1
|
Palacios-Blanco I, Gómez L, Bort M, Mayerová N, Bágeľová Poláková S, Martín-Castellanos C. CDK phosphorylation of Sfr1 downregulates Rad51 function in late-meiotic homolog invasions. EMBO J 2024; 43:4356-4383. [PMID: 39174851 PMCID: PMC11445502 DOI: 10.1038/s44318-024-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Meiosis is the developmental program that generates gametes. To produce healthy gametes, meiotic recombination creates reciprocal exchanges between each pair of homologous chromosomes that facilitate faithful chromosome segregation. Using fission yeast and biochemical, genetic, and cytological approaches, we have studied the role of CDK (cyclin-dependent kinase) in the control of Swi5-Sfr1, a Rad51-recombinase auxiliary factor involved in homolog invasion during recombination. We show that Sfr1 is a CDK target, and its phosphorylation downregulates Swi5-Sfr1 function in the meiotic prophase. Expression of a phospho-mimetic sfr1-7D mutant inhibits Rad51 binding, its robust chromosome loading, and subsequently decreases interhomolog recombination. On the other hand, the non-phosphorylatable sfr1-7A mutant alters Rad51 dynamics at late prophase, and exacerbates chromatin segregation defects and Rad51 retention observed in dbl2 deletion mutants when combined with them. We propose Sfr1 phospho-inhibition as a novel cell-cycle-dependent mechanism, which ensures timely resolution of recombination intermediates and successful chromosome distribution into the gametes. Furthermore, the N-terminal disordered part of Sfr1, an evolutionarily conserved feature, serves as a regulatory platform coordinating this phospho-regulation, protein localization and stability, with several CDK sites and regulatory sequences being conserved.
Collapse
Affiliation(s)
- Inés Palacios-Blanco
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Lucía Gómez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - María Bort
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Nina Mayerová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
| | - Silvia Bágeľová Poláková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Bratislava, 840 05, Slovakia
| | | |
Collapse
|
2
|
Saikusa K, Asakawa D, Fuchigami S, Akashi S. Evaluation for Ion Heating of H2A-H2B Dimer in Ion Mobility Spectrometry-Mass Spectrometry. Mass Spectrom (Tokyo) 2023; 12:A0131. [PMID: 37860749 PMCID: PMC10582283 DOI: 10.5702/massspectrometry.a0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) provides m/z values and collision cross sections (CCSs) of gas-phase ions. In our previous study, an intrinsically disordered protein, the H2A-H2B dimer, was analyzed using IMS-MS, resulting in two conformational populations of CCS. Based on experimental and theoretical approaches, this resulted from a structural diversity of intrinsically disordered regions. We predicted that this phenomenon is related to ion heating in the IMS-MS instrument. In this study, to reveal the effect of ion heating from parameters in the IMS-MS instrument on the conformational population of the H2A-H2B dimer, we investigated the arrival time distributions of the H2A-H2B dimer by changing values of three instrumental parameters, namely, cone voltage located in the first vacuum chamber, trap collision energy (trap CE) for tandem mass spectrometry, and trap bias voltage for the entrance of IMS. These results revealed that the two populations observed for the H2A-H2B dimer were due to the trap bias voltage. Furthermore, to evaluate the internal energies of the analyte ions with respect to each parameter, benzylpyridinium derivatives were used as temperature-sensitive probes. The results showed that the trap CE voltage imparts greater internal energy to the ions than the trap bias voltage. In addition, this slight change in the internal energy caused by the trap bias voltage resulted in the structural diversity of the H2A-H2B dimer. Therefore, the trap bias voltage should be set with attention to the properties of the analytes, even if the effect of the trap bias voltage on the internal energy is negligible.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Umezono, Tsukuba, Ibaraki 305–8563, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Daiki Asakawa
- Research Institute for Measurement and Analytical Instrumentation, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Umezono, Tsukuba, Ibaraki 305–8568, Japan
| | - Sotaro Fuchigami
- School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka, Shizuoka 422–8526, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| |
Collapse
|
3
|
Sabei A, Prentiss M, Prévost C. Modeling the Homologous Recombination Process: Methods, Successes and Challenges. Int J Mol Sci 2023; 24:14896. [PMID: 37834348 PMCID: PMC10573387 DOI: 10.3390/ijms241914896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Homologous recombination (HR) is a fundamental process common to all species. HR aims to faithfully repair DNA double strand breaks. HR involves the formation of nucleoprotein filaments on DNA single strands (ssDNA) resected from the break. The nucleoprotein filaments search for homologous regions in the genome and promote strand exchange with the ssDNA homologous region in an unbroken copy of the genome. HR has been the object of intensive studies for decades. Because multi-scale dynamics is a fundamental aspect of this process, studying HR is highly challenging, both experimentally and using computational approaches. Nevertheless, knowledge has built up over the years and has recently progressed at an accelerated pace, borne by increasingly focused investigations using new techniques such as single molecule approaches. Linking this knowledge to the atomic structure of the nucleoprotein filament systems and the succession of unstable, transient intermediate steps that takes place during the HR process remains a challenge; modeling retains a very strong role in bridging the gap between structures that are stable enough to be observed and in exploring transition paths between these structures. However, working on ever-changing long filament systems submitted to kinetic processes is full of pitfalls. This review presents the modeling tools that are used in such studies, their possibilities and limitations, and reviews the advances in the knowledge of the HR process that have been obtained through modeling. Notably, we will emphasize how cooperative behavior in the HR nucleoprotein filament enables modeling to produce reliable information.
