1
|
Kitayama Y, Takigawa S, Yuba E, Harada A. Poly(vinyl alcohol)-Incorporated Core-Shell Polymer Nanogels Functionalized by Block Copolymer Installation for Cisplatin Delivery. Biomacromolecules 2024; 25:6465-6473. [PMID: 39230243 DOI: 10.1021/acs.biomac.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The functionalization approach for nanomaterials is of great importance for their application in drug delivery systems. Herein, an approach based on block copolymer installation into polymer nanogels was newly developed. Poly(vinyl alcohol)-incorporated polymer nanogels were prepared by a two-step dispersion/precipitation polymerization. Poly(methacrylic acid)-block-poly(3-fluorophenylboronic acid methacrylamide) (PMAA-b-PFPBMA) prepared by two-step reversible addition-fragmentation chain transfer polymerization was installed into the polymer nanogels via boronate ester formation. Furthermore, cisplatin as a cancer therapeutic drug was successfully loaded on the block copolymer-installed polymer nanogels, and cell death was achieved by using the resulting cisplatin-loaded nanogels. We believe that the functionality of the nanogels can be changed by varying the installed block copolymer, leading to the functionalization approach of polymer nanogels based on block copolymer installation, which will be of great utility in many fields.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shunsuke Takigawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
2
|
Garg A, Shah K, Chauhan CS, Agrawal R. Ingenious nanoscale medication delivery system: Nanogel. J Drug Deliv Sci Technol 2024; 92:105289. [DOI: 10.1016/j.jddst.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Sihler S, Krämer M, Schmitt F, Favella P, Mützel L, Baatz J, Rosenau F, Ziener U. Robust Protocol for the Synthesis of BSA Nanohydrogels by Inverse Nanoemulsion for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37247617 DOI: 10.1021/acs.langmuir.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In a highly efficient and reproducible process, bovine serum albumin (BSA) nanogels are prepared from inverse nanoemulsions. The concept of independent nanoreactors of the individual droplets in the nanoemulsions allows high protein concentrations of up to 0.6% in the inverse total system. The BSA gel networks are generated by the 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride coupling strategy widely used in protein chemistry. In a robust work-up protocol, the hydrophobic continuous phase of the inverse emulsion is stepwise replaced by water without compromising the colloidal stability and non-toxicity of the nanogel particles. Further, the simple process allows the loading of the nanogels with various cargos like a dye (Dy-495), a drug (ibuprofen), another protein [FMN-binding fluorescent protein (EcFbFP)], and oligonucleotides [plasmid DNA for enhanced GFP expression in mammalian cells (pEGFP c3) and a synthetic anti-Pseudomonas aeruginosa aptamer library]. These charged nanoobjects work efficiently as carriers for staining and transfection of cells. This is exemplarily shown for a phalloidin dye and a plasmid DNA as cargo with adenocarcinomic human alveolar basal epithelial cells (A549), a cell revertant of the SV-40 cancer rat cell line SV-52 (Rev2), and human breast carcinoma cells (MDA-MB-231), respectively.
Collapse
Affiliation(s)
- Susanne Sihler
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felicitas Schmitt
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Patrizia Favella
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen 72488, Germany
| | - Laura Mützel
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Jennifer Baatz
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
5
|
In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Simakova A, Averick S, Jazani AM, Matyjaszewski K. Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonina Simakova
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | - Saadyah Averick
- Laboratory for Biomolecular Medicine Allegheny Health Network Research Institute Allegheny General Hospital Pittsburgh Pittsburgh PA 15212 United States
| | - Arman Moini Jazani
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | | |
Collapse
|
7
|
Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021; 9:771851. [PMID: 34746113 PMCID: PMC8569621 DOI: 10.3389/fbioe.2021.771851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, the exploration of tumor microenvironment has provided a new approach for tumor treatment. More and more researches are devoted to designing tumor microenvironment-responsive nanogels loaded with therapeutic drugs. Compared with other drug carriers, nanogel has shown great potential in improving the effect of chemotherapy, which is attributed to its stable size, superior hydrophilicity, excellent biocompatibility, and responsiveness to specific environment. This review primarily summarizes the common preparation techniques of nanogels (such as free radical polymerization, covalent cross-linking, and physical self-assembly) and loading ways of drug in nanogels (including physical encapsulation and chemical coupling) as well as the controlled drug release behaviors. Furthermore, the difficulties and prospects of nanogels as drug carriers are also briefly described.
