1
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
2
|
Kushwaha V, Mandal KD, Gupta A, Singh P. Ni 0.5Co 0.5S nano-chains: a high-performing intercalating pseudocapacitive electrode in asymmetric supercapacitor (ASC) mode for the development of large-scale energy storage devices. Dalton Trans 2024; 53:5435-5452. [PMID: 38412059 DOI: 10.1039/d3dt04184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Grid-scale energy storage solutions are necessary for using renewable energy sources efficiently. A supercapattery (supercapacitor + battery) has recently been introduced as a new variety of hybrid devices that engage both capacitive and faradaic charge storage processes. Nano-chain architectures of Ni0.5Co0.5S electrode materials consisting of interconnected nano-spheres are rationally constructed by tailoring the surface structure. Nano-chains of the bimetallic sulfide Ni0.5Co0.5S are presented to have a superior charge storage capacity. The Ni0.5Co0.5S nano-chain electrode presents a capacitance of 2001.6 F g-1 at 1 mV s-1, with a specific capacity of 267 mA h g-1 (1920 F g-1) at 1 A g-1 in 4 M KOH aqueous electrolyte through the galvanostatic charge-discharge (GCD) method. The reason behind the high charge storage capacity of the materials is the predominant redox-mediated diffusion-controlled pseudocapacitive mechanism coupled with surface capacitance (electrosorption), as the surface (outer) and intercalative (inner) charges stored by the Ni0.5Co0.5S electrodes are close to 46.0% and 54.0%, respectively. Additionally, a Ni0.5Co0.5S//AC two electrode full cell operating in asymmetric supercapacitor cell (ASCs) mode in 4 M KOH electrolyte exhibits an impressive energy density equivalent to 257 W h kg-1 and a power density of 0.73 kW kg-1 at a current rate of 1 A g-1.
Collapse
Affiliation(s)
- Vishal Kushwaha
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, Uttar Pradesh, 221005, India.
| | - K D Mandal
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, Uttar Pradesh, 221005, India.
| | - Asha Gupta
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, Uttar Pradesh, 221005, India.
| | - Preetam Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Biradar MR, Kale AM, Rao CRK, Kim BC, Bhosale SV, Bhosale SV. Fabrication of Mesoporous Materials Based on Supramolecular Self-Assembly of Guanosine Monophosphonate-Nickel Chloride (GMP-Ni) for High-Performance Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5708-5724. [PMID: 38271586 DOI: 10.1021/acsami.3c11442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Supramolecular self-assembly of nickel chloride and guanosine mono-phosphonate (GMP) and nickel (Ni)-based GMP-Ni and their calcinated mesoporous electrode materials GMP-Ni-500 and GMP-Ni-700 at 500 and 700 °C, respectively, have been fabricated. GMP-Ni, GMP-Ni-500, and GMP-Ni-700 are examined for their supercapacitor performance in a three-electrode configuration. The electrochemical tests demonstrate the mesoporous battery-type nature of GMP-Ni-500 which exhibited a specific capacity (Cs) of about 289 C g-1 at 0.5 A g-1 current density. In addition, a cost-effective and simple asymmetric supercapacitor device has been fabricated with battery-type GMP-Ni-500 as a cathode material and capacitive-type activated carbon (AC) as an anodic material. In an operating voltage window of 0 to 1.5 V, hybrid supercapacitors (HSCs) based on GMP-Ni-500//AC exhibited a remarkable performance with a specific capacity (Cs) of 144 C g-1 at 0.5 A g-1. For the HSC device, the maximum of 66% capacity retention has been observed after 5000 charging/discharging cycles at 5 A g-1. Furthermore, the HSC device demonstrates a high energy density of 24 W h kg-1 at a power density of 297 W kg-1. The molecular transformation was established by employing theoretical calculations. These results suggest that our HSC has outstanding potential in technology development for next-generation commercial applications.
Collapse
Affiliation(s)
- Madan R Biradar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Amol M Kale
- Department of Advanced Components and Materials Engineering, Sunchon National University, Sunchon 57922, South Korea
| | - Chepuri R K Rao
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Byung C Kim
- Department of Advanced Components and Materials Engineering, Sunchon National University, Sunchon 57922, South Korea
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
4
|
Patel PC, Mishra PK, Kashyap J, Awasthi S. Cation doped approach for photodegradation of 4-chlorophenol by highly efficient solar active NiS photocatalyst: The case of Cu2+ doping. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Runfa L, Chen X, Hongliang C, Wei Y, Yuanfang Z, Siyu C, Wenrui J, Qi Z, Yi E, Meng J, Abdullah M, Tan L. Facile synthesis of Ni 3Se 4/Ni 0.6Zn 0.4O/ZnO nanoparticle as high-performance electrode materials for electrochemical energy storage device. NANOTECHNOLOGY 2023; 34:185401. [PMID: 36669193 DOI: 10.1088/1361-6528/acb4f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
To enhance the performance of transition metal chalcogenide composite electrode material, a key point is a composite design and preparation based on the synergistic effect between the oxide and selenide materials. With a facile 'one step template-annealing' step, Ni3Se4, Ni0.6Zn0.4O and ZnO are simultaneously synthesized, by 500 °C annealing. With the increase of annealing temperature from 350 °C to 600 °C, nickel selenides change from NiSe2to Ni3Se4to NiSe. The charge storage capacity increases first and then decreases with the increase of annealing temperature, and the 500 °C annealing obtained three compound composite Ni3Se4/Ni0.6Zn0.4O/ZnO (NNZ-500) nanoparticle material displayed a high specific capacitance of 1089.2 F g-1at 1 A g-1, and excellent cycle stability of 99.8% capacitance retention after 2000 cycles at 5 A g-1. Moreover, an asymmetric supercapacitor was assembled with NNZ-500 as the positive electrode material and activated carbon as the negative electrode material. This kind of asymmetric supercapacitor demonstrated a high energy density of 53.4 Wh kg-1at 819.0 W kg-1, and cycle stability with 98.6% capacitance retention after 2000 cycles. This material preparation approach provides great potential for the future development of high performance transition metal composite electrode materials in energy storage applications.