Collapse
Affiliation(s)
- Afra Sabei
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA02138, USA;
| | - Chantal Prévost
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| |
Collapse
|
4
|
Soloviev Z, Bullock JMA, James JMB, Sauerwein AC, Nettleship JE, Owens RJ, Hansen DF, Topf M, Thalassinos K. Structural mass spectrometry decodes domain interaction and dynamics of the full-length Human Histone Deacetylase 2. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140759. [PMID: 35051665 PMCID: PMC8825994 DOI: 10.1016/j.bbapap.2022.140759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Human Histone Deacetylase 2 (HDAC2) belongs to a conserved enzyme superfamily that regulates deacetylation inside cells. HDAC2 is a drug target as it is known to be upregulated in cancers and neurodegenerative disorders. It consists of globular deacetylase and C-terminus intrinsically-disordered domains [1-3]. To date, there is no full-length structure of HDAC2 available due to the high intrinsic flexibility of its C-terminal domain. The intrinsically-disordered domain, however, is known to be important for the enzymatic function of HDAC2 [1, 4]. Here we combine several structural Mass Spectrometry (MS) methodologies such as denaturing, native, ion mobility and chemical crosslinking, alongside biochemical assays and molecular modelling to study the structure and dynamics of the full-length HDAC2 for the first time. We show that MS can easily dissect heterogeneity inherent within the protein sample and at the same time probe the structural arrangement of the different conformers present. Activity assays combined with data from MS and molecular modelling suggest how the structural dynamics of the C-terminal domain, and its interactions with the catalytic domain, regulate the activity of this enzyme.
Collapse
Affiliation(s)
- Zoja Soloviev
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, UK.
| | - Joshua M A Bullock
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Juliette M B James
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, UK
| | - Andrea C Sauerwein
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Joanne E Nettleship
- PPUK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford OX11 0FA, UK; Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Raymond J Owens
- PPUK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford OX11 0FA, UK; Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK; Centre for Structural Systems Biology, Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, UK.
| |
Collapse
|
5
|
Azegami N, Taguchi R, Suzuki N, Sakata Y, Konuma T, Akashi S. Native Mass Spectrometry of BRD4 Bromodomains Linked to a Long Disordered Region. Mass Spectrom (Tokyo) 2022; 11:A0110. [PMID: 36713808 PMCID: PMC9853951 DOI: 10.5702/massspectrometry.a0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The contribution of disordered regions to protein function and structure is a relatively new field of study and of particular significance as their function has been implicated in some human diseases. Our objective was to analyze various deletion mutants of the bromodomain-containing protein 4 (BRD4) using native mass spectrometry to characterize the gas-phase behavior of the disordered region connected to the folded domain. A protein with a single bromodomain but no long disordered linker displayed a narrow charge distribution at low charge states, suggesting a compact structure. In contrast, proteins containing one or two bromodomains connected to a long disordered region exhibited multimodal charge distributions, suggesting the presence of compact and elongated conformers. In the presence of a pan-BET-bromodomain inhibitor, JQ1, the protein-JQ1 complex ions had relatively small numbers of positive charges, corresponding to compact conformers. In contrast, the ions with extremely high charge states did not form a complex with JQ1. This suggests that all of the JQ1-bound BRD4 proteins in the gas phase are in a compact conformation, including the linker region, while the unbound forms are considerably elongated. Although these are gas-phase phenomena, it is possible that the long disordered linker connected to the bromodomain causes the denaturation of the folded domain, which, in turn, affects its JQ1 recognition.
