1
|
Kaur M, Sharma A, Olutas M, Erdem O, Kumar A, Sharma M, Demir HV. Cd-free Cu-doped ZnInS/ZnS Core/Shell Nanocrystals: Controlled Synthesis And Photophysical Properties. NANOSCALE RESEARCH LETTERS 2018; 13:182. [PMID: 29916083 PMCID: PMC6006007 DOI: 10.1186/s11671-018-2599-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Here, we report efficient composition-tunable Cu-doped ZnInS/ZnS (core and core/shell) colloidal nanocrystals (CNCs) synthesized by using a colloidal non-injection method. The initial precursors for the synthesis were used in oleate form rather than in powder form, resulting in a nearly defect-free photoluminescence (PL) emission. The change in Zn/In ratio tunes the percentage incorporation of Cu in CNCs. These highly monodisperse Cu-doped ZnInS CNCs having variable Zn/In ratios possess peak emission wavelength tunable from 550 to 650 nm in the visible spectrum. The quantum yield (QY) of these synthesized Cd-free CNCs increases from 6.0 to 65.0% after coating with a ZnS shell. The CNCs possessing emission from a mixed contribution of deep trap and dopant states to only dominant dopant-related Stokes-shifted emission are realized by a careful control of stoichiometric ratio of different reactant precursors during synthesis. The origin of this shift in emission was understood by using steady state and time-resolved fluorescence (TRF) spectroscopy studies. As a proof-of-concept demonstration, these blue excitable Cu-doped ZnInS/ZnS CNCs have been integrated with commercial blue LEDs to generate white-light emission (WLE). The suitable combination of these highly efficient doped CNCs results led to a Commission Internationale de l'Enclairage (CIE) color coordinates of (0.33, 0.31) at a color coordinate temperature (CCT) of 3694 K, with a luminous efficacy of optical radiation (LER) of 170 lm/Wopt and a color rendering index (CRI) of 88.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Punjab, 140406 India
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ashma Sharma
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
| | - Murat Olutas
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Akshay Kumar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Punjab, 140406 India
| | - Manoj Sharma
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Punjab, 140406 India
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
| |
Collapse
|