Collapse
Affiliation(s)
- Li Runfa
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cao Hongliang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yan Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Yuanfang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cheng Siyu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Wenrui
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - E Yi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Meng
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Muhammad Abdullah
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liyi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
6
|
Hydrothermally synthesized highly efficient binary silver strontium sulfide (AgSrS) for high-performance supercapattery applications. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Surface reconstruction of Fe(III)/NiS nanotubes for generating high-performance oxygen-evolution catalyst. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Kushwaha V, Gupta A, Choudhary RB, Mandal KD, Mondal R, Singh P. Nanocrystalline β-NiS: a redox-mediated electrode in aqueous electrolyte for pseudocapacitor/supercapacitor applications. Phys Chem Chem Phys 2022; 25:555-569. [PMID: 36484154 DOI: 10.1039/d2cp03847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, enhancing the performance of electrochemical supercapacitors is the subject of intense research to fulfill the ever-increasing demand for grid-scale energy storage and delivery solution, thereby utilizing the full potential of renewable energy resources and decreasing our dependence on fossil fuels. Metal sulfides, such as cobalt sulfide (CoS), nickel sulfide (NiS), molybdenum sulfide (MoS), copper sulfide (CuS), and others, have recently emerged as a promising class of active electrode materials, alongside other supercapacitor electrode materials, due to their relatively high specific capacitance values and exceptional reversible redox reaction activities. The synthesis, characterizations, and electrochemical performances of single-phase nanocrystalline β-NiS are presented here and the electrode based on this material shows a specific capacitance of 1578 F g-1 at 1 A g-1 from the galvanostatic discharge profile, whereas a capacitance of 1611 F g-1 at 1 mV s-1 was obtained through the CV curve in 2 M KOH aqueous electrolyte. Additionally, the electrode also performs well in neutral 0.5 M Na2SO4 electrolytes resulting in specific capacitance equivalent to 403 F g-1 at 1 mV s-1 scan rate. The high charge storage capacity of the material is due to the superior intercalative (inner) charge storage coupled with the surface (outer) charges stored by the β-NiS electrode and was found to be 72% and 28%, respectively, in aqueous 2 M KOH electrolyte. This intercalative charge storage mechanism is also responsible for its excellent cycling stability. Additionally, we assembled aqueous asymmetric supercapacitors (ASCs) with activated carbon (AC) as the negative electrode and the β-NiS electrode as the positive electrode. The combination of the β-NiS electrode and AC with excellent cycling stability resulted in the highest specific energy equivalent to ∼163 W h kg-1 and a specific power of ∼507 W kg-1 at 1 A g-1 current rate.
Collapse
Affiliation(s)
- Vishal Kushwaha
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| | - Asha Gupta
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| | - Ram Bilash Choudhary
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - K D Mandal
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| | - Rakesh Mondal
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| | - Preetam Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Liu T, Chen L, Chen L, Tian G, Ji M, Zhou S. Layer-by-Layer Heterostructure of MnO 2@Reduced Graphene Oxide Composites as High-Performance Electrodes for Supercapacitors. MEMBRANES 2022; 12:1044. [PMID: 36363599 PMCID: PMC9697611 DOI: 10.3390/membranes12111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
In this paper, δ-MnO2 with layered structure was prepared by a facile liquid phase method, and exfoliated MnO2 nanosheet (e-MnO2) was obtained by ultrasonic exfoliation, whose surface was negatively charged. Then, positive charges were grafted on the surface of MnO2 nanosheets with a polycation electrolyte of polydiallyl dimethylammonium chloride (PDDA) in different concentrations. A series of e-MnO2@reduced graphene oxide (rGO) composites were obtained by electrostatic self-assembly combined with hydrothermal chemical reduction. When PDDA was adjusted to 0.75 g/L, the thickness of e-MnO2 was ~1.2 nm, and the nanosheets were uniformly adsorbed on the surface of graphene, which shows layer-by-layer morphology with a specific surface area of ~154 m2/g. On account of the unique heterostructure, the composite exhibits good electrochemical performance as supercapacitor electrodes. The specific capacitance of e-MnO2-0.75@rGO can reach 456 F/g at a current density of 1 A/g in KOH electrolyte, which still remains 201 F/g at 10 A/g. In addition, the capacitance retention is 98.7% after 10000 charge-discharge cycles at 20 A/g. Furthermore, an asymmetric supercapacitor (ASC) device of e-MnO2-0.75@rGO//graphene hydrogel (GH) was assembled, of which the specific capacitance achieves 94 F/g (1 A/g) and the cycle stability is excellent, with a retention rate of 99.3% over 10000 cycles (20 A/g).
Collapse
Affiliation(s)
- Tingting Liu
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Lei Chen
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ling Chen
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guoxing Tian
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mingtong Ji
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Shuai Zhou
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Sun MY, Xu H, Meng YT, Chen XM, Lu M, Yu H, Zhang CB. Facile design and synthesis of a nickel disulfide/zeolitic imidazolate framework-67 composite material with a robust cladding structure for high-efficiency supercapacitors. RSC Adv 2022; 12:23912-23921. [PMID: 36093240 PMCID: PMC9400587 DOI: 10.1039/d2ra04317c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this paper, a core-shell structure nickel disulfide and ZIF-67 composite electrode material (NiS2/ZIF-67) was synthesized by a two-step method. Firstly, spherical NiS2 was synthesized by a hydrothermal method, dispersed in methanol, then reacted and coated by adding cobalt ions and 2-methylimidazole to obtain the NiS2/ZIF-67 core-shell composite. The NiS2/ZIF-67 composite shows a high specific capacitance (1297.9 F g-1 at 1 A g-1) and excellent cycling durability (retaining 110.0% after 4000 cycles at 5 A g-1). Furthermore, the corresponding hybrid supercapacitor (NiS2/ZIF-67//AC HSC) has an energy density of 9.5 W h kg-1 at 411.1 W kg-1 (6 M KOH) and remarkable cycling stability (maintaining 133.3% after 5000 cycles). Its excellent electrochemical performance may be due to the core-shell structure and the synergistic effect between the transition metal sulfide and metal-organic framework. These results indicate that the NiS2/ZIF-67 composite as an electrode material with a core-shell structure has potential application in high-efficiency supercapacitors.