Collapse
Affiliation(s)
- Nanako Azegami
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Rina Taguchi
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Noa Suzuki
- School of Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Yusuke Sakata
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,School of Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,Correspondence to: Tsuyoshi Konuma, Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan, e-mail:
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,School of Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,Correspondence to: Satoko Akashi, Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan, e-mail:
| |
Collapse
|
6
|
Kohoutek KM, Harrington PDB. Electrospray Ionization Ion Mobility Mass Spectrometry. Crit Rev Anal Chem 2021; 53:483-497. [PMID: 34547945 DOI: 10.1080/10408347.2021.1964938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrospray ionization ion mobility mass spectrometry (ESI-IMS-MS) is a rapidly progressing analytical technique for the examination of complex compounds in the gas phase. ESI-IMS-MS separates isomers, provides structural information, and quantitatively identifies peptides, lipids, carbohydrates, polymers, and metabolites in biological samples. ESI-IMS-MS has pharmaceutical, environmental, and manufacturing applications quickly characterizing drugs, petroleum products, and metal macromolecules. This review provides the history of ESI-IMS-MS development and applications to date.
Collapse
Affiliation(s)
- Katie M. Kohoutek
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | | |
Collapse
|
7
|
Hitomi S, Kokabu S, Matsumoto KI, Shoji Y, Ujihara I, Ono K. Expression of Ascorbate Peroxidase Derived from Cyanidioschyzon merolae in Mammalian Cells. In Vivo 2020; 34:2437-2441. [PMID: 32871770 DOI: 10.21873/invivo.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Ascorbate peroxidase (APX) derived from Cyanidioschyzon merolae, a primitive red alga living in high temperature and acidic environments, has greater anti-oxidative capacity than similar peroxidases occurring in other plants. In the present study, we examined whether expression of Cyanidioschyzon merolae-derived APX (cAPX) in mammalian cells increases cellular anti-oxidative capacity. MATERIALS AND METHODS The cAPX gene was introduced into the mouse fibroblast-like cell line C3H10T1/2. Production of reactive oxygen species (ROS) and/or cell viability was assessed after heat, H2O2 and acid stimulation. RESULTS Heat and H2O2 stimulation resulted in ROS production. cAPX-expressing cells were more tolerant to oxidative stress induced by heat, H2O2 and acid stimulations than control cells lacking cAPX. CONCLUSION Introduction of cAPX increases the anti-oxidative capacity in mammalian cells.
Collapse
Affiliation(s)
- Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshimi Shoji
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Izumi Ujihara
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
8
|
Integral approach to biomacromolecular structure by analytical-ultracentrifugation and small-angle scattering. Commun Biol 2020; 3:294. [PMID: 32513995 PMCID: PMC7280208 DOI: 10.1038/s42003-020-1011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Currently, a sample for small-angle scattering (SAS) is usually highly purified and looks monodispersed: The Guinier plot of its SAS intensity shows a fine straight line. However, it could include the slight aggregates which make the experimental SAS profile different from the monodispersed one. A concerted method with analytical-ultracentrifugation (AUC) and SAS, named as AUC-SAS, offers the precise scattering intensity of a concerned biomacromolecule in solution even with aggregates as well that of a complex under an association-dissociation equilibrium. AUC-SAS overcomes an aggregation problem which has been an obstacle for SAS analysis and, furthermore, has a potential to lead to a structural analysis for a general multi-component system. Ken Morishima et al. integrate small-angle scattering (SAS) with analytical-ultracentrifugation (AUC) to analyze the scattering intensity of biomacromolecules in solution. Their new approach allows to correct for the aggregation effect and can be applied to multi-component systems.
Collapse
|
9
|
Argunhan B, Sakakura M, Afshar N, Kurihara M, Ito K, Maki T, Kanamaru S, Murayama Y, Tsubouchi H, Takahashi M, Takahashi H, Iwasaki H. Cooperative interactions facilitate stimulation of Rad51 by the Swi5-Sfr1 auxiliary factor complex. eLife 2020; 9:52566. [PMID: 32204793 PMCID: PMC7093153 DOI: 10.7554/elife.52566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/13/2020] [Indexed: 01/26/2023] Open
Abstract
Although Rad51 is the key protein in homologous recombination (HR), a major DNA double-strand break repair pathway, several auxiliary factors interact with Rad51 to promote productive HR. We present an interdisciplinary characterization of the interaction between Rad51 and Swi5-Sfr1, a conserved auxiliary factor. Two distinct sites within the intrinsically disordered N-terminus of Sfr1 (Sfr1N) were found to cooperatively bind Rad51. Deletion of this domain impaired Rad51 stimulation in vitro and rendered cells sensitive to DNA damage. By contrast, amino acid-substitution mutants, which had comparable biochemical defects, could promote DNA repair, suggesting that Sfr1N has another role in addition to Rad51 binding. Unexpectedly, the DNA repair observed in these mutants was dependent on Rad55-Rad57, another auxiliary factor complex hitherto thought to function independently of Swi5-Sfr1. When combined with the finding that they form a higher-order complex, our results imply that Swi5-Sfr1 and Rad55-Rad57 can collaboratively stimulate Rad51 in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Masayoshi Sakakura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Negar Afshar
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Misato Kurihara
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kentaro Ito
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Shuji Kanamaru
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuto Murayama
- Center for Frontier Research, National Institute of Genetics, Shizuoka, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Masayuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
10
|
Han JY, Choi TS, Heo CE, Son MK, Kim HI. Gas-phase conformations of intrinsically disordered proteins and their complexes with ligands: Kinetically trapped states during transfer from solution to the gas phase. MASS SPECTROMETRY REVIEWS 2019; 38:483-500. [PMID: 31021441 DOI: 10.1002/mas.21596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Flexible structures of intrinsically disordered proteins (IDPs) are crucial for versatile functions in living organisms, which involve interaction with diverse partners. Electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) has been widely applied for structural characterization of apo-state and ligand-associated IDPs via two-dimensional separation in the gas phase. Gas-phase IDP structures have been regarded as kinetically trapped states originated from conformational features in solution. However, an implication of the states remains elusive in the structural characterization of IDPs, because it is unclear what structural property of IDPs is preserved. Recent studies have indicated that the conformational features of IDPs in solution are not fully reproduced in the gas phase. Nevertheless, the molecular interactions captured in the gas phase amplify the structural differences between IDP conformers. Therefore, an IDP conformational change that is not observed in solution is observable in the gas-phase structures obtained by ESI-IM-MS. Herein, we have presented up-to-date researches on the key implications of kinetically trapped states in the gas phase with a brief summary of the structural dynamics of IDPs in ESI-IM-MS.