Collapse
Affiliation(s)
- Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuting Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Abstract
Nanogels have high tunability and stability while being able to sense and respond to external stimuli by showing changes in the gel volume, water content, colloidal stability, mechanical strength, and other physical/chemical properties. In this article, advances in the preparation of nanogels will be reviewed. The application potential of nanogels in drug delivery will also be highlighted. It is the objective of this article to present a snapshot of the recent knowledge of nanogel preparation and application for future research in drug delivery.
Collapse
Affiliation(s)
- Cuixia Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, China
| | | | - Wing-Fu Lai
- School of Education, University of Bristol, Bristol, UK.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
9
|
Multifunctional poly(quaternary ammonium)/Fe3O4 composite nanogels for integration of antibacterial and degradable magnetic redox-responsive properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Zhang Y, Zhang D, Wang JT, Zhang X, Yang Y. Fabrication of stimuli-responsive nanogels for protein encapsulation and traceless release without introducing organic solvents, surfactants, or small-molecule cross-linkers. Polym Chem 2021. [DOI: 10.1039/d0py01600d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stimuli-responsive nanogels were fabricated by reaction of proteins and polymers without using small-organic-molecules. Once the nanogels dissociated, the proteins were released with functional groups, secondary structures, and activities maintained.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| | - Daowen Zhang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| | - Jin-Tao Wang
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
- Zhoukou
- China
| | - Xiaojie Zhang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| | - Yongfang Yang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| |
Collapse
|
11
|
Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Kovaliov M, Wright TA, Cheng B, Mathers RT, Zhang X, Meng D, Szcześniak K, Jenczyk J, Jurga S, Cohen-Karni D, Page RC, Konkolewicz D, Averick S. Toward Next-Generation Biohybrid Catalyst Design: Influence of Degree of Polymerization on Enzyme Activity. Bioconjug Chem 2020; 31:939-947. [DOI: 10.1021/acs.bioconjchem.0c00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marina Kovaliov
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Thaiesha A. Wright
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Boyle Cheng
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Xiangyu Zhang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Dong Meng
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Katarzyna Szcześniak
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
- Faculty of Chemical Technology, Poznan University of Technology, Poznań, Berdychowo 4, 60-965 Poznań, Poland
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Devora Cohen-Karni
- Preclinical Education, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania 15601, United States
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| |
Collapse
|
13
|
Messina MS, Messina KMM, Bhattacharya A, Montgomery HR, Maynard HD. Preparation of Biomolecule-Polymer Conjugates by Grafting-From Using ATRP, RAFT, or ROMP. Prog Polym Sci 2020; 100:101186. [PMID: 32863465 PMCID: PMC7453843 DOI: 10.1016/j.progpolymsci.2019.101186] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomolecule-polymer conjugates are constructs that take advantage of the functional or otherwise beneficial traits inherent to biomolecules and combine them with synthetic polymers possessing specially tailored properties. The rapid development of novel biomolecule-polymer conjugates based on proteins, peptides, or nucleic acids has ushered in a variety of unique materials, which exhibit functional attributes including thermo-responsiveness, exceptional stability, and specialized specificity. Key to the synthesis of new biomolecule-polymer hybrids is the use of controlled polymerization techniques coupled with either grafting-from, grafting-to, or grafting-through methodology, each of which exhibit distinct advantages and/or disadvantages. In this review, we present recent progress in the development of biomolecule-polymer conjugates with a focus on works that have detailed the use of grafting-from methods employing ATRP, RAFT, or ROMP.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Kathryn M M Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
14
|
Guo Y, Zhang Y, Niu Z, Yang Y. Stimuli-responsive biohybrid nanogels with self-immolative linkers for protein protection and traceless release. Colloids Surf B Biointerfaces 2019; 184:110526. [PMID: 31590049 DOI: 10.1016/j.colsurfb.2019.110526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023]
Abstract
Nanogels have been applied in protein delivery due to the nanoscale sizes and the crosslinked structures. However, the release of protein molecules from the nanogels without damages to the structures and functionalities is quite a challenging research subject. In this research, responsive self-immolative linker dithioethyl carbamate bond is introduced to connect protein and polymer in the nanogel so that traceless release of protein occurs upon addition of glutathione (GSH) or dithiothreitol (DTT). Thermoresponsive polymer poly(di(ethylene glycol) methyl ether methacrylate-co-2-(2-(2-hydroxyethyl) disulfanyl) ethyl methacrylate) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and was modified with 4-nitrophenyl chloroformate yielding polymer chains with pendant dithioethyl carbonate groups. The dithioethyl carbonate groups were reacted with amine groups of lipases resulting in the formation of dithioethyl carbamate bonds. Meanwhile, biohybrid nanogels were prepared by crosslinking the polymer chains with lipases. The immobilized lipase in the nanogels exhibited enhanced heat and acid resistance. Once the nanogels were treated with GSH or DTT, lipase could be released with no residual groups and most of its bioactivity was recovered.
