1
|
Kessel D. Critical PDT Theory VI: Detection of Reactive Oxygen Species: Trials and Errors. Photochem Photobiol 2023; 99:1216-1217. [PMID: 36625179 DOI: 10.1111/php.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Fluorescence intensity of DCFH-DA in hepatoma 1c1c7 cells after 10 min incubations.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
2
|
Cardoso MA, Gonçalves HMR, Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta 2023; 260:124648. [PMID: 37167678 DOI: 10.1016/j.talanta.2023.124648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The role of Reactive Oxygen Species (ROS) on biological media has been shifting over the years, as the knowledge on the complex mechanism that lies in underneath their production and overall results has been growing. It has been known for some time that these species are associated with a number of health conditions. However, they also participate in the immunoactivation cascade process, and can have an active role in theranostics. Macrophages, for example, react to the presence of pathogens through ROS production, potentially allowing the development of new therapeutic strategies. However, their short lifetime and limited spatial distribution of ROS have been limiting factors to the development and understanding of this phenomenon. Even though, ROS have shown successful theranostic applications, e.g., photodynamic therapy, their wide applicability has been hampered by the lack of effective tools for monitoring these processes in real time. Thus the development of innovative sensing strategies for in vivo monitoring of the balance between ROS concentration and the resultant immune response is of the utmost relevance. Such knowledge could lead to major breakthroughs towards the development of more effective treatments for neurodegenerative diseases. Within this review we will present the current understanding on the interaction mechanisms of ROS with biological systems and their overall effect. Additionally, the most promising sensing tools developed so far, for both in vivo and in vitro tracking will be presented along with their main limitations and advantages. This review focuses on the four main ROS that have been studied these are: singlet oxygen species, hydrogen peroxide, hydroxyl radical and superoxide anion.
Collapse
Affiliation(s)
- Marita A Cardoso
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal
| | - Helena M R Gonçalves
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal; Biosensor NTech - Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1° Andar, 1250-143, Lisboa, Portugal.
| | - Frank Davis
- Department of Engineering and Applied Design University of Chichester, Bognor Regis, West Sussex, PO21 1HR, UK
| |
Collapse
|
3
|
Ishchenko AA, Syniugina AT. Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Kessel D, Cho WJ, Rakowski J, Kim HE, Kim HRC. Effects of HPV Status on Responsiveness to Ionizing Radiation vs Photodynamic Therapy in Head and Neck Cancer Cell lines. Photochem Photobiol 2020; 96:652-657. [PMID: 31408910 PMCID: PMC7015759 DOI: 10.1111/php.13150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Efficacy of ionizing radiation (I/R) was compared with phototoxic effects of photodynamic therapy (PDT) in vitro using two cell lines derived from patients with head and neck squamous cell carcinoma (HNSCC). A cell line derived from a donor with a human papilloma virus (HPV) infection was more responsive to I/R but significantly less responsive to PDT than a cell line derived from an HPV-free patient. Cell death after I/R in the HPV(+) cell line was associated with increased DEVDase activity, a hallmark of apoptosis. The HPV(-) line was considerably less responsive to I/R, with DEVDase activity greatly reduced, suggesting an impaired apoptotic program. In contrast, the HPV(-) cells were readily killed by PDT when the ER was among the targets for photodamage. While DEVDase activity was enhanced, the death pathway appears to involve paraptosis until the degree of photodamage reached the LD99 range. These data suggest that PDT-induced paraptosis can be a death pathway for cells with an impaired apoptotic program.
Collapse
Affiliation(s)
- David Kessel
- Departments of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201
| | - Won Jin Cho
- Pathology, Wayne State University School of Medicine, Detroit MI 48201
| | - Joseph Rakowski
- Oncology, Wayne State University School of Medicine, Detroit MI 48201
- Division of Radiation Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Harold E. Kim
- Oncology, Wayne State University School of Medicine, Detroit MI 48201
- Division of Radiation Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Hyeong-Reh C. Kim
- Pathology, Wayne State University School of Medicine, Detroit MI 48201
| |
Collapse
|
5
|
Aebisher D, Bartusik-Aebisher D, Belh SJ, Ghosh G, Durantini AM, Liu Y, Xu Q, Lyons AM, Greer A. Superhydrophobic Surfaces as a Source of Airborne Singlet Oxygen through Free Space for Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:2370-2377. [DOI: 10.1021/acsabm.0c00114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Aebisher
- Faculty of Medicine, University of Rzeszów, 35-310 Rzeszów, Poland
| | | | - Sarah J. Belh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| | - Andrés M. Durantini
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Yang Liu
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - QianFeng Xu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alan M. Lyons
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| |
Collapse
|
6
|
Oliveira MS, Chorociejus G, Angeli JPF, Vila Verde G, Aquino GLB, Ronsein GE, Oliveira MCBD, Barbosa LF, Medeiros MHG, Greer A, Di Mascio P. Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochem Photobiol Sci 2020; 19:1590-1602. [DOI: 10.1039/d0pp00153h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study shows that new anthracene and naphthalene derivatives function as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. The syntheses of these derivatives are described, as well as some localization testing in cells.
