1
|
Popescu R, Dinu-Pîrvu CE, Ghica MV, Anuța V, Popa L. Physico-Chemical Characterization and Initial Evaluation of Carboxymethyl Chitosan-Hyaluronan Hydrocolloid Systems with Insulin Intended for Intranasal Administration. Int J Mol Sci 2024; 25:10452. [PMID: 39408782 PMCID: PMC11476560 DOI: 10.3390/ijms251910452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The nasal route of administration can bypass the blood-brain barrier in order to obtain a higher concentration in the brain, thus offering a feasible alternative route of administration for diseases associated with the central nervous system. The advantages of the intranasal administration and the potential favorable therapeutic effects of intranasally administered insulin led to the formulation of carboxymethyl chitosan (CMC) and sodium hyaluronate (NaHA) hydrocolloidal systems with insulin for nasal administration, targeting nose-to-brain delivery and the initial assessment of these systems. The influence of the formulation variables on the response parameters defined as surface properties, rheology, and in vitro release of insulin were analyzed using experimental design and statistical programs (Modde and Minitab software). The systems recorded good wetting and adhesion capacity, allowing the spread of the hydrocolloidal systems on the nasal mucosa. The samples had a pseudoplastic flow and the rapid release of the insulin was according to our objective. According to the physico-chemical characterization and preliminary assessment, these formulations are appropriate for administration on the nasal mucosa, but further studies are necessary to demonstrate the beneficial therapeutic actions and the safety of using intranasal insulin.
Collapse
Affiliation(s)
- Roxana Popescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (R.P.); (C.-E.D.-P.); (V.A.); (L.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
2
|
Wong CYJ, Baldelli A, Hoyos CM, Tietz O, Ong HX, Traini D. Insulin Delivery to the Brain via the Nasal Route: Unraveling the Potential for Alzheimer's Disease Therapy. Drug Deliv Transl Res 2024; 14:1776-1793. [PMID: 38441832 PMCID: PMC11153287 DOI: 10.1007/s13346-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 06/06/2024]
Abstract
This comprehensive review delves into the potential of intranasal insulin delivery for managing Alzheimer's Disease (AD) while exploring the connection between AD and diabetes mellitus (DM). Both conditions share features of insulin signalling dysregulation and oxidative stress that accelerate inflammatory response. Given the physiological barriers to brain drug delivery, including the blood-brain barrier, intranasal administration emerges as a non-invasive alternative. Notably, intranasal insulin has shown neuroprotective effects, impacting Aβ clearance, tau phosphorylation, and synaptic plasticity. In preclinical studies and clinical trials, intranasally administered insulin achieved rapid and extensive distribution throughout the brain, with optimal formulations exhibiting minimal systemic circulation. The detailed mechanism of insulin transport through the nose-to-brain pathway is elucidated in the review, emphasizing the role of olfactory and trigeminal nerves. Despite promising prospects, challenges in delivering protein drugs from the nasal cavity to the brain remain, including enzymes, tight junctions, mucociliary clearance, and precise drug deposition, which hinder its translation to clinical settings. The review encompasses a discussion of the strategies to enhance the intranasal delivery of therapeutic proteins, such as tight junction modulators, cell-penetrating peptides, and nano-drug carrier systems. Moreover, successful translation of nose-to-brain drug delivery necessitates a holistic understanding of drug transport mechanisms, brain anatomy, and nasal formulation optimization. To date, no intranasal insulin formulation has received regulatory approval for AD treatment. Future research should address challenges related to drug absorption, nasal deposition, and the long-term effects of intranasal insulin. In this context, the evaluation of administration devices for nose-to-brain drug delivery becomes crucial in ensuring precise drug deposition patterns and enhancing bioavailability.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Alberto Baldelli
- Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Camilla M Hoyos
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
- Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
3
|
Wong CYJ, Baldelli A, Tietz O, van der Hoven J, Suman J, Ong HX, Traini D. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int J Pharm 2024; 654:123922. [PMID: 38401871 DOI: 10.1016/j.ijpharm.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The surge in neurological disorders necessitates innovative strategies for delivering active pharmaceutical ingredients to the brain. The non-invasive intranasal route has emerged as a promising approach to optimize drug delivery to the central nervous system by circumventing the blood-brain barrier. While the intranasal approach offers numerous advantages, the lack of a standardized protocol for drug testing poses challenges to both in vitro and in vivo studies, limiting the accurate interpretation of nasal drug delivery and pharmacokinetic data. This review explores the in vitro experimental assays employed by the pharmaceutical industry to test intranasal formulation. The focus lies on understanding the diverse techniques used to characterize the intranasal delivery of drugs targeting the brain. Parameters such as drug release, droplet size measurement, plume geometry, deposition in the nasal cavity, aerodynamic performance and mucoadhesiveness are scrutinized for their role in evaluating the performance of nasal drug products. The review further discusses the methodology for in vivo characterization in detail, which is essential in evaluating and refining drug efficacy through the nose-to-brain pathway. Animal models are indispensable for pre-clinical drug testing, offering valuable insights into absorption efficacy and potential variables affecting formulation safety. The insights presented aim to guide future research in intranasal drug delivery for neurological disorders, ensuring more accurate predictions of therapeutic efficacy in clinical contexts.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alberto Baldelli