Collapse
Affiliation(s)
- Yahui Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China.
| | - Zhanghao Niu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China
| | - Yongfang Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; Hebei Key laboratory of Functional Polymers, Tianjin 300130, China.
| |
Collapse
|
15
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
16
|
Petr Š, Jana D, Peter Č, Ewa P, Vladimír P. Poly(amino acid)-based nanogel by horseradish peroxidase catalyzed crosslinking in an inverse miniemulsion. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Sun X, Zhu W, Matyjaszewski K. Protection of opening lids: very high catalytic activity of lipase immobilized on core-shell nanoparticles. Macromolecules 2018; 51:289-296. [PMID: 29983451 PMCID: PMC6029252 DOI: 10.1021/acs.macromol.7b02361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Various hydrophobic supports have been used for lipase immobilization since the active site of lipase can be opened in a hydrophobic environment. Nevertheless, the increase of lipase activity is still limited. This study demonstrates a hyperactivation-protection strategy of lipase after immobilization on poly(n-butyl acrylate)-polyaldehyde dextran (PBA-PAD) core-shell nanoparticles. The inner hydrophobic PBA domain helps to rearrange lipase conformation to a more active form after immobilization into the PAD shell. More importantly, the outer PAD shell with dense polysaccharide chains prevents the immobilized lipase from contact with outside aqueous medium and revert its conformation back to an inactive form. As a result, under optimal conditions the activity of lipase immobilized in PBA-PAD nanoparticles was enhanced 40 times over the free one, much higher than in any previous report. Furthermore, the immobilized lipase retained more than 80 % of its activity after 10 reaction cycles.
Collapse
Affiliation(s)
- Xuefei Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
18
|
Li S, Cohen-Karni D, Beringer LT, Wu C, Kallick E, Edington H, Passineau MJ, Averick S. Direct introduction of R-SO2F moieties into proteins and protein-polymer conjugation using SuFEx chemistry. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomater 2016; 41:282-92. [PMID: 27267781 DOI: 10.1016/j.actbio.2016.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/28/2016] [Accepted: 06/02/2016] [Indexed: 01/05/2023]
Abstract
UNLABELLED Nucleic acid-based gene therapy is a promising treatment option to cure numerous intractable diseases. For non-viral gene carriers, low-molecular-weight polymeric vectors generally demonstrate poor transfection performance, but benefit their final removals from the body. Recently, it was reported that aminated poly(glycidyl methacrylate) (PGMA) is one potential gene vector. Based on ethylenediamine (ED)-functionalized low-molecular-weight PGMA (denoted by PGED), a flexible strategy was herein proposed to design new well-defined reducible cationic nanogels (denoted by PGED-NGs) with friendly crosslinking reagents for highly efficient nucleic acid delivery. α-Lipoic acid (LA), one natural antioxidant in human body, was readily introduced into ED-functionalized PGMA and crosslinked to produce cationic PGED-NGs with plentiful reducible lipoyl groups. PGED-NGs could effectively complex plasmid DNA (pDNA) and short interfering RNA (siRNA). Compared with pristine PGED, PGED-NGs exhibited much better performance of pDNA transfection. PGED-NGs also could efficiently transport MALAT1 siRNA (siR-M) into hepatoma cells and significantly suppressed the cancer cell proliferation and migration. The present work indicated that reducible cationic nanogels involving LA crosslinking reagents are one kind of competitive candidates for high-performance nucleic acid delivery systems. STATEMENT OF SIGNIFICANCE Recently, the design of new types of high-performance nanoparticles is of great significance in delivering therapeutics. Nucleic acid-based therapy is a promising treatment option to cure numerous intractable diseases. A facile and straightforward strategy to fabricate safe nucleic acid delivery nanovectors is highly desirable. In this work, based on ethylenediamine-functionalized low-molecular-weight poly(glycidyl methacrylate), a flexible strategy was proposed to design new well-defined reducible cationic nanogels (denoted by PGED-NGs) with α-Lipoic acid, one friendly crosslinking reagent, for highly efficient nucleic acid delivery. Such PGED-NGs possess plentiful reducible lipoyl groups, effectively encapsulated pDNA and siRNA and exhibited excellent abilities of nucleic acid delivery. The present work indicated that reducible cationic nanogels involving α-lipoic acid crosslinking reagents are one kind of competitive candidates for high-performance nucleic acid delivery systems.