Collapse
Affiliation(s)
- Ming-Yuan Sun
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Hao Xu
- Xinjiang Shihezi Vocational Technical College Xinjiang 832000 P. R. China
| | - Yun-Tong Meng
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Xue-Mei Chen
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Min Lu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Hao Yu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Chun-Bo Zhang
- Electric Power Research Institute of State Grid Jilin Electric Power Co., LTD Jilin 132000 P. R. China
| |
Collapse
|
11
|
Akhtar M, Rafiq S, Warsi MF, El-Bahy SM, Hessien MM, Mersal GAM, Ibrahim MM, Shahid M. Hierarchically porous NiO microspheres and their nanocomposites with exfoliated carbon as electrode materials for supercapacitor applications. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2083361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mahnoor Akhtar
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sabeera Rafiq
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Salah M. El-Bahy
- Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Mahmoud M. Hessien
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Muhammad Shahid
- Department of Chemistry, College of Science, University of Hafr Al Batin, Hafr Al-Batin, Saudi Arabia
| |
Collapse
|
12
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhang Q, Chen X, Cheng S, Li R, E Y, Jiang M. Synthesis of VS2/NiS nanocomposites by in situ growing NiS clusters on VS2 ultrathin nanoplates for high performance supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi Zhang
- East China University of Science and Technology School of Materials Science and Engineering 200030 CHINA
| | - Xin Chen
- East China University of Science and Technology 130 Meilong Road Shanghai CHINA
| | - Siyu Cheng
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Runfa Li
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Yi E
- East China University of Science and Technology School of Materials Science and Engineering School of Materials Science and Engineering CHINA
| | - Meng Jiang
- East China University of Science and Technology school of materials science and engineering CHINA
| |
Collapse
|
14
|
Hu Q, Zhang S, Li W, Hao J, Zhang L, Yan L, Zou X. Template-free synthesis of β-NiS ball-in-ball microspheres for a high-performance asymmetrical supercapacitor. Dalton Trans 2021; 50:11512-11520. [PMID: 34346450 DOI: 10.1039/d1dt01687c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While significant advances have been made in the synthesis of core-/multi-shell materials, the synthetic process usually involves a soft/hard template and complicated procedures. In particular, it is extremely difficult to fabricate single-component core-shell structures for nickel sulfides (NSs) with a controlled phase. In this work, we demonstrate a novel facile method to synthesize a single-component β-NiS ball-in-ball microsphere. The ball-in-ball structure is easily obtained by uniquely employing 2-mercaptopropionic acid (2-MPA) as the sulfur source and ethanol as the solvent based on the Ostwald ripening process. In particular, our work demonstrates that the chemical structure of sulfur sources and solvents plays a key role in the formation of the pure β-NiS ball-in-ball structure. When used as an electrode active material, the β-NiS ball-in-ball microspheres exhibit two times stronger specific capacity and three times higher rate performance than NSs produced by a hydrothermal method. The fabricated NS-2//rGO asymmetrical supercapacitor (ASC) displays an energy density of 46.4 W h kg-1 at a power density of 799.0 W kg-1 and good cycling performance. Thus, this study provides a new method for controlling the phase and morphology of NSs.
Collapse
Affiliation(s)
- Qin Hu
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Maurya O, Khaladkar S, Horn MR, Sinha B, Deshmukh R, Wang H, Kim T, Dubal DP, Kalekar A. Emergence of Ni-Based Chalcogenides (S and Se) for Clean Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100361. [PMID: 34019738 DOI: 10.1002/smll.202100361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Nickel chalcogenide (S and Se) based nanostructures intrigued scientists for some time as materials for energy conversion and storage systems. Interest in these materials is due to their good electrochemical stability, eco-friendly nature, and low cost. The present review compiles recent progress in the area of nickel-(S and Se)-based materials by providing a comprehensive summary of their structural and chemical features and performance. Improving properties of the materials, such as electrical conductivity and surface characteristics (surface area and morphology), through strategies like nano-structuring and hybridization, are systematically discussed. The interaction of the materials with electrolytes, other electro-active materials, and inactive components are analyzed to understand their effects on the performance of energy conversion and storage devices. Finally, outstanding challenges and possible solutions are briefly presented with some perspectives toward the future development of these materials for energy-oriented devices with high performance.
Collapse
Affiliation(s)
- Oshnik Maurya
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Somnath Khaladkar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Michael R Horn
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bhavesh Sinha
- National Centre for Nanoscience and Nanotechnology, University of Mumbai (NCNNUM), Mumbai, 400098, India
| | - Rajendra Deshmukh
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Hongxia Wang
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - TaeYoung Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Archana Kalekar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| |
Collapse
|
16
|
Ganguli S, Ghosh S, Tudu G, Koppisetti HVSRM, Mahalingam V. Design Principle of Monoclinic NiCo 2Se 4 and Co 3Se 4 Nanoparticles with Opposing Intrinsic and Geometric Electrocatalytic Activity toward the OER. Inorg Chem 2021; 60:9542-9551. [PMID: 34143621 DOI: 10.1021/acs.inorgchem.1c00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite predictions of high electrocatalytic OER activity by selenide-rich phases, such as NiCo2Se4 and Co3Se4, their synthesis through a wet-chemical route remains a challenge because of the high sensitivity of the various oxidation states of selenium to the reaction conditions. In this work, we have determined the contribution of individual reactants behind the maintenance of conducive solvothermal reaction conditions to produce phase-pure NiCo2Se4 and Co3Se4 from elemental selenium. The maintenance of reductive conditions throughout the reaction was found to be crucial for their synthesis, as a decrease in the reductive conditions over time was found to produce nickel/cobalt selenites as the primary product. Further, the reluctance of Ni(II) to oxidize into Ni(III) in comparison to the proneness of Co(II) to Co(III) oxidation was found to have a profound effect on the final product composition, as a deficiency of ions in the III oxidation state under nickel-rich reaction conditions hindered the formation of a monoclinic "Co3Se4-type" phase. Despite its lower intrinsic OER activity, Co3Se4 was found to show geometric performance on a par with NiCo2Se4 by virtue of its higher textural and microstructural properties.
Collapse
Affiliation(s)
- Sagar Ganguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
17
|
"Carbon quantum dots-glue" enabled high-capacitance and highly stable nickel sulphide nanosheet electrode for supercapacitors. J Colloid Interface Sci 2021; 601:669-677. [PMID: 34091314 DOI: 10.1016/j.jcis.2021.05.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
A facile "carbon quantum dots glue" strategy for the fabrication of honeycomb-like carbon quantum dots/nickel sulphide network arrays on Ni foam surface is successfully demonstrated. This design realizes the immobilization of nanosheet arrays and maintains a strong adhesion to the collector, forming a three-dimensional (3D) honeycomb-like architecture. Thanks to the unique structural advantages, the resulting bind-free electrode with high active mass loading of 6.16 mg cm-2 still exhibits a superior specific capacitance of 1130F g-1 at 2 A g-1, and maintains 80% of the initial capacitance even at 10 A g-1 after 3000 cycles. Furthermore, the assembled asymmetrical supercapacitor delivers an energy density of 18.8 Wh kg-1 at a power density of 134 W kg-1, and outstanding cycling stability (100% of initial capacitance retention after 5000 cycles at 5 mA cm-2). These impressive results indicate a new perspective to design various binder-free electrodes for electrochemical energy storage devices.