- Faculty of Food and Land Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julie Suman
- Next Breath, an Aptar Pharma Company, Baltimore, MD 21227, USA
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
4
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
5
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
6
|
Chitosan hydrogels for sustained drug delivery. J Control Release 2020; 326:150-163. [PMID: 32562854 DOI: 10.1016/j.jconrel.2020.06.012] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022]
Abstract
Sustainable and controlled delivery of drugs is at the centre of a huge amount of undertaken researches. The ability of hydrogels, high water content materials, to achieve a local and delayed-delivery has already been demonstrated for a wide variety of therapeutic agents and various polymer natures. In particular, chitosan, a natural polymer, stands out as a first choice material for hydrogels elaboration in biomedical, cosmetic, and health related applications, owing to its interesting properties (as biocompatibility, biodegradability, antimicrobial capacity, and mucoadhesivity). Moreover, chitosan also allows drugs to go easier through biological barriers. The main objective of this review is to report the various uses of chitosan hydrogels as drug delivery devices to control and/or delay the release of drugs loaded into their three dimensional matrix. A wide spectrum of corresponding biomedical applications of these systems can be encountered in the literature, whatever the physicochemical nature of drugs (hydrophilic, hydrophobic, macromolecular), as detailed in this review.
Collapse
|
7
|
Huang Q, Wang L, Yu H, Ur-Rahman K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J Control Release 2019; 305:50-64. [DOI: 10.1016/j.jconrel.2019.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/05/2023]
|
8
|
Lin YJ, Mi FL, Lin PY, Miao YB, Huang T, Chen KH, Chen CT, Chang Y, Sung HW. Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Adv Drug Deliv Rev 2019; 139:71-82. [PMID: 30529306 DOI: 10.1016/j.addr.2018.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of insulin in micro- or nanodelivery systems may eliminate the need for frequent subcutaneous injections, improving the quality of life of diabetic patients. Formulations for oral, intranasal, pulmonary, subcutaneous, and transdermal administration have been developed. The use of stimuli-responsive polymeric carriers that can release the encapsulated drug in response to changes of the environmental stimuli or external activation enables the design of less invasive or non-invasive systems for smart insulin delivery from depots in the body. This article will look at strategies for the development of responsive delivery systems and the future meeting of the demands of new modes of insulin delivery.
Collapse
|
9
|
Desbrieres J, Peptu C, Ochiuz L, Savin C, Popa M, Vasiliu S. Application of Chitosan-Based Formulations in Controlled Drug Delivery. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.07.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Abstract
Hydrogels have evolved into indispensable biomaterials in the fields of drug delivery and regenerative medicine. This minireview aims to highlight the recent advances in the hydrogel design for controlled release of bioactive proteins. The latest developments of enzyme-responsive and externally regulated drug delivery systems are summarized. The design strategies and applications of phase-separated hydrogel systems are also described. We expect that these emerging approaches will enable expanded use of hydrogels in biomedicine and healthcare.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | |
Collapse
|
12
|
Karavasili C, Bouropoulos N, Sygellou L, Amanatiadou EP, Vizirianakis IS, Fatouros DG. PLGA/DPPC/trimethylchitosan spray-dried microparticles for the nasal delivery of ropinirole hydrochloride: in vitro, ex vivo and cytocompatibility assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1053-1062. [PMID: 26652464 DOI: 10.1016/j.msec.2015.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/24/2015] [Accepted: 11/11/2015] [Indexed: 01/17/2023]
Abstract
In the present study we investigated polymer-lipid microparticles loaded with ropinirole hydrochloride (RH) for nasal delivery. RH microparticles were further evaluated by means of scanning electron microscopy (SEM), ζ-potential measurements, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD). In vitro release studies were performed in simulated nasal electrolyte solution (SNES) pH5.5 at 35°C. Ex vivo permeation studies were conducted across sheep nasal mucosa. Cytocompatibility was tested in cultured human airway epithelial cells (Calu-3). SEM studies revealed spheroid microparticles in the range of 2.09μm to 2.41μm. The presence of trimethylchitosan (TMC) induced a slight shift towards less negative ζ-potential values. Surface chemistry (XPS) revealed the presence of dipalmitoylphospatidylcholine (DPPC) and poly(lactic-co-glycolic acid) (PLGA) onto microparticles' surface, further corroborating the FT-IR and XRD findings. In vitro release studies showed that the microparticle composition can partly modulate the release of RH. Ex vivo studies demonstrated a 2.35-folded enhancement of RH permeation when RH was co-formulated with TMC of low molecular weight, compared to the control. All formulations tested were found to be non-toxic to cells. The results suggest that polymer-lipid microparticles may be a promising carrier for the nasal delivery of RH.
