1
|
Hervé M, Boyer A, Brédy R, Allouche AR, Compagnon I, Lépine F. On-the-fly investigation of XUV excited large molecular ions using a high harmonic generation light source. Sci Rep 2022; 12:13191. [PMID: 35915132 PMCID: PMC9343369 DOI: 10.1038/s41598-022-17416-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
We present experiments where extreme ultraviolet femtosecond light pulses are used to photoexcite large molecular ions at high internal energy. This is done by combining an electrospray ionization source and a mass spectrometer with a pulsed light source based on high harmonic generation. This allows one to study the interaction between high energy photons and mass selected ions in conditions that are accessible on large-scale facilities. We show that even without an ion trapping device, systems as large as a protein can be studied. We observe light induced dissociative ionization and proton migration in model systems such as reserpine, insulin and cytochrome c. These results offer new perspectives to perform time-resolved experiments with ultrashort pulses at the heart of the emerging field of attosecond chemistry.
Collapse
Affiliation(s)
- Marius Hervé
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Alexie Boyer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Richard Brédy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France.
| | - Abdul-Rahman Allouche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Isabelle Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| | - Franck Lépine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (UMR 5306 CNRS), 10 rue Ada Byron, Campus Lyon Tech La Doua, 69622, Villeurbanne Cedex, France
| |
Collapse
|
2
|
Gibbard JA, Clarke CJ, Verlet JRR. Photoelectron spectroscopy of the protoporphyrin IX dianion. Phys Chem Chem Phys 2021; 23:18425-18431. [PMID: 34612383 DOI: 10.1039/d1cp03075b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional photoelectron spectroscopy using nanosecond and femtosecond lasers has been used to study the protopophyrin IX dianion at photon energies between 1.8-4.1 eV. The photoelectron spectra indicated the presence of two direct detachment channels, tunnelling through the repulsive Coulomb barrier (RCB) and thermionic emission from monoanions. A direct detachment feature suggested a near 0 eV electron affinity, which may be attributable to the repulsive through space interaction of the unshielded carboxylate groups. The minimum height of the repulsive Coulomb barrier (RCB) was found to be between 1.4-1.9 eV. Adiabatic tunnelling through the RCB was seen to occur on a timescale faster than rotational dephasing of the molecule. The observation of thermionic emission below the RCB in the nanosecond spectra originated from monoanions, which were produced via photon-cycling of the dianion.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
3
|
Verlet JRR, Horke DA, Chatterley AS. Excited states of multiply-charged anions probed by photoelectron imaging: riding the repulsive Coulomb barrier. Phys Chem Chem Phys 2014; 16:15043-52. [DOI: 10.1039/c4cp01667j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress towards understanding the repulsive Coulomb barrier in multiply-charged anion using photoelectron spectroscopy is discussed.
Collapse
Affiliation(s)
| | - Daniel A. Horke
- Center for Free-Electron Laser Science
- DESY
- 22607 Hamburg, Germany
| | | |
Collapse
|