Collapse
|
18
|
Chang N, Yin Y, Song Y, Wang S, Zhang H, Lai Q, Li X. Constructing Phase-Transitional NiS x@Nitrogen-Doped Carbon Cathode Material with High Rate Capability and Cycling Stability for Alkaline Zinc-Based Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19008-19015. [PMID: 33848116 DOI: 10.1021/acsami.1c02067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alkaline zinc-based batteries are becoming promising candidates for green and economical energy-storage systems, thanks to their low cost and high energy density. The exploitation of the stable cathode materials with high rate capability and cycling stability is crucial for their further development. Herein, a series of NiSx coated with nitrogen-doped carbon (denoted as NiSx@NC) compounds (x = 0.5-1.0) are synthesized using the facile single-source precursor method. Benefiting from the unique phase-transitional NiSx@NC with high activity and enhanced conductivity from the well-balanced conductive metal nickel and carbon layer, the alkaline zinc-nickel batteries with a phase-transitional NiSx@NC cathode deliver a high capacity of 148 mA h g-1 at a high current density of 100 mA cm-2 and demonstrate a long lifespan of over 500 cycles with a high capacity retention of 98.8%. This work provides a significant guideline for the structural design and optimization of nickel-based materials in alkaline energy-storage devices.
Collapse
Affiliation(s)
- Nana Chang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbin Yin
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yang Song
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shengnan Wang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huamin Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qinzhi Lai
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
19
|
Pt-free and efficient counter electrode with nanostructured CoNi2S4/rGO for dye-sensitized solar cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Kamble G, Kashale A, Rasal A, Dengale S, Kolekar S, Chang JY, Han S, Ghule A. Investigating the Influence of Reflux Condensation Reaction Temperature on the Growth of FeCo
2
O
4
Thin Film for Flexible Supercapacitor. ChemistrySelect 2021. [DOI: 10.1002/slct.202004544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gokul Kamble
- Green Nanotechnology Laboratory Department of Chemistry Shivaji University Kolhapur 416004 Maharashtra India
| | - Anil Kashale
- Green Nanotechnology Laboratory Department of Chemistry Shivaji University Kolhapur 416004 Maharashtra India
| | - Akash Rasal
- Green Nanotechnology Laboratory Department of Chemistry Shivaji University Kolhapur 416004 Maharashtra India
- Department of Chemical Engineering National Taiwan University of Science and Technology Taiwan
| | - Suraj Dengale
- Green Nanotechnology Laboratory Department of Chemistry Shivaji University Kolhapur 416004 Maharashtra India
| | - Sanjay Kolekar
- Analytical Chemistry and Material Science Research Laboratory Department of Chemistry Shivaji University Kolhapur 416004 Maharashtra India
| | - Jia Yaw Chang
- Department of Chemical Engineering National Taiwan University of Science and Technology Taiwan
| | - Sung‐Hwan Han
- Department of Chemistry Institute of Materials Design Hanyang University Seoul 04763 Republic of Korea
| | - Anil Ghule
- Green Nanotechnology Laboratory Department of Chemistry Shivaji University Kolhapur 416004 Maharashtra India
| |
Collapse
|
21
|
Sajjad M, Khan Y. Rational design of self-supported Ni 3S 2 nanoparticles as a battery type electrode material for high-voltage (1.8 V) symmetric supercapacitor applications. CrystEngComm 2021. [DOI: 10.1039/d1ce00073j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We developed a high performance SSC device with excellent electrochemical performance in terms of specific capacitance, rate capability, energy density and power density which surpasses most of the reports.
Collapse
Affiliation(s)
- Muhammad Sajjad
- School of Chemical Science and Engineering
- Yunnan University
- Kunming 650091
- P. R. China
- Institute of Energy Storage Technologies
| | - Yaqoob Khan
- Nanosciences and Technology Department
- National Center for Physics
- QAU Campus
- Islamabad 45320
- Pakistan
| |
Collapse
|
22
|
Yang R, Li R, Zhang L, Xu Z, Kang Y, Xue P. Facile synthesis of hollow mesoporous nickel sulfide nanoparticles for highly efficient combinatorial photothermal-chemotherapy of cancer. J Mater Chem B 2020; 8:7766-7776. [PMID: 32744285 DOI: 10.1039/d0tb01448f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traditional techniques for the synthesis of nickel sulfide (NiS) nanoparticles (NPs) always present drawbacks of morphological irregularity, non-porous structure and poor long-term stability, which are extremely unfavorable for establishing effective therapeutic agents. Here, a category of hollow mesoporous NiS (hm-NiS) NPs with uniform spherical structure and good aqueous dispersity were innovatively developed based on a modified solvothermal reaction technique. Upon the successful synthesis of hm-NiS NPs, dopamine was seeded and in situ polymerized into polydopamine (PDA) on the NP surface, followed by functionalization with thiol-polyethylene glycol (SH-PEG) and encapsulation of the chemotherapeutic drug, doxorubicin (DOX), to form hm-NiS@PDA/PEG/DOX (NiPPD) NPs. The resultant NiPPD NPs exhibited a decent photothermal response and stability, attributed to the optical absorption of the hm-NiS nanocore and PDA layer in the near-infrared (NIR) region. Furthermore, stimulus-responsive drug release was achieved under both acidic pH conditions and NIR laser irradiation, owing to the protonation of -NH2 groups in the DOX molecules and local thermal shock, respectively. Lastly, a strong combinatorial photothermal-chemotherapeutic effect was demonstrated for tumor suppression with minimal systemic toxicity in vivo. Collectively, this state-of-the-art paradigm may provide useful insights to deepen the application of hm-NiS NPs for disease management and precision medicine.