Collapse
Affiliation(s)
- Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093
| | - Chae Eun Heo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
11
|
Mitra G. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140260. [PMID: 31382021 DOI: 10.1016/j.bbapap.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Intrinsically disordered proteins (IDPs) are integral part of the proteome, regulating vital biological processes. Such proteins gained further visibility due to their key role in neurodegenerative diseases and cancer. IDPs however, escape structural characterization by traditional biophysical tools owing to their extreme flexibility and heterogeneity. In this review, we discuss the advantages of native mass spectrometry (MS) in analysing the atypical conformational dynamics of IDPs and recent advances made in the field. Especially, MS studies unravelling the conformational facets of IDPs involved in neurodegenerative diseases are highlighted. The limitations and the future promises of native MS while studying IDPs have been discussed.
Collapse
Affiliation(s)
- Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100 Feet Road, Koramangala, Bangalore 560034, Karnataka, India.
| |
Collapse
|
12
|
Rabuck-Gibbons JN, Lodge JM, Mapp AK, Ruotolo BT. Collision-Induced Unfolding Reveals Unique Fingerprints for Remote Protein Interaction Sites in the KIX Regulation Domain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:94-102. [PMID: 30136215 PMCID: PMC6320266 DOI: 10.1007/s13361-018-2043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
The kinase-inducible domain (KIX) of the transcriptional coactivator CBP binds multiple transcriptional regulators through two allosterically connected sites. Establishing a method for observing activator-specific KIX conformations would facilitate the discovery of drug-like molecules that capture specific conformations and further elucidate how distinct activator-KIX complexes produce differential transcriptional effects. However, the transient and low to moderate affinity interactions between activators and KIX are difficult to capture using traditional biophysical assays. Here, we describe a collision-induced unfolding-based approach that produces unique fingerprints for peptides bound to each of the two available sites within KIX, as well as a third fingerprint for ternary KIX complexes. Furthermore, we evaluate the analytical utility of unfolding fingerprints for KIX complexes using CIUSuite, and conclude by speculating as to the structural origins of the conformational families created from KIX:peptide complexes following collisional activation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jessica N Rabuck-Gibbons
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Jean M Lodge
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Life Science Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- University of Wisconsin, Genome Center, 425 Henry Mall, Madison, WI, 53706, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Life Science Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Swi5-Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation. Proc Natl Acad Sci U S A 2018; 115:E10059-E10068. [PMID: 30297419 DOI: 10.1073/pnas.1812753115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic Rad51 protein is essential for homologous-recombination repair of DNA double-strand breaks. Rad51 recombinases first assemble onto single-stranded DNA to form a nucleoprotein filament, required for function in homology pairing and strand exchange. This filament assembly is the first regulation step in homologous recombination. Rad51 nucleation is kinetically slow, and several accessory factors have been identified to regulate this step. Swi5-Sfr1 (S5S1) stimulates Rad51-mediated homologous recombination by stabilizing Rad51 nucleoprotein filaments, but the mechanism of stabilization is unclear. We used single-molecule tethered particle motion experiments to show that mouse S5S1 (mS5S1) efficiently stimulates mouse RAD51 (mRAD51) nucleus formation and inhibits mRAD51 dissociation from filaments. We also used single-molecule fluorescence resonance energy transfer experiments to show that mS5S1 promotes stable nucleus formation by specifically preventing mRAD51 dissociation. This leads to a reduction of nucleation size from three mRAD51 to two mRAD51 molecules in the presence of mS5S1. Compared with mRAD51, fission yeast Rad51 (SpRad51) exhibits fast nucleation but quickly dissociates from the filament. SpS5S1 specifically reduces SpRad51 disassembly to maintain a stable filament. These results clearly demonstrate the conserved function of S5S1 by primarily stabilizing Rad51 on DNA, allowing both the formation of the stable nucleus and the maintenance of filament length.