Collapse
|
20
|
|
21
|
Zhang Y, Zhao H. Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3567-3579. [PMID: 27018567 DOI: 10.1021/acs.langmuir.6b00267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, an emerging research area has been the surfactant behavior of polymer-tethered nanoparticles. In this feature article, we have provided a general introduction to the synthesis, self-assembly, and interfacial activity of polymer-tethered inorganic nanoparticles, polymer-tethered organic nanoparticles, and polymer-tethered natural nanoparticles. In addition, applications of the polymer-tethered nanoparticles in colloidal and materials science are briefly reviewed. All research demonstrates that amphiphilic polymer-tethered nanoparticles exhibit surfactant behavior and can be used as elemental building blocks for the fabrication of advanced structures by the self-assembly approach. The polymer-tethered nanoparticles provide new opportunities to engineer materials and biomaterials possessing specific functionality and physical properties.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
22
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
23
|
Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem Rev 2015; 115:9745-800. [PMID: 26313922 DOI: 10.1021/cr500625k] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Stuart C Thickett
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick , Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , Melbourne, VIC 3052, Australia
| | - Elodie Bourgeat-Lami
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Muriel Lansalot
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
24
|
Abstract
Soft fluorescent nanomaterials have attracted recent attention as imaging agents for biological applications, because they provide the advantages of good biocompatibility, high brightness, and easy biofunctionalization. Here, we provide a survey of recent developments in fluorescent soft nano-sized biological imaging agents. Various soft fluorescent nanoparticles (NPs) (including dye-doped polymer NPs, semiconducting polymer NPs, small-molecule organic NPs, nanogels, micelles, vesicles, and biomaterial-based NPs) are summarized from the perspectives of preparation methods, structure, optical properties, and surface functionalization. Based on both optical and functional properties of the nano-sized imaging agents, their applications are then reviewed in terms of in vitro imaging, in vivo imaging, and cellular-process imaging, by means of specific or nonspecific targeting.
Collapse
Affiliation(s)
- Hong-Shang Peng
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
25
|
Bultz E, Ouchi M, Nishizawa K, Cunningham MF, Sawamoto M. Shuttling Catalyst for Living Radical Miniemulsion Polymerization: Thermoresponsive Ligand for Efficient Catalysis and Removal. ACS Macro Lett 2015; 4:628-631. [PMID: 35596405 DOI: 10.1021/acsmacrolett.5b00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we demonstrate the use of a thermoresponsive ligand for the ruthenium-catalyzed living radical polymerization of butyl methacrylate (BMA) in miniemulsion. A phosphine-ligand-functionalized polyethylene glycol chain (PPEG) in conjunction with a Cp*-based ruthenium complex (Cp*: pentamethylcyclopentadienyl) provided thermoresponsive character as well as catalysis for living polymerization: the complex migrated from the water phase to the oil phase for polymerization upon heating and then migrated from the oil to water phase when the temperature was decreased to quench polymerization. Consequently, simple treatment (i.e., water washing or methanol reprecipitation) yielded metal-free polymeric particles containing less than 10 μg/g (by ICP-AES) of ruthenium residue.
Collapse
Affiliation(s)
- Elijah Bultz
- Department
of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan
| | - Keita Nishizawa
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan
| | - Michael F. Cunningham
- Department
of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mitsuo Sawamoto
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan
| |
Collapse
|
26
|
Dai L, Li CX, Liu KF, Su HJ, Chen BQ, Zhang GF, He J, Lei JD. Self-assembled serum albumin–poly(l-lactic acid) nanoparticles: a novel nanoparticle platform for drug delivery in cancer. RSC Adv 2015. [DOI: 10.1039/c4ra16346j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new protein–hydrophobic polymeric nanoparticle platform BSA–PLLA NPs has been prepared. A large amount of BA was well encapsulated into the BSA–PLLA NPs. Moreover, the BSA–PLLA/BA NPs shows excellent antitumor activity.