Collapse
Affiliation(s)
- Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature, P.O. Box 1414, 26504 Patras, Greece
| | - Lamprini Sygellou
- Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature, P.O. Box 1414, 26504 Patras, Greece
| | - Elsa P Amanatiadou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
13
|
Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today 2015; 21:157-166. [PMID: 26563428 DOI: 10.1016/j.drudis.2015.10.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/29/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
In the last decade in situ gelling systems have emerged as a novel approach in intranasal delivery of therapeutics, capturing the interest of scientific community. Considerable advances have been currently made in the development of novel formulations containing both natural and synthetic polymers. In this paper we present recent developments on in situ gelling systems for nasal delivery, highlighting the mechanisms that govern their formation.
Collapse
Affiliation(s)
- Christina Karavasili
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
14
|
Karavasili C, Katsamenis OL, Bouropoulos N, Nazar H, Thurner PJ, van der Merwe SM, Fatouros DG. Preparation and characterization of bioadhesive microparticles comprised of low degree of quaternization trimethylated chitosan for nasal administration: effect of concentration and molecular weight. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12337-12344. [PMID: 25247739 DOI: 10.1021/la5030636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Toward the development of microparticulate carriers for nasal administration, N-trimethylchitosan chloride (TMC) of low molecular weight (LMW) and high molecular weight (HMW) and low degree of quaternization (16% and 27%, respectively) was co-formulated into microparticles comprising of dipalmatoylphosphatidylcholine (DPPC) and poly(lactic-co-glycolic) acid (PLGA) via the spray-drying technique. The chitosan derivatives were characterized by means of nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and Fourier transfrom infrared (FTIR) spectroscopy. The size and morphology of the produced microparticles were assessed by scanning electron microscopy (SEM), whereas their mucoadhesive properties were investigated by means of atomic force microscopy-force spectroscopy (AFM-FS). The results showed that microparticles exhibit mucoadhesion when TMC is present on their surface above a threshold of TMC (>0.3% w/w).
Collapse
Affiliation(s)
- Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki , GR-54124 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
15
|
Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014; 190:189-200. [DOI: 10.1016/j.jconrel.2014.05.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
|
16
|
Piazza J, Hoare T, Molinaro L, Terpstra K, Bhandari J, Selvaganapathy PR, Gupta B, Mishra RK. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly(d,l)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm 2014; 87:30-9. [DOI: 10.1016/j.ejpb.2014.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
|
17
|
Nie S, Tang M, Cheng C(S, Yin Z, Wang L, Sun S, Zhao C. Biologically inspired membrane design with a heparin-like interface: prolonged blood coagulation, inhibited complement activation, and bio-artificial liver related cell proliferation. Biomater Sci 2014; 2:98-109. [DOI: 10.1039/c3bm60165j] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Tsibouklis J, Middleton AM, Patel N, Pratten J. Toward mucoadhesive hydrogel formulations for the management of xerostomia: the physicochemical, biological, and pharmacological considerations. J Biomed Mater Res A 2013; 101:3327-38. [PMID: 23529996 DOI: 10.1002/jbm.a.34626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 01/17/2023]
Abstract
Although hydrogel formulations that may be applied to many mucosal surfaces are now readily accessible, little research effort has been concentrated on the development of systems that may be usefully employed for the prolonged hydration of the oral cavity. To this end, and set within the context of oral care in general, this review considers the requirements for the design of hydrogel formulations with an affinity for buccal cells and details methods for evaluating the performance of these formulations as treatments for the management of xerostomia.
Collapse
Affiliation(s)
- John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DT, United Kingdom
| | | | | | | |
Collapse
|