Collapse
|
14
|
Saikusa K, Osakabe A, Kato D, Fuchigami S, Nagadoi A, Nishimura Y, Kurumizaka H, Akashi S. Structural Diversity of Nucleosomes Characterized by Native Mass Spectrometry. Anal Chem 2018; 90:8217-8226. [PMID: 29860831 DOI: 10.1021/acs.analchem.8b01649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone tails, which protrude from nucleosome core particles (NCPs), play crucial roles in the regulation of DNA transcription, replication, and repair. In this study, structural diversity of nucleosomes was investigated in detail by analyzing the observed charge states of nucleosomes reconstituted with various lengths of DNA using positive-mode electrospray ionization mass spectrometry (ESI-MS) and molecular dynamics (MD) simulation. Here, we show that canonical NCPs, having 147 bp DNA closely wrapped around a histone octamer, can be classified into three groups by charge state, with the least-charged group being more populated than the highly charged and intermediate groups. Ions with low charge showed small collision cross sections (CCSs), suggesting that the histone tails are generally compact in the gas phase, whereas the minor populations with higher charges appeared to have more loosened structure. Overlapping dinucleosomes, which contain 14 histone proteins closely packed with 250 bp DNA, showed similar characteristics. In contrast, mononucleosomes reconstituted with a histone octamer and longer DNA (≥250 bp), which have DNA regions uninvolved in the core-structure formation, showed only low-charge ions. This was also true for dinucleosomes with free DNA regions. These results suggest that free DNA regions affect the nucleosome structures. To investigate the possible structures of NCP observed in ESI-MS, computational structural calculations in solution and in vacuo were performed. They suggested that conformers with large CCS values have slightly loosened structure with extended tail regions, which might relate to the biological function of histone tails.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan.,Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima , Hiroshima 739-8526 , Japan
| | - Akihisa Osakabe
- Graduate School of Advanced Science and Engineering , Waseda University , 2-2 Wakamatsu-cho , Shinjuku-ku, Tokyo 162-8480 , Japan
| | - Daiki Kato
- Graduate School of Advanced Science and Engineering , Waseda University , 2-2 Wakamatsu-cho , Shinjuku-ku, Tokyo 162-8480 , Japan
| | - Sotaro Fuchigami
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Aritaka Nagadoi
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering , Waseda University , 2-2 Wakamatsu-cho , Shinjuku-ku, Tokyo 162-8480 , Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| |
Collapse
|
15
|
Khanal N, Gaye MM, Clemmer DE. Multiple solution structures of the disordered peptide indolicidin from IMS-MS analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:52-58. [PMID: 30906201 PMCID: PMC6426319 DOI: 10.1016/j.ijms.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The solution-favored conformations of the 13-residue disordered peptide, indolicidin (Ile1-Leu2-Pro3-Trp4-Lys5-Trp6-Pro7-Trp8-Trp9-Pro10-Trp11-Arg12-Arg13), are evaluated using electrospray ionization (ESI) coupled to ion mobility spectrometry-mass spectrometry (IMS-MS). The ESI-IMS-MS distributions for the dominant [M+4H]4+ ions indicate that three populations of structures coexist in a range of aqueous to non-aqueous solutions (water:dioxane, water:trifluoroethanol, and water:hexafluoroisopropanol). Conformer types and their relative abundances change in response to different solution environments suggesting that the gas phase conformers reflect on the solution populations present in different solvent environments. Collisional activation of isolated gas phase conformations with IMS-IMS-MS experiments provides additional insight about the relative stabilities of different structural types in the absence of solvent. Simulated annealing studies suggest that proline configuration may be important for the presence of multiple conformations.
Collapse
|
16
|
Jhingree JR, Bellina B, Pacholarz KJ, Barran PE. Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1450-1461. [PMID: 28585116 PMCID: PMC5486678 DOI: 10.1007/s13361-017-1692-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jacquelyn R Jhingree
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kamila J Pacholarz
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
17
|
Argunhan B, Murayama Y, Iwasaki H. The differentiated and conserved roles of Swi5-Sfr1 in homologous recombination. FEBS Lett 2017; 591:2035-2047. [PMID: 28423184 PMCID: PMC5573924 DOI: 10.1002/1873-3468.12656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022]
Abstract
Homologous recombination (HR) is the process whereby two DNA molecules that share high sequence similarity are able to recombine to generate hybrid DNA molecules. Throughout evolution, the ability of HR to identify highly similar DNA sequences has been adopted for numerous biological phenomena including DNA repair, meiosis, telomere maintenance, ribosomal DNA amplification and immunological diversity. Although Rad51 and Dmc1 are the key proteins that promote HR in mitotic and meiotic cells, respectively, accessory proteins that allow Rad51 and Dmc1 to effectively fulfil their functions have been identified in all examined model systems. In this Review, we discuss the roles of the highly conserved Swi5‐Sfr1 accessory complex in yeast, mice and humans, and explore similarities and differences between these species.
