1
|
Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing. Chem Res Chin Univ 2021; 37:846-854. [PMID: 34376961 PMCID: PMC8339700 DOI: 10.1007/s40242-021-1197-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 02/02/2023]
Abstract
Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates. The superior throughput, resolution, and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level. Herein, we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing. Benefitting from uniform, reproducible, and large-area array patterns, DPN-based biosensors have shown high sensitivity, excellent selectivity, and fast response in target analyte detection and specific cellular recognition. We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed, programmable, and commercial array-based sensing biochips.
Collapse
|
2
|
Shunaev VV, Glukhova OE. Nanoindentation of Graphene/Phospholipid Nanocomposite: A Molecular Dynamics Study. Molecules 2021; 26:E346. [PMID: 33440910 PMCID: PMC7826516 DOI: 10.3390/molecules26020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Graphene and phospholipids are widely used in biosensing and drug delivery. This paper studies the mechanical and electronic properties of a composite based on two graphene flakes and dipalmitoylphosphatidylcholine (DPPC) phospholipid molecules located between them via combination of various mathematical modeling methods. Molecular dynamics simulation showed that an adhesion between bilayer graphene and DPCC increases during nanoindentation of the composite by a carbon nanotube (CNT). Herewith, the DPPC molecule located under a nanotip takes the form of graphene and is not destroyed. By the Mulliken procedure, it was shown that the phospholipid molecules act as a "buffer" of charge between two graphene sheets and CNT. The highest values of electron transfer in the graphene/DPPC system were observed at the lower indentation point, when the deflection reached its maximum value.
Collapse
Affiliation(s)
| | - Olga E. Glukhova
- Department of Physics, Saratov State University, 410012 Saratov, Russia;
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
3
|
Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review. SENSORS 2019; 19:s19245382. [PMID: 31817599 PMCID: PMC6960530 DOI: 10.3390/s19245382] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
Abstract
Bulk acoustic wave (BAW) and surface acoustic wave (SAW) sensor devices have successfully been used in a wide variety of gas sensing, liquid sensing, and biosensing applications. Devices include BAW sensors using thickness shear modes and SAW sensors using Rayleigh waves or horizontally polarized shear waves (HPSWs). Analyte specificity and selectivity of the sensors are determined by the sensor coatings. If a group of analytes is to be detected or if only selective coatings (i.e., coatings responding to more than one analyte) are available, the use of multi-sensor arrays is advantageous, as the evaluation of the resulting signal patterns allows qualitative and quantitative characterization of the sample. Virtual sensor arrays utilize only one sensor but combine it with enhanced signal evaluation methods or preceding sample separation, which results in similar results as obtained with multi-sensor arrays. Both array types have shown to be promising with regard to system integration and low costs. This review discusses principles and design considerations for acoustic multi-sensor and virtual sensor arrays and outlines the use of these arrays in multi-analyte detection applications, focusing mainly on developments of the past decade.
Collapse
|
4
|
Willems N, Urtizberea A, Verre AF, Iliut M, Lelimousin M, Hirtz M, Vijayaraghavan A, Sansom MSP. Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study. ACS NANO 2017; 11:1613-1625. [PMID: 28165704 DOI: 10.1021/acsnano.6b07352] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Supported phospholipid membrane patches stabilized on graphene surfaces have shown potential in sensor device functionalization, including biosensors and biocatalysis. Lipid dip-pen nanolithography (L-DPN) is a method useful in generating supported membrane structures that maintain lipid functionality, such as exhibiting specific interactions with protein molecules. Here, we have integrated L-DPN, atomic force microscopy, and coarse-grained molecular dynamics simulation methods to characterize the molecular properties of supported lipid membranes (SLMs) on graphene and graphene oxide supports. We observed substantial differences in the topologies of the stabilized lipid structures depending on the nature of the surface (polar graphene oxide vs nonpolar graphene). Furthermore, the addition of water to SLM systems resulted in large-scale reorganization of the lipid structures, with measurable effects on lipid lateral mobility within the supported membranes. We also observed reduced lipid ordering within the supported structures relative to free-standing lipid bilayers, attributed to the strong hydrophobic interactions between the lipids and support. Together, our results provide insight into the molecular effects of graphene and graphene oxide surfaces on lipid bilayer membranes. This will be important in the design of these surfaces for applications such as biosensor devices.
Collapse
Affiliation(s)
- Nathalie Willems
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ainhoa Urtizberea
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea F Verre
- School of Materials and National Graphene Institute, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Maria Iliut
- School of Materials and National Graphene Institute, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Mickael Lelimousin
- CERMAV, CNRS and Université Grenoble Alpes , BP 53, Grenoble 38041 Cedex 9, France
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany
| | - Aravind Vijayaraghavan
- School of Materials and National Graphene Institute, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
5
|
Hirtz M, Brglez J, Fuchs H, Niemeyer CM. Selective Binding of DNA Origami on Biomimetic Lipid Patches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5752-5758. [PMID: 26389563 DOI: 10.1002/smll.201501333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/14/2015] [Indexed: 06/05/2023]
Abstract
Arrays of biomimetic lipid patches for studying the binding of DNA origami structures can be tailored in size, shape, and composition with the aid of lipid-dip pen nanolithography. This approach allows for analysis of the effects of lipid composition with high throughput which could be applied for the targeted presentation of functional DNA origami structures on surfaces.