Collapse
Affiliation(s)
- Lin Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Chun-Xiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Ke-Feng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Hai-Jia Su
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Bi-Qiang Chen
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Gui-Feng Zhang
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100090
- P. R. China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Jian-Du Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| |
Collapse
|
27
|
Li C, Huang W, Zhou L, Huang P, Pang Y, Zhu X, Yan D. PEGylated poly(diselenide-phosphate) nanogel as efficient self-delivery nanomedicine for cancer therapy. Polym Chem 2015. [DOI: 10.1039/c5py00995b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A biocompatible, biodegradable and redox-responsive PEGylated poly(diselenide-phosphate) nanogel was synthesized. The nanogel can potently inhibit the proliferation of tumor cells. It is a potentially efficient and self-delivery nanomedicine for cancer therapy.
Collapse
Affiliation(s)
- Chunting Li
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wei Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ping Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yan Pang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
28
|
Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 2015; 44:1948-73. [DOI: 10.1039/c4cs00341a] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We emphasize the synthetic strategies to produce micro-/nanogels and the importance of degradable linkers incorporated in the gel network.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Maria Molina
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|
29
|
|
30
|
Averick S, Mehl RA, Das SR, Matyjaszewski K. Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J Control Release 2014; 205:45-57. [PMID: 25483427 DOI: 10.1016/j.jconrel.2014.11.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/20/2023]
Abstract
The use of reversible deactivation radical polymerization (RDRP) methods has significantly expanded the field of bioconjugate synthesis. RDRP procedures have allowed the preparation of a broad range of functional materials that could not be realized using prior art poly(ethylene glycol) functionalization. The review of procedures for synthesis of biomaterials is presented with a special focus on the use of RDRP to prepare biohybrids with proteins, DNA and RNA.
Collapse
Affiliation(s)
- Saadyah Averick
- Laboratory for Bimolecular Medicine, Allegheny Health Network Research Institute, 320 E. North St., Pittsburgh, PA 15212, USA.
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| | - Subha R Das
- Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
|
32
|
Qi D, Cao Z, Ziener U. Recent advances in the preparation of hybrid nanoparticles in miniemulsions. Adv Colloid Interface Sci 2014; 211:47-62. [PMID: 24951391 DOI: 10.1016/j.cis.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/31/2014] [Accepted: 06/01/2014] [Indexed: 01/20/2023]
Abstract
In this review, we summarize recent advances in the synthesis of hybrid nanoparticles in miniemulsions since 2009. These hybrid nanoparticles include organic-inorganic, polymeric, and natural macromolecule/synthetic polymer hybrid nanoparticles. They may be prepared through encapsulation of inorganic components or natural macromolecules by miniemulsion (co)polymerization, simultaneous polymerization of vinyl monomers and vinyl-containing inorganic precursors, precipitation of preformed polymers in the presence of inorganic constituents through solvent displacement techniques, and grafting polymerization onto, from or through natural macromolecules. Characterization, properties, and applications of hybrid nanoparticles are also discussed.