Collapse
Affiliation(s)
- Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Yasuto Murayama
- Institute of Innovative Research, Tokyo Institute of Technology, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Japan
| |
Collapse
|
18
|
Abstract
In this review, we focus on an important aspect of ion mobility (IM) research, namely the reporting of quantitative ion mobility measurements in the form of the gas-phase collision cross section (CCS), which has provided a common basis for comparison across different instrument platforms and offers a unique form of structural information, namely size and shape preferences of analytes in the absence of bulk solvent. This review surveys the over 24,000 CCS values reported from IM methods spanning the era between 1975 to 2015, which provides both a historical and analytical context for the contributions made thus far, as well as insight into the future directions that quantitative ion mobility measurements will have in the analytical sciences. The analysis was conducted in 2016, so CCS values reported in that year are purposely omitted. In another few years, a review of this scope will be intractable, as the number of CCS values which will be reported in the next three to five years is expected to exceed the total amount currently published in the literature.
Collapse
Affiliation(s)
- Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
19
|
Ohtomo H, Akashi S, Moriwaki Y, Okuwaki M, Osakabe A, Nagata K, Kurumizaka H, Nishimura Y. C‐terminal acidic domain of histone chaperone human
NAP
1 is an efficient binding assistant for histone H2A‐H2B, but not H3‐H4. Genes Cells 2016; 21:252-63. [DOI: 10.1111/gtc.12339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/13/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Hideaki Ohtomo
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| | - Yoshihito Moriwaki
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| | - Mitsuru Okuwaki
- Faculty of Medicine and Graduate School of Comprehensive Human Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba 305‐8575 Japan
| | - Akihisa Osakabe
- Graduate School of Advanced Science and Engineering/RISE Waseda University 2‐2 Wakamatsu‐cho, Shinjuku‐ku Tokyo 162‐8480 Japan
| | - Kyosuke Nagata
- Faculty of Medicine and Graduate School of Comprehensive Human Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba 305‐8575 Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE Waseda University 2‐2 Wakamatsu‐cho, Shinjuku‐ku Tokyo 162‐8480 Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| |
Collapse
|
20
|
Borysik AJ, Kovacs D, Guharoy M, Tompa P. Ensemble Methods Enable a New Definition for the Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins. J Am Chem Soc 2015; 137:13807-17. [DOI: 10.1021/jacs.5b06027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antoni J. Borysik
- King’s College London, Department of Chemistry,
Britannia House, 7 Trinity
Street, London SE1 1DB, U.K
| | - Denes Kovacs
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Mainak Guharoy
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Peter Tompa
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences of
the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
21
|
Saikusa K, Shimoyama S, Asano Y, Nagadoi A, Sato M, Kurumizaka H, Nishimura Y, Akashi S. Charge-neutralization effect of the tail regions on the histone H2A/H2B dimer structure. Protein Sci 2015; 24:1224-31. [PMID: 25752661 PMCID: PMC4534173 DOI: 10.1002/pro.2673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
It is well known that various modifications of histone tails play important roles in the regulation of transcription initiation. In this study, some lysine (Lys) and arginine (Arg) residues were acetylated and deiminated, respectively, in the histone H2A/H2B dimer, and charge-neutralization effects on the dimer structure were studied by native mass spectrometry. Given that both acetylation and deimination neutralize the positive charges of basic amino acid residues, it had been expected that these modifications would correspondingly affect the gas-phase behavior of the histone H2A/H2B dimer. Contrary to this expectation, it was found that Arg deimination led to greater difficulty of dissociation of the dimer by gas-phase collision, whereas acetylation of Lys residues did not cause such a drastic change in the dimer stability. In contrast, ion mobility-mass spectrometry (IM-MS) experiments showed that arrival times in the mobility cell both of acetylated and of deiminated dimer ions changed little from those of the unmodified dimer ions, indicating that the sizes of the dimer ions did not change by modification. Charge neutralization of Arg, basicity of which is higher than Lys, might have triggered some alteration of the dimer structure that cannot be found in IM-MS but can be detected by collision in the gas phase.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Singo Shimoyama
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuuki Asano
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Aritaka Nagadoi
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mamoru Sato
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hitoshi Kurumizaka
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda UniversityShinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoshifumi Nishimura
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoko Akashi
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
22
|
D'Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R. Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:472-481. [PMID: 25510932 DOI: 10.1007/s13361-014-1048-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered N(TAIL) domain and the phosphoprotein X domain (P(XD)) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire N(TAIL) domain bound to P(XD) at atomic resolution.
