluble photochromic compounds where either both isomers are nonpolar, for example, 2, or compounds where one isomer is hydrophobic and the other is more polar, for example, 1. Methodology was developed to determine molar absorptivity coefficients for solutions containing both isomers and to determine the photoconversion quantum yields under continuous irradiation. The methods were validated by determining parameters in homogeneous solution, which were the same as previously reported. In the case of the colored isomer of 1, the molar extinction coefficient in ethanol at 537 nm ((3.68 ± 0.03) × 10(4) cm(-1) M(-1)) was determined with higher precision. The quantum yields for the photoconversion between the isomers of 2 were shown to be the same in cyclohexane and in the aggregates of sodium cholate (NaCh), deoxycholate (NaDC), and taurocholate (NaTC), showing that bile salt aggregates are not sufficiently rigid to affect the equilibrium between the two possible conformers of the colorless form. In contrast, for 1 the quantum yields for the conversion from the colorless to the colored isomer were higher in bile salts than in ethanol, and the quantum yield was highest in the more hydrophobic aggregates of NaDC, followed by NaCh and then NaTC. The structure of the bile salt had no effect on the quantum yield for the conversion of the colored to the colorless isomer of 1, but these values were higher than in ethanol. For all three bile salts, the absorption maximum for the colored form of 1 suggested that this isomer was located in an environment that is more polar than ethanol.
Collapse
Affiliation(s)
- Cerize S Santos
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | | | | | | | | |
Collapse
|
9
|
Mandal S, Ghosh S, Banik D, Banerjee C, Kuchlyan J, Sarkar N. An Investigation into the Effect of the Structure of Bile Salt Aggregates on the Binding Interactions and ESIHT Dynamics of Curcumin: A Photophysical Approach To Probe Bile Salt Aggregates as a Potential Drug Carrier. J Phys Chem B 2013; 117:13795-807. [PMID: 24102639 DOI: 10.1021/jp407824t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sarthak Mandal
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Surajit Ghosh
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Debasis Banik
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Chiranjib Banerjee
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Jagannath Kuchlyan
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
10
|
Le Dévédec F, Fuentealba D, Strandman S, Bohne C, Zhu XX. Aggregation behavior of pegylated bile acid derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13431-13440. [PMID: 22925028 DOI: 10.1021/la303218q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bile acids are amphiphilic endogenous steroids that act as anionic surfactants in the digestive tract and aggregate in aqueous solutions. Nonionic surfactants were synthesized by grafting poly(ethylene glycol) chains of various lengths (pegylation) to three bile acids (lithocholic, deoxycholic, and cholic acid) using anionic polymerization. The aggregation properties of the derivatives were studied with viscosity measurements and light scattering as well as with steady-state and time-resolved fluorescence techniques, and the aggregates were visualized by transmission electron microscopy to elucidate the effect of pegylation on the aggregation process. The fluorescence results showed a good correlation with the capacity of the bile acid derivatives to solubilize a hydrophobic drug molecule. The solubilization of ibuprofen depends on the length and the number of grafted PEG chains, and the solubilization efficiency increases with fewer PEG chains on the bile acid. The results indicate their potential for use in the design of new bile acid-based drug-delivery systems.
Collapse
Affiliation(s)
- Frantz Le Dévédec
- Department of Chemistry, Université de Montréal, C.P. 6128 succursale Centre-Ville, Montréal, QC, H3C 3J7 Canada
| | | | | | | | | |
Collapse
|
11
|
Mandal S, Ghosh S, Banerjee C, Rao VG, Sarkar N. Modulation of Photophysics and Photodynamics of 1′-Hydroxy-2′-acetonaphthone (HAN) in Bile Salt Aggregates: A Study of Polarity and Nanoconfinement Effects. J Phys Chem B 2012; 116:8780-92. [DOI: 10.1021/jp302435h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sarthak Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
12
|
Pace TCS, Souza Júnior SP, Zhang HT, Bohne C. Effect of terbium(iii) on the binding of aromatic guests with sodium taurocholate aggregates. Photochem Photobiol Sci 2011; 10:1568-77. [DOI: 10.1039/c1pp05130j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|