Collapse
Affiliation(s)
- Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Josipa Brglez
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- Physical Institute and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität, 48149, Münster, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| |
Collapse
|
6
|
Förste A, Pfirrmann M, Sachs J, Gröger R, Walheim S, Brinkmann F, Hirtz M, Fuchs H, Schimmel T. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography. NANOTECHNOLOGY 2015; 26:175303. [PMID: 25854547 DOI: 10.1088/0957-4484/26/17/175303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm(2). For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm(2), yielding good statistic results.
Collapse
Affiliation(s)
- Alexander Förste
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), D 76021 Karlsruhe, Germany. Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), D 76128 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chartuprayoon N, Zhang M, Bosze W, Choa YH, Myung NV. One-dimensional nanostructures based bio-detection. Biosens Bioelectron 2015; 63:432-443. [DOI: 10.1016/j.bios.2014.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/05/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022]
|
8
|
Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat Commun 2014; 4:2591. [PMID: 24107937 PMCID: PMC3826641 DOI: 10.1038/ncomms3591] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/10/2013] [Indexed: 11/10/2022] Open
Abstract
The application of graphene in sensor devices depends on the ability to appropriately functionalize the pristine graphene. Here we show the direct writing of tailored phospholipid membranes on graphene using dip-pen nanolithography. Phospholipids exhibit higher mobility on graphene compared with the commonly used silicon dioxide substrate, leading to well-spread uniform membranes. Dip-pen nanolithography allows for multiplexed assembly of phospholipid membranes of different functionalities in close proximity to each other. The membranes are stable in aqueous environments and we observe electronic doping of graphene by charged phospholipids. On the basis of these results, we propose phospholipid membranes as a route for non-covalent immobilization of various functional groups on graphene for applications in biosensing and biocatalysis. As a proof of principle, we demonstrate the specific binding of streptavidin to biotin-functionalized membranes. The combination of atomic force microscopy and binding experiments yields a consistent model for the layer organization within phospholipid stacks on graphene. The sensitivity and selectivity of graphene-based biosensors depends on attaching various functional groups to graphene. Hirtz et al. use dip-pen nanolithography to directly write phospholipid membranes on graphene, which enables multiplexed and heterogeneous non-covalent functionalization.
Collapse
|
9
|
Dean SL, Morrow TJ, Patrick S, Li M, Clawson G, Mayer TS, Keating CD. Biorecognition by DNA oligonucleotides after exposure to photoresists and resist removers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11535-11545. [PMID: 23952639 PMCID: PMC3832179 DOI: 10.1021/la402362u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Combining biological molecules with integrated circuit technology is of considerable interest for next generation sensors and biomedical devices. Current lithographic microfabrication methods, however, were developed for compatibility with silicon technology rather than bioorganic molecules, and consequently it cannot be assumed that biomolecules will remain attached and intact during on-chip processing. Here, we evaluate the effects of three common photoresists (Microposit S1800 series, PMGI SF6, and Megaposit SPR 3012) and two photoresist removers (acetone and 1165 remover) on the ability of surface-immobilized DNA oligonucleotides to selectively recognize their reverse-complementary sequence. Two common DNA immobilization methods were compared: adsorption of 5'-thiolated sequences directly to gold nanowires and covalent attachment of 5'-thiolated sequences to surface amines on silica coated nanowires. We found that acetone had deleterious effects on selective hybridization as compared to 1165 remover, presumably due to incomplete resist removal. Use of the PMGI photoresist, which involves a high temperature bake step, was detrimental to the later performance of nanowire-bound DNA in hybridization assays, especially for DNA attached via thiol adsorption. The other three photoresists did not substantially degrade DNA binding capacity or selectivity for complementary DNA sequences. To determine whether the lithographic steps caused more subtle damage, we also tested oligonucleotides containing a single base mismatch. Finally, a two-step photolithographic process was developed and used in combination with dielectrophoretic nanowire assembly to produce an array of doubly contacted, electrically isolated individual nanowire components on a chip. Postfabrication fluorescence imaging indicated that nanowire-bound DNA was present and able to selectively bind complementary strands.
Collapse
Affiliation(s)
- Stacey L. Dean
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Thomas J. Morrow
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Sue Patrick
- Department of Pathology, Biochemistry and Molecular Biology, and Gittlen Cancer Research Foundation, Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mingwei Li
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Gary Clawson
- Department of Pathology, Biochemistry and Molecular Biology, and Gittlen Cancer Research Foundation, Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Theresa S. Mayer
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Christine D. Keating
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Nanotechnology-Based Biosensors and Diagnostics: Technology Push versus Industrial/Healthcare Requirements. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0047-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|