Collapse
|
33
|
Nanoanesthesia: a novel, intravenous approach to ankle block in the rat by magnet-directed concentration of ropivacaine-associated nanoparticles. Anesth Analg 2014; 118:1355-62. [PMID: 24722259 DOI: 10.1213/ane.0000000000000175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND As an alternative to current methods of local nerve block, we studied the feasibility of producing ankle block in the rat with IV injection of magnetic nanoparticles (MNPs) associated with ropivacaine and application of a magnet at the ankle. METHODS The anesthetic effect of magnet-directed ropivacaine-associated MNPs (MNP/Ropiv) was tested in the rat using paw withdrawal latencies from thermal stimuli applied to the hindpaw. The MNP/Ropiv complexes consisted of 0.7% w/v ropivacaine and 0.8% w/v MNPs containing 12% w/w magnetite (F₃O₄). The effect of IV injection of MNP/Ropiv with 15, 30, and 60-minute magnet application to the right ankle was compared with the effect without magnet application on the left hindpaw, to conventional ankle block with 0.1% or 0.2% ropivacaine, and to IV injection of MNPs alone with 30-minute magnet application to the right ankle. In addition, the pharmacokinetics of the MNP/Ropiv complexes were determined. RESULTS IV injection of MNP/Ropiv with magnet application at the ankle significantly increased paw withdrawal latencies from thermal stimuli compared with pretreatment baselines in the same paw (P < 0.0001) and compared with the contralateral paw without magnet application (P < 0.0001). IV injection of MNPs alone had no significant effect on paw withdrawal latency. Absolute ropivacaine concentrations in ankle tissue, and ankle tissue-to-plasma concentration ratios were higher in the MNP/Ropiv group with 30-minute magnet application compared with MNP/Ropiv group without magnet application (mean ± SEM, 150 ± 10 ng/g vs 105 ± 15 ng/g, respectively, and 6.1 ± 0.8 vs 4.2 ± 0.7, respectively). CONCLUSIONS The current study establishes proof of principle that it is possible to produce ankle block in the rat by IV injection of MNP/Ropiv complexes and magnet application at the ankle. The results indicate that further study of this approach is warranted.
Collapse
|
34
|
Affiliation(s)
- Ghanshyam S Chauhan
- Department of Chemistry; Himachal Pradesh University; Summer Hill Shimla 171005 India
| |
Collapse
|
35
|
Cao Z, Ziener U. Synthesis of nanostructured materials in inverse miniemulsions and their applications. NANOSCALE 2013; 5:10093-10107. [PMID: 24056795 DOI: 10.1039/c3nr03190j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.
Collapse
Affiliation(s)
- Zhihai Cao
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China.
| | | |
Collapse
|
36
|
Averick SE, Bazewicz CG, Woodman BF, Simakova A, Mehl RA, Matyjaszewski K. Protein–polymer hybrids: Conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Elder AN, Hannes SK, Atoyebi SF, Washburn NR. Effects on peptide binding affinity for TNFα by PEGylation and conjugation to hyaluronic acid. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Averick SE, Paredes E, Dey SK, Snyder KM, Tapinos N, Matyjaszewski K, Das SR. Autotransfecting Short Interfering RNA through Facile Covalent Polymer Escorts. J Am Chem Soc 2013; 135:12508-11. [DOI: 10.1021/ja404520j] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Kristin M. Snyder
- Molecular Neuroscience Laboratory,
Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, United
States
| | - Nikos Tapinos
- Molecular Neuroscience Laboratory,
Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, United
States
| | | | | |
Collapse
|
39
|
Payne KA, D’hooge DR, Van Steenberge PHM, Reyniers MF, Cunningham MF, Hutchinson RA, Marin GB. ARGET ATRP of Butyl Methacrylate: Utilizing Kinetic Modeling To Understand Experimental Trends. Macromolecules 2013. [DOI: 10.1021/ma400388t] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kevin A. Payne
- Laboratory for Chemical Technology, Ghent University, Krijgslaan 281 (S5), Gent, Belgium
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Ghent University, Krijgslaan 281 (S5), Gent, Belgium
| | | | | | - Michael F. Cunningham
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Guy B. Marin
- Laboratory for Chemical Technology, Ghent University, Krijgslaan 281 (S5), Gent, Belgium
| |
Collapse
|
40
|
Smeets NMB, Hoare T. Designing responsive microgels for drug delivery applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26707] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Niels M. B. Smeets
- Department of Chemical Engineering; McMaster University; Hamilton Ontario Canada L8S 4L8
| | - Todd Hoare
- Department of Chemical Engineering; McMaster University; Hamilton Ontario Canada L8S 4L8
| |
Collapse
|
41
|
Cho HY, Averick SE, Paredes E, Wegner K, Averick A, Jurga S, Das SR, Matyjaszewski K. Star polymers with a cationic core prepared by ATRP for cellular nucleic acids delivery. Biomacromolecules 2013; 14:1262-7. [PMID: 23560989 DOI: 10.1021/bm4003199] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Poly(ethylene glycol) (PEG)-based star polymers with a cationic core were prepared by atom transfer radical polymerization (ATRP) for in vitro nucleic acid (NA) delivery. The star polymers were synthesized by ATRP of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and ethylene glycol dimethacrylate (EGDMA). Star polymers were characterized by gel permeation chromatography, zeta potential, and dynamic light scattering. These star polymers were combined with either plasmid DNA (pDNA) or short interfering RNA (siRNA) duplexes to form polyplexes for intracellular delivery. These polyplexes with either siRNA or pDNA were highly effective in NA delivery, particularly at relatively low star polymer weight or molar ratios, highlighting the importance of NA release in efficient delivery systems.
