1
|
Tadano A, Watabe Y, Tanigawa T, Konishi-Yamada S, Kubo T. Evaluation of fluorous affinity using fluoroalkyl-modified silica gel and selective separation of poly-fluoroalkyl substances in organic solvents. J Sep Sci 2024; 47:e2400121. [PMID: 39189598 DOI: 10.1002/jssc.202400121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/23/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.
Collapse
Affiliation(s)
- Atsuya Tadano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sayaka Konishi-Yamada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
2
|
Ateia M, Wei H, Andreescu S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2636-2651. [PMID: 38302436 DOI: 10.1021/acs.est.3c09889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ensuring water quality and safety requires the effective detection of emerging contaminants, which present significant risks to both human health and the environment. Field deployable low-cost sensors provide solutions to detect contaminants at their source and enable large-scale water quality monitoring and management. Unfortunately, the availability and utilization of such sensors remain limited. This Perspective examines current sensing technologies for detecting emerging contaminants and analyzes critical barriers, such as high costs, lack of reliability, difficulties in implementation in real-world settings, and lack of stakeholder involvement in sensor design. These technical and nontechnical barriers severely hinder progression from proof-of-concepts and negatively impact user experience factors such as ease-of-use and actionability using sensing data, ultimately affecting successful translation and widespread adoption of these technologies. We provide examples of specific sensing systems and explore key strategies to address the remaining scientific challenges that must be overcome to translate these technologies into the field such as improving sensitivity, selectivity, robustness, and performance in real-world water environments. Other critical aspects such as tailoring research to meet end-users' requirements, integrating cost considerations and consumer needs into the early prototype design, establishing standardized evaluation and validation protocols, fostering academia-industry collaborations, maximizing data value by establishing data sharing initiatives, and promoting workforce development are also discussed. The Perspective describes a set of guidelines for the development, translation, and implementation of water quality sensors to swiftly and accurately detect, analyze, track, and manage contamination.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676-5810, United States
| |
Collapse
|
3
|
Leung SCE, Wanninayake D, Chen D, Nguyen NT, Li Q. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS) - Challenges and opportunities in sensing and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166764. [PMID: 37660805 DOI: 10.1016/j.scitotenv.2023.166764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a class of persistent organic pollutants that presents health and environmental risks. PFAS are ubiquitously present in the environment, but current remediation technologies are ineffective in degrading them into innocuous chemicals, especially high energy degradation processes often generate toxic short chain intermediates. Therefore, the best remediation strategy is to first detect the source of pollution, followed by capturing and mineralising or recycling of the compounds. The main objective of this article is to summarise the unique physicochemical properties and to critically review the intermolecular and intramolecular physicochemical interactions of PFAS, and how these interactions can become obstacles; and at the same time, how they can be applied to the PFAS sensing, capturing, and recycling process. The physicochemical interactions of PFAS chemicals are being reviewed in this paper includes, (1) fluorophilic interactions, (2) hydrophobic interactions, (3) electrostatic interactions and cation bridging, (4) ionic exchange and (5) hydrogen bond. Moreover, all the different influential factors to these interactions have also been reported. Finally, properties of these interactions are compared against one another, and the recommendations for future designs of affinity materials for PFAS have been given.
Collapse
Affiliation(s)
- Shui Cheung Edgar Leung
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dushanthi Wanninayake
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
4
|
Rehman AU, Crimi M, Andreescu S. Current and emerging analytical techniques for the determination of PFAS in environmental samples. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2023; 37:e00198. [DOI: 10.1016/j.teac.2023.e00198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04603-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Meng Z, Liu Z, Fan J, Li J, Zhou W, Gao H, Lu R. Perfluoro octanoic acid-modified magnetic hyperbranched polyamideamine as a sorbent for the extraction of fluorine-containing pesticides from water samples. J Sep Sci 2021; 44:3830-3839. [PMID: 34431614 DOI: 10.1002/jssc.202100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Perfluoro octanoic acid was modified on the surface of magnetic hyperbranched polyamideamine by acid amine condensation. The morphology and chemical composition of perfluoro octanoic acid-modified magnetic hyperbranched polyamideamine was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, zeta potential, particle size analysis, Brunauer-Emmett-Teller measurement, and X-ray photoelectron spectroscopy. Perfluoro octanoic acid-modified magnetic hyperbranched polyamideamine was applied in magnetic solid phase extraction for the separation and enrichment of four fluorine-containing pesticides (indoxacarb, metaflumizone, cyflumetofen, and cyhalothrin). The magnetic solid phase extraction method based on perfluoro octanoic acid-modified magnetic hyperbranched polyamideamine has low method detection limits (0.30-0.49 μg/L), a satisfactory coefficient of determination (0.9995-0.9999), wide linear ranges (2.5-250 μg/L), and good repeatability (intraday: 2.6-4.7%; interday: 1.1-7.9%). The enrichment factors and extraction efficiences varied from 55 to 76 and 69 to 96%, respectively. The sorbent-to-sorbent reproducibility was in the range of 3.2-7.6%, indicating that the synthesis of the sorbent was reliable. For the detection of actual water samples, the relative recoveries were in the range from 80.1 to 114.4% with relative standard deviations less than 9.6%. The calculation results of quantum chemistry calculations showed that after the modification of perfluoro octanoic acid, the interaction between the sorbent and four fluorine-containing pesticides was stronger.