Collapse
Affiliation(s)
- Ruihao Yang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | |
Collapse
|
23
|
Bhardwaj R, Jha R, Bhushan M. Improved electrocatalytic performance with enlarged surface area and reduced bandgap of caterpillar and cabbage-like nickel sulphide nanostructures. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01488-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Kosari M, Seayad AM, Xi S, Kozlov SM, Borgna A, Zeng HC. Synthesis of Mesoporous Copper Aluminosilicate Hollow Spheres for Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23060-23075. [PMID: 32345013 DOI: 10.1021/acsami.0c03052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hollow functional metal silicate materials have received the most interest due to their large inner space, permeable and functional shell, lighter density, and better use of material compared to their solid counterparts. While tremendous success has been made in the synthesis of individual metal silicates with uniform morphology, the synthesis of multiphase hollow silicates has not been explored yet, although their direct applications could be promising. In this study, mesoporous aluminosilicate spheres (MASS) are transformed to submicrometer copper aluminosilicate hollow spheres (CASHS) via a one-pot hydrothermal process. CASHS has a hollow interior with Cu-Al-Si thorn-like moieties in a lamellar structure on its outer shell. The structure and morphology of CASHS are unique and different from the previously reported tubular copper silicates that are emanated from Stöber silica spheres. Herein, we also demonstrate that the extent of hollowing in CASHS can be attained by controlling the aluminum content of pristine MASS, highlighting the existence of parameters for in situ controlling the shell thickness of hollow materials. The application of CASHS as a potential heterogeneous catalyst has been directed to important oxidation processes such as olefin oxidation and the advanced oxidation process (AOP). In cyclohexene oxidation, for instance, high selectivity to cyclohex-2-en-1-one is achieved under moderate conditions using tert-butyl hydroperoxide as the oxidant. CASHS is a robust heterogeneous catalyst and recyclable for this reaction. CASHS-derived catalysts also favor AOP and enhance the removal of cationic dyes together with H2O2 through an adsorption-degradation process.
Collapse
Affiliation(s)
- Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Abdul Majeed Seayad
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | - Armando Borgna
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| |
Collapse
|
25
|
Jin QQ, Zhang CY, Wang WN, Chen BJ, Ruan J, Qian HS. Recent Development on Controlled Synthesis of Metal Sulfides Hollow Nanostructures via Hard Template Engaged Strategy: A Mini-Review. CHEM REC 2020; 20:882-892. [PMID: 32319734 DOI: 10.1002/tcr.202000033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 02/01/2023]
Abstract
In this mini-review, we highlighted the recent progresses in the controlled synthesis of metal sulfides hollow nanostructures via hard template technique. After a brief introduction about the formation mechanism of the inorganic hollow nanostructures via hard template technique, the discussions primarily focused on the emerging development of metal sulfides hollow nanostructures. Various synthetic strategies were summarized concerning the use of the hard template engaged strategies to fabricate various metal sulfides hollow nanostructures, such as hydrothermal method, solvothermal method, ion-exchange, sulfidation or calcination etc. Finally, the perspectives and summaries have been presented to demonstrate that a facile synthetic technique would be widely used to fabricate metal sulfides hollow nanostructures with multi-shells and components.
Collapse
Affiliation(s)
- Qian-Qian Jin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chen-Yang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wan-Ni Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ben-Jin Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Juan Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hai-Sheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.,Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
26
|
Chen S, Qiu L, Cheng HM. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem Rev 2020; 120:2811-2878. [DOI: 10.1021/acs.chemrev.9b00466] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shaohua Chen
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ling Qiu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
- Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey GU2 7XH, England
| |
Collapse
|
27
|
Khalafallah D, Wu Z, Zhi M, Hong Z. Rational Design of Porous Structured Nickel Manganese Sulfides Hexagonal Sheets-in-Cage Structures as an Advanced Electrode Material for High-Performance Electrochemical Capacitors. Chemistry 2020; 26:2251-2262. [PMID: 31769082 DOI: 10.1002/chem.201904991] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/22/2019] [Indexed: 01/11/2023]
Abstract
The design of hierarchical electrodes comprising multiple components with a high electrical conductivity and a large specific surface area has been recognized as a feasible strategy to remarkably boost pseudocapacitors. Herein, we delineate hexagonal sheets-in-cage shaped nickel-manganese sulfides (Ni-Mn-S) with nanosized open spaces for supercapacitor applications to realize faster redox reactions and a lower charge-transfer resistance with a markedly enhanced specific capacitance. The hybrid was facilely prepared through a two-step hydrothermal method. Benefiting from the synergistic effect between Ni and Mn active sites with the improvement of both ionic and electric conductivity, the resulting Ni-Mn-S hybrid displays a high specific capacitance of 1664 F g-1 at a current density of 1 A g-1 and a capacitance of 785 F g-1 is maintained at a current density of 50 A g-1 , revealing an outstanding capacity and rate performance. The asymmetric supercapacitor device assembled with the Ni-Mn-S hexagonal sheets-in-cage as the positive electrode delivers a maximum energy density of 40.4 Wh kg-1 at a power density of 750 W kg-1 . Impressively, the cycling retention of the as-fabricated device after 10 000 cycles at a current density of 10 A g-1 reaches 85.5 %. Thus, this hybrid with superior capacitive performance holds great potential as an effective charge-storage material.