Collapse
Affiliation(s)
| | - Gabriel Chorociejus
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - José Pedro F. Angeli
- Rudolf Virchow Center for Translational Bioimaging
- University of Würzburg
- 97080 Würzburg
- Germany
| | - Giuliana Vila Verde
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Gilberto L. B. Aquino
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | - Livea F. Barbosa
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Alexander Greer
- Department of Chemistry
- Brooklyn College
- City University of New York
- Brooklyn
- USA
| | - Paolo Di Mascio
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
7
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
8
|
Liu HW, Xu S, Wang P, Hu XX, Zhang J, Yuan L, Zhang XB, Tan W. An efficient two-photon fluorescent probe for monitoring mitochondrial singlet oxygen in tissues during photodynamic therapy. Chem Commun (Camb) 2018; 52:12330-12333. [PMID: 27722455 DOI: 10.1039/c6cc05880a] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A promising two-photon fluorescent probe MNAH for detecting 1O2 during the PDT process in mitochondria was proposed for the first time. MNAH was successfully applied for two-photon imaging of 1O2 in living cells and tissues during the PDT process with deep-tissue imaging depth. MNAH can be a powerful molecular tool for studying 1O2 generation in mitochondria during the PDT process.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
9
|
Ruiz-González R, Bresolí-Obach R, Gulías Ò, Agut M, Savoie H, Boyle RW, Nonell S, Giuntini F. NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rubén Ruiz-González
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Roger Bresolí-Obach
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Òscar Gulías
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Montserrat Agut
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Huguette Savoie
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Ross W. Boyle
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Santi Nonell
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Francesca Giuntini
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
10
|
Ruiz-González R, Bresolí-Obach R, Gulías Ò, Agut M, Savoie H, Boyle RW, Nonell S, Giuntini F. NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen. Angew Chem Int Ed Engl 2017; 56:2885-2888. [DOI: 10.1002/anie.201609050] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/11/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Rubén Ruiz-González
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Roger Bresolí-Obach
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Òscar Gulías
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Montserrat Agut
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Huguette Savoie
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Ross W. Boyle
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Santi Nonell
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Francesca Giuntini
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
11
|
Zhang H, Huang X. Ligand-Free Heck Reactions of Aryl Iodides: Significant Acceleration of the Rate through Visible Light Irradiation at Ambient Temperature. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600704] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Heng Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences, Fuzhou; Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences, Fuzhou; Fujian 350002 People's Republic of China
| |
Collapse
|
12
|
Bresolí-Obach R, Nos J, Mora M, Sagristà ML, Ruiz-González R, Nonell S. Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media. Methods 2016; 109:64-72. [PMID: 27302662 DOI: 10.1016/j.ymeth.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/01/2022] Open
Abstract
We have developed a novel singlet oxygen nanoprobe based on 9,10-anthracenedipropionic acid covalently bound to mesoporous silica nanoparticles. The nanoparticle protects the probe from interactions with proteins, which detract from its ability to detect singlet oxygen. In vitro studies show that the nanoprobe is internalized by cells and is distributed throughout the cytoplasm, thus being capable of detecting intracellularly-generated singlet oxygen.
Collapse
Affiliation(s)
- Roger Bresolí-Obach
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Jaume Nos
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Margarita Mora
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, E-08028 Barcelona, Spain
| | - Maria Lluïsa Sagristà
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, E-08028 Barcelona, Spain
| | - Rubén Ruiz-González
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Santi Nonell
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.