Collapse
Affiliation(s)
- Zilin Meng
- Department of Applied Chemistry, China Agricultural University, Beijing, P. R. China
| | - Zikai Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, P. R. China
| | - Jiaxuan Fan
- Department of Applied Chemistry, China Agricultural University, Beijing, P. R. China
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing, P. R. China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, P. R. China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, P. R. China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
7
|
Savage DT, Hilt JZ, Dziubla TD. Leveraging the thermoresponsiveness of fluorinated poly(N-isopropylacrylamide) copolymers as a sensing tool for perfluorooctane sulfonate. Analyst 2021; 146:3599-3607. [PMID: 33928975 PMCID: PMC8224178 DOI: 10.1039/d1an00144b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to mounting evidence of the negative health effects of persistent perfluoroalkyl acids (PFAAs) with long (i.e., >C7) tails, there is a need for convenient systems capable of sensing these contaminants at dilute aqueous concentrations. To address this concern, a thermoresponsive polymeric network composed of poly(N-isopropylacrylamide) copolymerized with fluorinated comonomers was studied to characterize the gel's physical response to fluorosurfactants in solution. Incorporating fluorinated comonomers into the polymer backbone raised their swelling in fluorocontaminant solutions relative to water - gels synthesized with 10.0 mol% 2,2,2-trifluoroethyl acrylate (TFEA) displayed a heightened maximum water-analyte swelling difference of 3761 ± 147% compared to 3201 ± 466% for non-fluorinated gels in the presence of 1 mM tetraethylammonium perfluorooctane sulfonate (TPFOS). The normalized area under the curve for gels with 12.5 mol% TFEA was further raised to 1.77 ± 0.09, indicating a broadened response window for the contaminant, but at the cost of reducing the overall swelling ratio to 3227 ± 166% and elongating the time required to reach swelling equilibrium. Overall, a copolymer fed with 10.7 mol% TFEA was predicted to maximize both the swelling and response window of the polymer toward TPFOS. Equilibration times followed a logarithmic increase as the percentage of comonomer was raised, noting gradual fluorosurfactant penetration into the gels impeded by initial gel compaction caused by the addition of fluorinated comonomers. Comparative study of gels containing 1H,1H,7H-dodecafluoroheptyl acrylate, TFEA, or 1,1,1,3,3,3-hexafluoroisopropyl acrylate identified careful selection of fluorinated comonomers and their feed ratios as useful tools for tailoring the network's swelling response to TPFOS.