Collapse
Affiliation(s)
- Diab Khalafallah
- State Key Laboratory of Silicon Material, School of, Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Mechanical Design and Materials Department, Faculty of, Energy Engineering, Aswan University, P.O. Box, 81521, Aswan, Egypt
| | - Zongxiao Wu
- State Key Laboratory of Silicon Material, School of, Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Mingjia Zhi
- State Key Laboratory of Silicon Material, School of, Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhanglian Hong
- State Key Laboratory of Silicon Material, School of, Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
28
|
Liu H, Cai J, Luo M, Chen C, Hu P. Novel mesoporous bismuth oxyiodide single-crystal nanosheets with enhanced catalytic activity. RSC Adv 2020; 10:5913-5918. [PMID: 35497426 PMCID: PMC9049228 DOI: 10.1039/c9ra10451h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 11/30/2022] Open
Abstract
A simple one-step approach was employed to fabricate novel BiOI nanosheets and mesoporous Bi4O5I2 single-crystal nanosheets. The formation mechanism of the as-prepared two-dimensional mesoporous sheet-like structure and photocatalytic activities were systematically discussed. The stripping effect of I2 vapor generated in the calcination process was concluded to be responsible for the formation of this two-dimensional mesoporous structure. Moreover, relying on this advantage, Bi4O5I2 displayed excellent activities in the degradation of RhB and salicylic acid under visible light irradiation.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 P. R. China +86 27 87558241
| | - Jian Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Man Luo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 P. R. China +86 27 87558241
| | - Chang Chen
- School of Resource and Environment Science, Wuhan University Wuhan 430070 P. R. China
| | - Pei Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 P. R. China +86 27 87558241
| |
Collapse
|
29
|
Zhou D, Zhang Q, Wang S, Jia Y, Liu W, Duan H, Sun X. Hollow-Structured Layered Double Hydroxide: Structure Evolution Induced by Gradient Composition. Inorg Chem 2020; 59:1804-1809. [PMID: 31940197 DOI: 10.1021/acs.inorgchem.9b03005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rational design of hollow-structured materials with high specific area, advanced mass transfer, and exposure of selected sites is of great significance in both fundamental scientific research and applicable industrialization fields. In this work, we report a CoAl layered double hydroxides (LDH) nanoring evolved from integrate nanosheet in a urea hydrolysis process, showing enhanced oxygen reduction reaction activity. Detailed investigations into the evolution nature suggest that a gradient-increased Al3+ composition exists in the core region of the nanosheet arised from distinctly lower solubility of Al3+ than Co2+ in the synthesis; therefore, the selective etching of Al3+ by OH- produced from urea hydrolysis leads to the formation of nanoring structure. Probed as an oxygen reduction reaction catalyst, the CoAl-LDH nanoring illustrates a half-wave potential lowered by around 110 mV compared to the integrate nanosheet counterpart, which might be due to the exposure of more edge sites with higher activity. This work paves a novel route for fabricating hollow-structured Al-contained metal hydroxides with defined outer edge and inner voids for multiple purposes.
Collapse
Affiliation(s)
- Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Qian Zhang
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shiyuan Wang
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yin Jia
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Haohong Duan
- Department of Chemistry , Tsinghua University , 30 Shuangqing Rd , Haidian District, Beijing 100084 , China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
30
|
Kumari S, Khan AA, Chowdhury A, Bhakta AK, Mekhalif Z, Hussain S. Efficient and highly selective adsorption of cationic dyes and removal of ciprofloxacin antibiotic by surface modified nickel sulfide nanomaterials: Kinetics, isotherm and adsorption mechanism. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124264] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Panda PK, Grigoriev A, Mishra YK, Ahuja R. Progress in supercapacitors: roles of two dimensional nanotubular materials. NANOSCALE ADVANCES 2020; 2:70-108. [PMID: 36133979 PMCID: PMC9419609 DOI: 10.1039/c9na00307j] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/28/2019] [Indexed: 05/03/2023]
Abstract
Overcoming the global energy crisis due to vast economic expansion with the advent of human reliance on energy-consuming labor-saving devices necessitates the demand for next-generation technologies in the form of cleaner energy storage devices. The technology accelerates with the pace of developing energy storage devices to meet the requirements wherever an unanticipated burst of power is indeed needed in a very short time. Supercapacitors are predicted to be future power vehicles because they promise faster charging times and do not rely on rare elements such as lithium. At the same time, they are key nanoscale device elements for high-frequency noise filtering with the capability of storing and releasing energy by electrostatic interactions between the ions in the electrolyte and the charge accumulated at the active electrode during the charge/discharge process. There have been several developments to increase the functionality of electrodes or finding a new electrolyte for higher energy density, but this field is still open to witness the developments in reliable materials-based energy technologies. Nanoscale materials have emerged as promising candidates for the electrode choice, especially in 2D sheet and folded tubular network forms. Due to their unique hierarchical architecture, excellent electrical and mechanical properties, and high specific surface area, nanotubular networks have been widely investigated as efficient electrode materials in supercapacitors, while maintaining their inherent characteristics of high power and long cycling life. In this review, we briefly present the evolution, classification, functionality, and application of supercapacitors from the viewpoint of nanostructured materials to apprehend the mechanism and construction of advanced supercapacitors for next-generation storage devices.
Collapse
Affiliation(s)
- Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University Box 516 SE-75120 Uppsala Sweden
| | - Anton Grigoriev
- Department of Physics and Astronomy, Uppsala University Box 516 SE-75120 Uppsala Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark Alsion 2 DK-6400 Denmark
| | - Rajeev Ahuja
- Department of Materials and Engineering, Royal Institute of Technology (KTH) SE-10044 Stockholm Sweden
| |
Collapse
|
32
|
Development of ZIF-Derived Nanoporous Carbon and Cobalt Sulfide-Based Electrode Material for Supercapacitor. MATERIALS 2019; 12:ma12182940. [PMID: 31514366 PMCID: PMC6766321 DOI: 10.3390/ma12182940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
Zeolitic Imidazolate Framework (ZIF-67) was prepared in two different solvents—water and methanol. Nanoporous carbon was derived from ZIF-67 via pyrolysis in an inert atmosphere. Anion exchange step of sulfidation on the synthesized material has a great influence on the structure and properties. Structural morphology and thermal stability were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive x-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), and thermogravimetric (TG) analysis. The electrochemical analysis was evaluated by cyclic voltammetry, chronopotentiometry, and impedance analysis. The as-prepared nanoporous carbon and cobalt sulfide (NPC/CS) electrode material (water) in 2M KOH electrolyte solution exhibit high specific capacitance of 677 F/g. The excellent electrochemical performance of the NPC/CS was attributed to its hierarchical structure. This functionalized ZIF driven strategy paves the way to the preparation of various metal oxide and metal sulfide-based nanoheterostructures by varying the type of metal.
Collapse
|
33
|
Zhu W, Chen Z, Pan Y, Dai R, Wu Y, Zhuang Z, Wang D, Peng Q, Chen C, Li Y. Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800426. [PMID: 30125990 DOI: 10.1002/adma.201800426] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Hollow nanomaterials have attracted a broad interest in multidisciplinary research due to their unique structure and preeminent properties. Owing to the high specific surface area, well-defined active site, delimited void space, and tunable mass transfer rate, hollow nanostructures can serve as excellent catalysts, supports, and reactors for a variety of catalytic applications, including photocatalysis, electrocatalysis, heterogeneous catalysis, homogeneous catalysis, etc. Based on state-of-the-art synthetic methods and characterization techniques, researchers focus on the purposeful functionalization of hollow nanomaterials for catalytic mechanism studies and intricate catalytic reactions. Herein, an overview of current reports with respect to the catalysis of functionalized hollow nanomaterials is given, and they are classified into five types of versatile strategies with a top-down perspective, including textual and composition modification, encapsulation, multishelled construction, anchored single atomic site, and surface molecular engineering. In the detailed case studies, the design and construction of hierarchical hollow catalysts are discussed. Moreover, since hollow structure offers more than two types of spatial-delimited sites, complicated catalytic reactions are elaborated. In summary, functionalized hollow nanomaterials provide an ideal model for the rational design and development of efficient catalysts.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Pan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruoyun Dai
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yue Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
34
|
Ikkurthi KD, Srinivasa Rao S, Ahn JW, Sunesh CD, Kim HJ. A cabbage leaf like nanostructure of a NiS@ZnS composite on Ni foam with excellent electrochemical performance for supercapacitors. Dalton Trans 2019; 48:578-586. [DOI: 10.1039/c8dt04139c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, a NiS@ZnS composite nanostructure was synthesized on a nickel foam substrate by a facile chemical bath deposition (CBD) method.
