1
|
Grasso G, Deriu MA, Patrulea V, Borchard G, Möller M, Danani A. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization. PLoS One 2017; 12:e0186816. [PMID: 29088239 PMCID: PMC5663398 DOI: 10.1371/journal.pone.0186816] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Marco Agostino Deriu
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Viorica Patrulea
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Michael Möller
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| |
Collapse
|
2
|
Gupta S, Pfeil J, Kumar S, Poulsen C, Lauer U, Hamann A, Hoffmann U, Haag R. Tolerogenic modulation of the immune response by oligoglycerol- and polyglycerol-peptide conjugates. Bioconjug Chem 2015; 26:669-79. [PMID: 25757018 DOI: 10.1021/bc500608f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptide-based therapy is a promising strategy for antigen-specific immunosuppression to treat or even heal autoimmune diseases with significantly reduced adverse effects compared to conventional therapies. However, there has been no major success due to the drawbacks of native peptides, i.e., limited bioavailability. Considering the importance and limitations of peptide-based therapies for treatment of autoimmune diseases, we designed and constructed oligoglycerol (OG)- and polyglycerol (PG)-based peptide conjugates. They were evaluated for their biological activity (in vitro and in vivo), bioavailability, and tolerogenic potential. Among the OG- and PG-peptide constructs, PG-peptide constructs exhibited an extended bioavailability compared to OG-peptide constructs and unconjugated peptide. Interestingly, size, structure, and linker chemistry played a critical role for the tolerogenic capacity of the constructs. The PG-peptide construct bound via an ester linkage was the most tolerogenic conjugate, while the PG-peptide construct bound via an amide induced stronger proliferation, but also higher TNF production and lower frequencies of Foxp3(+) regulatory T-cells. Therefore, we conclude that PG-peptide conjugates bound via an ester linkage are not only promising candidates for tolerogenic vaccination, but also open a new avenue toward the application of peptides for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Shilpi Gupta
- †Organic and Macromolecular Chemistry, Department of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany.,‡Department of Chemistry, Hindu College, Sonepat-131001, Haryana, India
| | - Jennifer Pfeil
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sumit Kumar
- †Organic and Macromolecular Chemistry, Department of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany.,∥Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat-131039, Haryana, India
| | - Christina Poulsen
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Uta Lauer
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alf Hamann
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ute Hoffmann
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer Haag
- †Organic and Macromolecular Chemistry, Department of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
3
|
Bartolami E, Bessin Y, Bettache N, Gary-Bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015; 13:9427-38. [DOI: 10.1039/c5ob01404b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragment self-assembly was used for producing clusters with a variety of scaffolds and ligands, and an effective siRNA vector was identified.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
4
|
Tian WD, Ma YQ. Theoretical and computational studies of dendrimers as delivery vectors. Chem Soc Rev 2013; 42:705-27. [PMID: 23114420 DOI: 10.1039/c2cs35306g] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is a great challenge for nanomedicine to develop novel dendrimers with maximum therapeutic potential and minimum side-effects for drug and gene delivery. As delivery vectors, dendrimers must overcome lots of barriers before delivering the bio-agents to the target in the cell. Extensive experimental investigations have been carried out to elucidate the physical and chemical properties of dendrimers and explore their behaviors when interacting with biomolecules, such as gene materials, proteins, and lipid membranes. As a supplement of the experimental techniques, it has been proved that computer simulations could facilitate the progress in understanding the delivery process of bioactive molecules. The structures of dendrimers in dilute solutions have been intensively investigated by monomer-resolved simulations, coarse-grained simulations, and atom-resolved simulations. Atomistic simulations have manifested that the hydrophobic interactions, hydrogen-bond interactions, and electrostatic attraction play critical roles in the formation of dendrimer-drug complexes. Multiscale simulations and statistical field theories have uncovered some physical mechanisms involved in the dendrimer-based gene delivery systems. This review will focus on the current status and perspective of theoretical and computational contributions in this field in recent years. (275 references).
Collapse
Affiliation(s)
- Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | | |
Collapse
|
5
|
Kuan SL, Stöckle B, Reichenwallner J, Ng DYW, Wu Y, Doroshenko M, Koynov K, Hinderberger D, Müllen K, Weil T. Dendronized albumin core-shell transporters with high drug loading capacity. Biomacromolecules 2013; 14:367-76. [PMID: 23210662 DOI: 10.1021/bm301531c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe the synthesis of a core-shell biohybrid consisting of a human serum albumin (HSA) core that serves as a reservoir for lipophilic molecules and a cationized shell region consisting of ethynyl-G2.0-PAMAM or ethynyl-G3.0-PAMAM dendrons. The binding capacity of lipophilic guests was quantified applying electron paramagnetic resonance (EPR) spectroscopy, and five to six out of seven pockets were still available compared with HSA. The attachment of ethynyl-G2.0-PAMAM dendrons to HSA yielded a nontoxic core-shell macromolecule that was clearly uptaken by A549 human epithelial cells due to the presence of the dendritic PAMAM shell. Significantly higher loading of doxorubicin was observed for dendronized G2-DHSA compared with the native protein due to the availability of binding pockets of the HSA core, and interaction with the dendritic shell. Dendronized G2-DHSA-doxorubicin displayed significant cytotoxicity resulting from high drug loading and high stability under different conditions, thus demonstrating its great potential as a transporter for drug molecules.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry III, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dong CM, Liu G. Linear–dendritic biodegradable block copolymers: from synthesis to application in bionanotechnology. Polym Chem 2013. [DOI: 10.1039/c2py20441j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|