Collapse
Affiliation(s)
- Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Saikusa K, Nagadoi A, Hara K, Fuchigami S, Kurumizaka H, Nishimura Y, Akashi S. Mass Spectrometric Approach for Characterizing the Disordered Tail Regions of the Histone H2A/H2B Dimer. Anal Chem 2015; 87:2220-7. [DOI: 10.1021/ac503689w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kazumi Saikusa
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Aritaka Nagadoi
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kana Hara
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitoshi Kurumizaka
- Graduate
School of Advanced Science and Engineering, Waseda University, 2-2
Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoshifumi Nishimura
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Satoko Akashi
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
24
|
Maurer MM, Donohoe GC, Valentine SJ. Advances in ion mobility-mass spectrometry instrumentation and techniques for characterizing structural heterogeneity. Analyst 2015; 140:6782-98. [PMID: 26114255 DOI: 10.1039/c5an00922g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enabling IM-MS instrumentation and techniques for characterizing sample structural heterogeneity have developed rapidly over the last five years.
Collapse
Affiliation(s)
- Megan M. Maurer
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Gregory C. Donohoe
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | | |
Collapse
|
25
|
Molecular simulation-based structural prediction of protein complexes in mass spectrometry: the human insulin dimer. PLoS Comput Biol 2014; 10:e1003838. [PMID: 25210764 PMCID: PMC4161290 DOI: 10.1371/journal.pcbi.1003838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/26/2014] [Indexed: 01/02/2023] Open
Abstract
Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structural prediction protocol for single proteins in ESI-MS to protein complexes. We apply our protocol to the human insulin dimer (hIns2) as a test case. Our calculations reproduce the main charge and the collision cross section (CCS) measured in ESI-MS experiments. Molecular dynamics simulations for 0.075 ms show that the complex maximizes intermolecular non-bonded interactions relative to the structure in water, without affecting the cross section. The overall gas-phase structure of hIns2 does exhibit differences with the one in aqueous solution, not inferable from a comparison with calculated CCS. Hence, care should be exerted when interpreting ESI-MS proteomics data based solely on NMR and/or X-ray structural information.
Collapse
|
26
|
Shepherd DA, Holmes K, Rowlands DJ, Stonehouse NJ, Ashcroft AE. Using ion mobility spectrometry-mass spectrometry to decipher the conformational and assembly characteristics of the hepatitis B capsid protein. Biophys J 2014; 105:1258-67. [PMID: 24010669 DOI: 10.1016/j.bpj.2013.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 01/04/2023] Open
Abstract
The structural and functional analysis of the core protein of hepatitis B virus is important for a full understanding of the viral life cycle and the development of novel therapeutic agents. The majority of the core protein (CP149) comprises the capsid assembly domain, and the C-terminal region (residues 150-183) is responsible for nucleic acid binding. Protein monomers associate to form dimeric structural subunits, and helices 3 and 4 (residues 50-111 of the assembly domain) have been shown to be important for this as they constitute the interdimer interface. Here, using mass spectrometry coupled with ion mobility spectrometry, we demonstrate the conformational flexibility of the CP149 dimer. Limited proteolysis was used to locate involvement in this feature to the C-terminal region. A genetically fused CP dimer was found to show decreased disorder, consistent with a more restricted C-terminus at the fusion junction. Incubation of CP149 dimer with heteroaryldihydropyrimidine-1, a small molecule known to interfere with the assembly process, was shown to result in oligomers different in shape to the capsid assembly-competent oligomers of the fused CP dimer. We suggest that heteroaryldihydropyrimidine-1 affects the dynamics of CP149 dimer in solution, likely affecting the ratio between assembly active and inactive states. Therefore, assembly of the less dynamic fused dimer is less readily misdirected by heteroaryldihydropyrimidine-1. These studies of the flexibility and oligomerization properties of hepatitis B virus core protein illustrate both the importance of C-terminal dynamics in function and the utility of gas-phase techniques for structural and dynamical biomolecular analysis.