| |
Collapse
|
13
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MH, Cadet J. Singlet molecular oxygen: Düsseldorf – São Paulo, the Brazilian connection. Arch Biochem Biophys 2016; 595:161-75. [DOI: 10.1016/j.abb.2015.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/28/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
|
14
|
Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1046-1070. [PMID: 26689748 DOI: 10.1021/acs.jafc.5b04744] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Mustafa Özyürek
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Kubilay Güçlü
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University , Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
15
|
Oliveira MS, Ghogare AA, Abramova I, Greer EM, Prado FM, Di Mascio P, Greer A. Mechanism of Photochemical O-Atom Exchange in Nitrosamines with Molecular Oxygen. J Org Chem 2015; 80:6119-27. [PMID: 26000876 DOI: 10.1021/acs.joc.5b00633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detection of an oxygen-atom photoexchange process of N-nitrosamines is reported. The photolysis of four nitrosamines (N-nitrosodiphenylamine 1, N-nitroso-N-methylaniline 2, N-butyl-N-(4-hydroxybutyl)nitrosamine 3, and N-nitrosodiethylamine 4) with ultraviolet light was examined in an (18)O2-enriched atmosphere in solution. HPLC/MS and HPLC-MS/MS data show that (18)O-labeled nitrosamines were generated for 1 and 2. In contrast, nitrosamines 3 and 4 do not exchange the (18)O label and instead decomposed to amines and/or imines under the conditions. For 1 and 2, the (18)O atom was found not to be introduced by moisture or by singlet oxygen [(18)((1)O2 (1)Δg)] produced thermally by (18)O-(18)O labeled endoperoxide of N,N'-di(2,3-hydroxypropyl)-1,4-naphthalene dipropanamide (DHPN(18)O2) or by visible-light sensitization. A density functional theory study of the structures and energetics of peroxy intermediates arising from reaction of nitrosamines with O2 is also presented. A reversible head-to-tail dimerization of the O-nitrooxide to the 1,2,3,5,6,7-hexaoxadiazocane (30 kcal/mol barrier) with extrusion of O═(18)O accounts for exchange of the oxygen atom label. The unimolecular cyclization of O-nitrooxide to 1,2,3,4-trioxazetidine (46 kcal/mol barrier) followed by a retro [2 + 2] reaction is an alternative, but higher energy process. Both pathways would require the photoexcitation of the nitrooxide.
Collapse
Affiliation(s)
- Marilene Silva Oliveira
- †Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, Brazil.,‡Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - Ashwini A Ghogare
- ‡Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - Inna Abramova
- ‡Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - Edyta M Greer
- §Department of Natural Sciences, Baruch College, City University of New York, New York, New York 10010, United States
| | - Fernanda Manso Prado
- †Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, Brazil
| | - Paolo Di Mascio
- †Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, Brazil
| | - Alexander Greer
- ‡Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| |
Collapse
|
16
|
Yu H, Liu X, Wu Q, Li Q, Wang S, Guo Y. A New Rhodamine-based Fluorescent Probe for the Detection of Singlet Oxygen. CHEM LETT 2015. [DOI: 10.1246/cl.141013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hui Yu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Xi Liu
- Institute of Modern Physics, Chinese Academy of Sciences
- University of Chinese Academy of Sciences
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences
| | - Shuai Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
| |
Collapse
|
17
|
Gibbs JH, Zhou Z, Kessel D, Fronczek FR, Pakhomova S, Vicente MGH. Synthesis, spectroscopic, and in vitro investigations of 2,6-diiodo-BODIPYs with PDT and bioimaging applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 145:35-47. [PMID: 25771382 DOI: 10.1016/j.jphotobiol.2015.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/02/2015] [Accepted: 02/08/2015] [Indexed: 10/23/2022]
Abstract
A series of five mono-styryl and their corresponding symmetric di-styryl-2,6-diiodo-BODIPYs containing indolyl, pyrrolyl, thienyl or tri(ethylene glycol)phenyl groups were synthesized using Knoevenagel condensations. The yields for the condensation reactions were improved up to 40% using microwave irradiation (90°C for 1h at 400W) due to lower decomposition of BODIPYs upon prolonged heating. The spectroscopic, structural (including the X-ray of a di-styryl-2,6-diiodo-BODIPY) and in vitro properties of the BODIPYs were investigated. The extension of π-conjugation through the 3,5-dimethyls of the known phototoxic 2,6-diiodo-BODIPY 1 produced bathochromic shifts in the absorption and emission spectra, in the order of 63-125nm for the mono-styryl- and 128-220nm for the di-styryl-BODIPYs in DMSO. The largest red-shifts were observed for the indolyl-containing BODIPYs while the largest fluorescence quantum yields were observed for the tri(ethyleneglycol)phenylstyryl-BODIPYs. Among this series, only the mono-styryl-BODIPYs were phototoxic (IC50=2-15μM at 1.5J/cm(2)), and were observed to localize preferentially in the cell ER and mitochondria. On the other hand, the di-styryl-BODIPYs were found to have low or no phototoxicity (IC50>100μM at 1.5J/cm(2)). Among this series of compounds BODIPY 2a shows the most promise for application as photosensitizer in PDT.