Collapse
Affiliation(s)
- Hong Y Cho
- Department of Chemistry, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Toloza Porras C, D'hooge DR, Reyniers MF, Marin GB. Computer-Aided Optimization of Conditions for Fast and Controlled ICAR ATRP of n
-Butyl Acrylate. MACROMOL THEOR SIMUL 2013. [DOI: 10.1002/mats.201200074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Ge J, Neofytou E, Lei J, Beygui RE, Zare RN. Protein-polymer hybrid nanoparticles for drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3573-8. [PMID: 22888073 DOI: 10.1002/smll.201200889] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/15/2012] [Indexed: 05/14/2023]
Abstract
Amphiphilic bovine serum albumin-poly(methyl methacrylate) conjugate forms nanoparticles with the uniform size of ~100 nm by self-assembling. Loaded with the hydrophobic anti-tumor drug camptothecin, the nanoparticle efficiently delivers drugs into cancer cells, and thus inhibits ~79% of tumor growth in animals compared with free drug.
Collapse
Affiliation(s)
- Jun Ge
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | | | |
Collapse
|
44
|
Deng Z, Guo J, Qiu L, Yuan C, Zhou Y, Yan F. Iron-mediated AGET ATRP of MMA with sulfosalicylic acid as a ligand. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Averick SE, Paredes E, Irastorza A, Shrivats AR, Srinivasan A, Siegwart DJ, Magenau AJ, Cho HY, Hsu E, Averick AA, Kim J, Liu S, Hollinger JO, Das SR, Matyjaszewski K. Preparation of cationic nanogels for nucleic acid delivery. Biomacromolecules 2012; 13:3445-9. [PMID: 22967138 DOI: 10.1021/bm301166s] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cationic nanogels with site-selected functionality were designed for the delivery of nucleic acid payloads targeting numerous therapeutic applications. Functional cationic nanogels containing quaternized 2-(dimethylamino)ethyl methacrylate and a cross-linker with reducible disulfide moieties (qNG) were prepared by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) in an inverse miniemulsion. Polyplex formation between the qNG and nucleic acid exemplified by plasmid DNA (pDNA) and short interfering RNA (siRNA duplexes) were evaluated. The delivery of polyplexes was optimized for the delivery of pDNA and siRNA to the Drosophila Schneider 2 (S2) cell-line. The qNG/nucleic acid (i.e., siRNA and pDNA) polyplexes were found to be highly effective in their capabilities to deliver their respective payloads.
Collapse
Affiliation(s)
- Saadyah E Averick
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ge J, Yang C, Zhu J, Lu D, Liu Z. Nanobiocatalysis in Organic Media: Opportunities for Enzymes in Nanostructures. Top Catal 2012. [DOI: 10.1007/s11244-012-9906-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 2012; 64:836-51. [PMID: 22342438 DOI: 10.1016/j.addr.2012.02.002] [Citation(s) in RCA: 404] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an "ideal" drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed.
Collapse
|
48
|
|
49
|
Matyjaszewski K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012. [DOI: 10.1021/ma3001719] [Citation(s) in RCA: 2011] [Impact Index Per Article: 154.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh,
Pennsylvania 15213, United States
| |
Collapse
|
50
|
Cheng S, Ting SRS, Lucien FP, Zetterlund PB. Size-Tunable Nanoparticle Synthesis by RAFT Polymerization in CO2-Induced Miniemulsions. Macromolecules 2012. [DOI: 10.1021/ma202744f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Siqing Cheng
- Centre for Advanced
Macromolecular Design (CAMD), School
of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - S. R. Simon Ting
- Centre for Advanced
Macromolecular Design (CAMD), School
of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Frank P. Lucien
- Centre for Advanced
Macromolecular Design (CAMD), School
of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Per B. Zetterlund
- Centre for Advanced
Macromolecular Design (CAMD), School
of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|