Collapse
Affiliation(s)
| | - S. Srinivasa Rao
- School of Mechanical and Mechatronics Engineering
- KyungSung University
- Busan
- Republic of Korea
| | - Jin-Woo Ahn
- School of Mechanical and Mechatronics Engineering
- KyungSung University
- Busan
- Republic of Korea
| | | | - Hee-Je Kim
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| |
Collapse
|
35
|
Pan J, Wang F, Zhang L, Song S, Zhang H. Clean synthesis of ZnCo2O4@ZnCo-LDHs yolk–shell nanospheres composed of ultra-thin nanosheets with enhanced electrocatalytic properties. Inorg Chem Front 2019. [DOI: 10.1039/c8qi00972d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnCo2O4@ZnCo-LDHs yolk–shell nanospheres are prepared by a clean approach via controlled hydrolysis of mixed metal glycolates. The structures exhibit good oxygen evolution reaction activity.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- College of Chemistry
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- College of Chemistry
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
| |
Collapse
|
36
|
Chebrolu VTV, Balakrishnan B, Cho I, Bak JS, Kim HJ. Selenium vacancies enriched the performance of supercapacitors with excellent cycling stability via a simple chemical bath deposition method. Dalton Trans 2019; 48:8254-8263. [DOI: 10.1039/c9dt00758j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a simple and cost-effective route for the fabrication of NiWO4, NiWO4P, and NiWO4Se nanostructures using the chemical bath deposition method.
Collapse
Affiliation(s)
| | | | - Inho Cho
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jin-Soo Bak
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hee-Je Kim
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
37
|
Sahoo S, Satpati AK, Sahoo PK, Naik PD. Incorporation of Carbon Quantum Dots for Improvement of Supercapacitor Performance of Nickel Sulfide. ACS OMEGA 2018; 3:17936-17946. [PMID: 31458386 PMCID: PMC6643915 DOI: 10.1021/acsomega.8b01238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/04/2018] [Indexed: 06/10/2023]
Abstract
A facile hydrothermal method is adopted for the synthesis of hierarchical flowerlike nickel sulfide nanostructure materials and their composite with carbon quantum dot (NiS/C-dot) composite. The composite material exhibited good performance for electrochemical energy-storage devices as supercapacitor with a specific capacity of 880 F g-1 at a current density of 2 A g-1. The material remained stable up to the tested 2000 charge-discharge cycles. Carbon quantum dots of size 1.3 nm were synthesized from natural sources and the favorable electronic and surface property of C-dots were utilized for improvement of the supercapacitor performance of NiS. The results from Tafel analysis, double-layer capacitance, and the impedance measurement reveal that the incorporation of C-dots inside the NiS matrix has improved the charge-transfer process, which is mainly responsible for the enhancement of the supercapacitive property of the composite materials.
Collapse
Affiliation(s)
- Srikant Sahoo
- Analytical
Chemistry Division, Chemistry Group, Bhabha
Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ashis Kumar Satpati
- Analytical
Chemistry Division, Chemistry Group, Bhabha
Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Prasanta Kumar Sahoo
- Centre
for Nano Science and Nano Technology, Siksha ‘O’ Anusandhan, Bhubaneswar 751030, Odisha, India
| | - Prakash Dattatray Naik
- Analytical
Chemistry Division, Chemistry Group, Bhabha
Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
38
|
Abdelsalam ME, Elghamry I, Touny AH, Saleh MM. Nickel phosphate/carbon fibre nanocomposite for high-performance pseudocapacitors. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1279-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Luan F, Zhang S, Chen D, Wei F, Zhuang X. Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Zou Y, Cui Y, Zhou Z, Zan P, Guo Z, Zhao M, Ye L, Zhao L. Formation of honeycomb-like Mn-doping nickel hydroxide/Ni3S2 nanohybrid for efficient supercapacitive storage. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Tiruneh SN, Kang BK, Choi HW, Kwon SB, Kim MS, Yoon DH. Millerite Core-Nitrogen-Doped Carbon Hollow Shell Structure for Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802933. [PMID: 30216668 DOI: 10.1002/smll.201802933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/18/2018] [Indexed: 05/26/2023]
Abstract
Nickel sulfides have drawn much attention with the benefits of a high redox activity, high electrical conductivity, low cost, and fabrication ease; however, these metal sulfides are susceptible to mechanical degradation regarding their cycling performance. Conversely, hollow carbon shells exhibit a substantial electrochemical steadiness in energy storage applications. Here, the design and development of a novel millerite core-nitrogen-doped carbon hollow shell (NiS-NC HS) structure for electrochemical energy storage is presented. The nitrogen-doped carbon hollow shell (NC HS) protects against the degradation and the millerite-core aggregation, giving rise to an excellent rate capability and stability during the electrochemical charging-discharging processes, in addition to improving the NiS-NC HS conductivity. The NiS-NC HS/18h supercapacitor electrode displays an outstanding specific capacitance of 1170.72 F g-1 (at 0.5 A g-1 ) and maintains 90.71% (at 6 A g-1 ) of its initial capacitance after 4000 charge-discharge cycles, owing to the unique core-shell structure. An asymmetric-supercapacitor device using NiS-NC HS and activated-carbon electrodes exhibits a high power and energy density with a remarkable cycling stability, maintaining 89.2% of its initial capacitance after 5000 cycles.