Collapse
Affiliation(s)
- Dustin T Savage
- University of Kentucky, College of Engineering, 512 Administration Drive, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - J Zach Hilt
- University of Kentucky, College of Engineering, 512 Administration Drive, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - Thomas D Dziubla
- University of Kentucky, College of Engineering, 512 Administration Drive, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| |
Collapse
|
8
|
Guo H, Liu Y, Ma W, Yan L, Li K, Lin S. Surface molecular imprinting on carbon microspheres for fast and selective adsorption of perfluorooctane sulfonate. JOURNAL OF HAZARDOUS MATERIALS 2018; 348:29-38. [PMID: 29367130 DOI: 10.1016/j.jhazmat.2018.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with high biological and chemical stability. It is important to develop fast and selective adsorption method for PFOS wastewater treatment. In this study, novel molecularly imprinted polymer (MIP) for PFOS adsorption was prepared. To obtain rapid adsorption kinetics, the MIP has been designed as the surface polymer using the carbon microsphere as carrier (MIP-CMSs). To ensure high adsorption selectivity to the template, two monomers with different functional structures, namely methacryloyloxyethyl trimethyl ammonium chloride (DMC) and 2-(trifluoromethyl)acrylic acid (TFMA), were employed as bi-functional monomers. The structure and morphology of MIP-CMSs were characterized using field emission scanning electron microscopy with the energy dispersive spectrometer, transmission electron microscopy, and Fourier transformation infrared spectroscopy. Based on the adsorption experiments, it was concluded that MIP-CMSs had specific binding property for PFOS on acidic condition. The adsorption equilibrium time was 1h, while the adsorption capacity was 75.99 mg g-1 at pH 3. Coexistence with contaminants with different structures had little influence on the selectivity for PFOS. The spent MIP-CMSs could be regenerated by the methanol and acetic acid mixed solution. The electrostatic interaction and molecular size played important roles in recognizing the target compound in the adsorption process.
Collapse
Affiliation(s)
- Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Wentian Ma
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Liushui Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Kexin Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Sen Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
9
|
Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds-A Mini-Review. NANOMATERIALS 2015; 5:981-1003. [PMID: 28347047 PMCID: PMC5312915 DOI: 10.3390/nano5020981] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022]
Abstract
Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties.
Collapse
|
10
|
Fluorous affinity-based separation techniques for the analysis of biogenic and related molecules. J Pharm Biomed Anal 2014; 101:151-60. [DOI: 10.1016/j.jpba.2014.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
|
11
|
Du Z, Deng S, Bei Y, Huang Q, Wang B, Huang J, Yu G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents--a review. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:443-54. [PMID: 24813664 DOI: 10.1016/j.jhazmat.2014.04.038] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/29/2014] [Accepted: 04/20/2014] [Indexed: 05/08/2023]
Abstract
Perfluorinated compounds (PFCs) have drawn great attention recently due to their wide distribution in aquatic environments and potential toxic to animals and human beings. Adsorption not only is an effective technology to remove PFCs from water or wastewater, but also affects PFC distribution at solid-liquid interfaces and their fate in aquatic environments. This article reviews the adsorption behavior of different PFCs (mainly perfluorooctane sulfonate and perfluorooctanoate) on various adsorptive materials. Some effective adsorbents are introduced in detail in terms of their preparation, characteristics, effects of solution chemistry and PFC properties on adsorption. Adsorption mechanisms of PFCs on different adsorbents are summarized, and various interactions including electrostatic interaction, hydrophobic interaction, ligand exchange, and hydrogen bond are fully reviewed. The adsorbents with amine groups generally have high adsorption capacity for PFCs, and formation of micelles/hemi-micelles plays an important role in achieving high adsorption capacity of perfluorinated surfactants on some porous adsorbents. Hydrophobic interaction is mainly responsible for PFC adsorption, but the difference between PFCs and traditional hydrocarbons has not clearly clarified. This review paper would be helpful for the preparation of effective adsorbents for PFC removal and understanding interfacial process of PFCs during their transport and fate in aquatic environments.
Collapse
Affiliation(s)
- Ziwen Du
- School of Environment, POPs Research Center, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- School of Environment, POPs Research Center, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China.
| | - Yue Bei
- School of Environment, POPs Research Center, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| | - Qian Huang
- School of Environment, POPs Research Center, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Environment, POPs Research Center, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- School of Environment, POPs Research Center, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, POPs Research Center, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Takezawa H, Murase T, Resnati G, Metrangolo P, Fujita M. Recognition of Polyfluorinated Compounds Through Self-Aggregation in a Cavity. J Am Chem Soc 2014; 136:1786-8. [DOI: 10.1021/ja412893c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hiroki Takezawa
- Department of Applied
Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Murase
- Department of Applied
Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Giuseppe Resnati
- Laboratory of Nanostructured
Fluorinated Materials, Politecnico di Milano, Via L. Mancinelli 7, IT-20131 Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory of Nanostructured
Fluorinated Materials, Politecnico di Milano, Via L. Mancinelli 7, IT-20131 Milano, Italy
| | - Makoto Fujita
- Department of Applied
Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Takayose M, Akamatsu K, Nawafune H, Murashima T, Matsui J. Colorimetric Detection of Perfluorooctanoic Acid (PFOA) Utilizing Polystyrene-Modified Gold Nanoparticles. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.696225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|