Collapse
Affiliation(s)
- Jaime H Gibbs
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Kessel
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Svetlana Pakhomova
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M Graça H Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
18
|
Kim S, Tachikawa T, Fujitsuka M, Majima T. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy. J Am Chem Soc 2014; 136:11707-15. [PMID: 25075870 DOI: 10.1021/ja504279r] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Singlet oxygen ((1)O2), molecular oxygen in the lowest excited state, has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Although (1)O2 phosphorescence measurement has been mainly used to monitor (1)O2 formation during PDT, its intensity is far insufficient to obtain two-dimensional images of intracellular (1)O2 with the subcellular spatial resolution using the currently available near-IR detector. Here, we propose a new far-red fluorescence probe of (1)O2, namely, Si-DMA, composed of silicon-containing rhodamine and anthracene moieties as a chromophore and a (1)O2 reactive site, respectively. In the presence of (1)O2, fluorescence of Si-DMA increases 17 times due to endoperoxide formation at the anthracene moiety. With the advantage of negligible self-oxidation by photoirradiation (ΦΔ < 0.02) and selective mitochondrial localization, Si-DMA is particularly suitable for imaging (1)O2 during PDT. Among three different intracellular photosensitizers (Sens), Si-DMA could selectively detect the (1)O2 that is generated by 5-aminolevulinic acid-derived protoporphyrin IX, colocalized with Si-DMA in mitochondria. On the other hand, mitochondria-targeted KillerRed and lysosomal porphyrins could not induce fluorescence change of Si-DMA. This surprising selectivity of Si-DMA response depending on the Sens localization and photosensitization mechanism is caused by a limited intracellular (1)O2 diffusion distance (∼300 nm) and negligible generation of (1)O2 by type-I Sens, respectively. For the first time, we successfully visualized (1)O2 generated during PDT with a spatial resolution of a single mitochondrial tubule.
Collapse
Affiliation(s)
- Sooyeon Kim
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | | | | | | |
Collapse
|
19
|
Zhao Y, Liu Y, Xu Q, Barahman M, Bartusik D, Greer A, Lyons AM. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency. J Phys Chem A 2014; 118:10364-71. [PMID: 24885074 PMCID: PMC4234451 DOI: 10.1021/jp503149x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid-gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Chemistry, College of Staten Island, City University of New York , Staten Island, New York 10314, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Waghmode SB, Arbuj SS, Wani BN, Gopinath C. Palladium chloride catalyzed photochemical Heck reaction. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PdCl2 catalyzed carbon–carbon bond formation (Heck reaction) between substituted aryl halides and olefins was carried out without a ligand, under irradiation with UV–visible light. The results demonstrated that UV–visible light accelerated the rate of the reaction, leading to an excellent yield of corresponding products. The recovered palladium nanoparticles could be thermally recycled several times. PdCl2 gave excellent conversion up to the fifth addition of substrate.
Collapse
Affiliation(s)
- Suresh B. Waghmode
- Department of Chemistry, University of Pune, Ganeshkhind, Pune-411007, India
| | - Sudhir S. Arbuj
- Department of Chemistry, University of Pune, Ganeshkhind, Pune-411007, India
| | - Bina N. Wani
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - C.S. Gopinath
- Catalysis Division, National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
21
|
Feasibility Study on Quantitative Measurements of Singlet Oxygen Generation Using Singlet Oxygen Sensor Green. J Fluoresc 2012; 23:41-7. [DOI: 10.1007/s10895-012-1114-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
|
22
|
Kessel D, Price M. Evaluation of diethyl-3-3'-(9,10-anthracenediyl)bis acrylate as a probe for singlet oxygen formation during photodynamic therapy. Photochem Photobiol 2012; 88:717-20. [PMID: 22296586 DOI: 10.1111/j.1751-1097.2012.01106.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cell-permeable anthracene analog diethyl-3-3'-(9,10-anthracenediyl)bis acrylate (DADB) was recently identified as a highly selective probe for singlet oxygen ((1)O(2)). Now, we show that DADB can be used to monitor (1)O(2) formation in cell culture during photodynamic therapy. An atypical property of DADB is that fluorescence emission is decreased upon oxidation. Using photosensitizers that target specific organelles, we determined that DADB could detect (1)O(2) whether formed in ER, mitochondria or lysosomes. DADB fluorescence was not, however, significantly altered when the photosensitizing agent was the palladium bacteriopheophorbide termed WST11, an agent reported to produce mainly oxygen radicals upon irradiation in an aqueous environment, whereas singlet oxygen was formed in organic solvents.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| | | |
Collapse
|