Collapse
Affiliation(s)
- Sintayehu Nibret Tiruneh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Bong Kyun Kang
- Nano Materials and Components Research Center, Korea Electronics Technology Institute, Seongnam, 463-816, Republic of Korea
| | - Hyung Wook Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seok Bin Kwon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Min Seob Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Dae Ho Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| |
Collapse
|
42
|
Harish S, Naveen AN, Abinaya R, Archana J, Ramesh R, Navaneethan M, Shimomura M, Hayakawa Y. Enhanced performance on capacity retention of hierarchical NiS hexagonal nanoplate for highly stable asymmetric supercapacitor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.161] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Yu L, Yu XY, Lou XWD. The Design and Synthesis of Hollow Micro-/Nanostructures: Present and Future Trends. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800939. [PMID: 30009431 DOI: 10.1002/adma.201800939] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/27/2018] [Indexed: 05/15/2023]
Abstract
Hollow micro-/nanostructures have attracted tremendous interest owing to their intriguing structure-induced physicochemical properties and great potential for widespread applications. With the development of modern synthetic methodology and analytical instruments, a rapid structural/compositional evolution of hollow structures from simple to complex has occurred in recent decades. Here, an updated overview of research progress made in the synthesis of hollow structures is provided. After an introduction of definition and classification, achievements in synthetic approaches for these delicate hollow architectures are presented in detail. According to formation mechanisms, these strategies can be categorized into four different types, including hard-templating, soft-templating, self-templated, and template-free methods. In particular, the rationales and emerging innovations in conventional templating syntheses are in focus. The development of burgeoning self-templating strategies based on controlled etching, outward diffusion, and heterogeneous contraction is also summarized. In addition, a brief overview of template-free methods and recent advances on combined mechanisms is provided. Notably, the strengths and weaknesses of each category are discussed in detail. In conclusion, a perspective on future trends in the research of hollow micro-/nanostructures is given.
Collapse
Affiliation(s)
- Le Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xin Yao Yu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
44
|
Kang J, Yim S. Enhanced cycle stability of a NiCo 2S 4 nanostructured electrode for supercapacitors fabricated by the alternate-dip-coating method. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180506. [PMID: 30225043 PMCID: PMC6124026 DOI: 10.1098/rsos.180506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Nanostructured nickel cobalt sulfide (NiCo2S4) electrodes are successfully fabricated using a simple alternate-dip-coating method. The process involves dipping a TiO2 nanoparticles-covered substrate in a nickel/cobalt precursor solution and sulfur precursor solution alternately at room temperature. The fabricated bimetallic sulfide electrode exhibits a synergetic improvement compensating for the disadvantages of the two single metal sulfide electrodes, i.e. the poor cycle stability of the nickel sulfide electrode and the low specific capacitance (Csp) of the cobalt sulfide electrode. The two capacitive properties are optimized by adjusting the ratio of nickel and cobalt concentrations in the metal precursor solution, reaching a Csp of 516 F g-1 at a current density of 1 mA cm-2, with its retention being 99.9% even after 2000 galvanostatic charge-discharge cycles.
Collapse
Affiliation(s)
| | - Sanggyu Yim
- Department of Chemistry, Kookmin University, Seoul 02707, South Korea
| |
Collapse
|
45
|
Zhou J, Liu Y, Zhang Z, Huang Z, Chen X, Ren X, Ren L, Qi X, Zhong J. Hierarchical NiSe2 sheet-like nano-architectures as an efficient and stable bifunctional electrocatalyst for overall water splitting: Phase and morphology engineering. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
46
|
One-Pot Hydrothermal Synthesis of Novel Cu-MnS with PVP Cabbage-Like Nanostructures for High-Performance Supercapacitors. ENERGIES 2018. [DOI: 10.3390/en11061590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Li Y, Shi M, Wang L, Wang M, Li J, Cui H. Tailoring synthesis of Ni3S2 nanosheets with high electrochemical performance by electrodeposition. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Sacrificial-template-free synthesis of core-shell C@Bi 2S 3 heterostructures for efficient supercapacitor and H 2 production applications. Sci Rep 2018. [PMID: 29520107 PMCID: PMC5843642 DOI: 10.1038/s41598-018-22622-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Core-shell heterostructures have attracted considerable attention owing to their unique properties and broad range of applications in lithium ion batteries, supercapacitors, and catalysis. Conversely, the effective synthesis of Bi2S3 nanorod core@ amorphous carbon shell heterostructure remains an important challenge. In this study, C@Bi2S3 core-shell heterostructures with enhanced supercapacitor performance were synthesized via sacrificial- template-free one-pot-synthesis method. The highest specific capacities of the C@Bi2S3 core shell was 333.43 F g-1 at a current density of 1 A g-1. Core-shell-structured C@Bi2S3 exhibits 1.86 times higher photocatalytic H2 production than the pristine Bi2S3 under simulated solar light irradiation. This core-shell feature of C@Bi2S3 provides efficient charge separation and transfer owing to the formed heterojunction and a short radial transfer path, thus efficiently diminishing the charge recombination; it also facilitates plenty of active sites for the hydrogen evolution reaction owing to its mesoporous nature. These outcomes will open opportunities for developing low-cost and noble-metal-free efficient electrode materials for water splitting and supercapacitor applications.
Collapse
|
49
|
Hao C, Wang L, Wen F, Xiang J, Li L, Hu W, Liu Z. Layer structured bismuth selenides Bi 2Se 3 and Bi 3Se 4 for high energy and flexible all-solid-state micro-supercapacitors. NANOTECHNOLOGY 2018; 29:085401. [PMID: 29350193 DOI: 10.1088/1361-6528/aaa314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.
Collapse
Affiliation(s)
- Chunxue Hao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinghuangdao 066004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Fast ion transport through ultrathin shells of metal sulfide hollow nanocolloids used for high-performance energy storage. Sci Rep 2018; 8:30. [PMID: 29311670 PMCID: PMC5758753 DOI: 10.1038/s41598-017-18504-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/13/2017] [Indexed: 11/23/2022] Open
Abstract
Metal sulfide (MS, nickel sulfide/copper sulfide) hollow spheres with hierarchical, ultrathin shell structures have been constructed by a facile method. The as-formed MS hollow structures are shown to be uniform in sizes with hierarchical ultrathin shells, which could facilitate the transport of electrolyte ions. Electrochemical evaluations of the as-fabricated MS based materials as supercapacitors electrodes having high large surface area (106–124 m2 g−1) and high specific capacitances (up to 1460 F g−1) with good cycling stability (up to 94% retention after 5000 cycles), showing their potential applications in the next-generation high-performance supercapacitors used for energy storage.
Collapse
|