Collapse
Affiliation(s)
- Dale A Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Su GC, Chung CI, Liao CY, Lin SW, Tsai CT, Huang T, Li HW, Chi P. Enhancement of ADP release from the RAD51 presynaptic filament by the SWI5-SFR1 complex. Nucleic Acids Res 2013; 42:349-58. [PMID: 24078249 PMCID: PMC3874192 DOI: 10.1093/nar/gkt879] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Homologous recombination catalyzed by the RAD51 recombinase eliminates deleterious DNA lesions from the genome. In the presence of ATP, RAD51 forms a nucleoprotein filament on single-stranded DNA, termed the presynaptic filament, to initiate homologous recombination-mediated DNA double-strand break repair. The SWI5-SFR1 complex stabilizes the presynaptic filament and enhances its ability to mediate the homologous DNA pairing reaction. Here we characterize the RAD51 presynaptic filament stabilization function of the SWI5-SFR1 complex using optical tweezers. Biochemical experiments reveal that SWI5-SFR1 enhances ATP hydrolysis by single-stranded DNA-bound RAD51. Importantly, we show that SWI5-SFR1 acts by facilitating the release of ADP from the presynaptic filament. Our results thus provide mechanistic understanding of the function of SWI5-SFR1 in RAD51-mediated DNA recombination.
Collapse
Affiliation(s)
- Guan-Chin Su
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan and Department of Chemistry, National Taiwan University, NO. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Azegami N, Saikusa K, Todokoro Y, Nagadoi A, Kurumizaka H, Nishimura Y, Akashi S. Conclusive evidence of the reconstituted hexasome proven by native mass spectrometry. Biochemistry 2013; 52:5155-7. [PMID: 23879667 DOI: 10.1021/bi4005655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It has been suggested that the hexasome, in which one of the H2A/H2B dimers is depleted from the canonical nucleosome core particle (NCP), is an essential intermediate during NCP assembly and disassembly, but little structural evidence of this exists. In this study, reconstituted products in a conventional NCP preparation were analyzed by native electrospray ionization mass spectrometry, and it was found that the hexasome, which migrated in a manner almost identical to that of the octasome NCP in native polyacrylamide gel electrophoresis, was produced simultaneously with the octasome NCP. This result might contribute to understanding the assembly and disassembly mechanism of NCPs.
Collapse
Affiliation(s)
- Nanako Azegami
- Graduate School of Nanobioscience, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
The hepatitis B virus preS1 domain hijacks host trafficking proteins by motif mimicry. Nat Chem Biol 2013; 9:540-7. [PMID: 23851574 DOI: 10.1038/nchembio.1294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/12/2013] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) is an infectious, potentially lethal human pathogen. However, there are no effective therapies for chronic HBV infections. Antiviral development is hampered by the lack of high-resolution structures for essential HBV protein-protein interactions. The interaction between preS1, an HBV surface-protein domain, and its human binding partner, γ2-adaptin, subverts the membrane-trafficking apparatus to mediate virion export. This interaction is a putative drug target. We report here atomic-resolution descriptions of the binding thermodynamics and structural biology of the interaction between preS1 and the EAR domain of γ2-adaptin. NMR, protein engineering, X-ray crystallography and MS showed that preS1 contains multiple γ2-EAR-binding motifs that mimic the membrane-trafficking motifs (and binding modes) of host proteins. These motifs localize together to a relatively rigid, functionally important region of preS1, an intrinsically disordered protein. The preS1-γ2-EAR interaction was relatively weak and efficiently outcompeted by a synthetic peptide. Our data provide the structural road map for developing peptidomimetic antivirals targeting the γ2-EAR-preS1 interaction.
Collapse
|
30
|
Uversky VN. Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013). INTRINSICALLY DISORDERED PROTEINS 2013; 1:e25496. [PMID: 28516015 PMCID: PMC5424799 DOI: 10.4161/idp.25496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/13/2023]
Abstract
The current literature on intrinsically disordered proteins is blooming. A simple PubMed search for “intrinsically disordered protein OR natively unfolded protein” returns about 1,800 hits (as of June 17, 2013), with many papers published quite recently. To keep interested readers up to speed with this literature, we are starting a “Digested Disorder” project, which will encompass a series of reader’s digest type of publications aiming at the objective representation of the research papers and reviews on intrinsically disordered proteins. The only two criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest covers papers published during the period of January, February and March of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; College of Medicince; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| |
Collapse
|
31
|
Saikusa K, Fuchigami S, Takahashi K, Asano Y, Nagadoi A, Tachiwana H, Kurumizaka H, Ikeguchi M, Nishimura Y, Akashi S. Gas-Phase Structure of the Histone Multimers Characterized by Ion Mobility Mass Spectrometry and Molecular Dynamics Simulation. Anal Chem 2013; 85:4165-71. [DOI: 10.1021/ac400395j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kazumi Saikusa
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Kyohei Takahashi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Yuuki Asano
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Aritaka Nagadoi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Hiroaki Tachiwana
- Graduate School of Advanced
Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced
Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mitsunori Ikeguchi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Yoshifumi Nishimura
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| | - Satoko Akashi
- Department of Supramolecular
Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan
| |
Collapse
|