1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Patra SA, Sahu G, Das S, Dinda R. Recent Advances in Mitochondria-Localized Luminescent Ruthenium(II) Metallodrugs as Anticancer Agents. ChemMedChem 2023; 18:e202300397. [PMID: 37772783 DOI: 10.1002/cmdc.202300397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Presently, the most effective way to transport drugs specifically to mitochondria inside the cells is of pharmacophoric interest, as mitochondria are recognized as one of the most important targets for new drug design in cancer diagnosis. To date, there are many reviews covering the photophysical, photochemical, and anticancer properties of ruthenium(II) based metallodrugs owing to their high interest in biological applications. There are, however, no reviews specifically covering the mitochondria-localized luminescent Ru(II) complexes and their subsequent mitochondria-mediated anticancer activities. Therefore, this review describes the physicochemical basis for the mitochondrial accumulation of ruthenium complexes, their synthetic strategies to localize and monitor the mitochondria in living cells, and their related underlying anticancer results. Finally, we review the related areas from previous works describing the mitochondria-localized ruthenium complexes for the treatment of cancer-related diseases. Along with this, we also deliberate the perspectives and future directions for emerging more bifunctional Ru(II) complexes that can target, image, and kill tumors more efficiently in comparison with the existing mitochondria-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
3
|
Du W, Shen Z, Liang Y, Gong S, Meng Z, Li M, Wang Z, Wang S. A highly effective "naked eye" colorimetric and fluorimetric curcumin-based fluorescent sensor for specific and sensitive detection of H 2O 2in vivo and in vitro. Analyst 2023; 148:1824-1837. [PMID: 36939165 DOI: 10.1039/d3an00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Hydrogen peroxide (H2O2) is involved in many important tasks in normal cell metabolism and signaling. However, abnormal levels of H2O2 are associated with the occurrence of several diseases. Therefore, it is important to develop a new method for the detection of H2O2in vivo and in vitro. A turn-off sensor, 2,2-difluoro-4,6-bis(3-methoxy-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)styryl)-2H-1,3,2-dioxaborine (DFCB), based on curcumin was developed for the detection of H2O2. The DFCB, an orange-emitting sensor, was constructed by employing 2,2-difluoro-4,6-bis(4-hydroxy-3-methoxystyryl)-2H-1,3,2-dioxaborine (DFC) as the main carrier, and 2-(4-bromomethylphenyl)-4,4,5,5-tetramethyl-1,3,2-doxaborolane as the recognition site. The recognition group on the DFCB sensor could be completely cleaved by H2O2 to generate the intermediate DFC, which would lead to a colorimetric change from bright orange to light blue accompanying by a significantly quenched fluorescence, which could be seen by the naked eye. This sensor exhibited a highly specific fluorescence response to H2O2, in preference to other relevant species, with an excellent anti-interference performance. The sensor DFCB also possessed some advantages including a wide pH response range (6-11), a broad linear range (0-300 μM), and a low detection limit (1.31 μM). The sensing mechanism of the DFCB sensor for H2O2 was verified by HRMS analysis, 1H-NMR titration and DFT calculations. In addition, the use of the DFCB sensor was compatible with the fluorescence imaging of H2O2 in living cells and zebrafish.
Collapse
Affiliation(s)
- Wenhao Du
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Zheyu Shen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Yueying Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Mingxing Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS BIO & MED CHEM AU 2022; 2:548-564. [PMID: 36573097 PMCID: PMC9782337 DOI: 10.1021/acsbiomedchemau.2c00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Activity-based sensing (ABS) offers a general approach that exploits chemical reactivity as a method for selective detection and manipulation of biological analytes. Here, we illustrate the value of this chemical platform to enable new biological discovery through a case study in the design and application of ABS reagents for studying hydrogen peroxide (H2O2), a major type of reactive oxygen species (ROS) that regulates a diverse array of vital cellular signaling processes to sustain life. Specifically, we summarize advances in the use of activity-based boronate probes for the detection of H2O2 featuring high molecular selectivity over other ROS, with an emphasis on tailoring designs in chemical structure to promote new biological principles of redox signaling.
Collapse
Affiliation(s)
- Marco S. Messina
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gianluca Quargnali
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Juvekar V, Lee HW, Lee DJ, Kim HM. Two-photon fluorescent probes for quantitative bio-imaging analysis in live tissues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Patra SA, Sahu G, Pattanayak PD, Sasamori T, Dinda R. Mitochondria-Targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg Chem 2022; 61:16914-16928. [PMID: 36239464 DOI: 10.1021/acs.inorgchem.2c02959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five fluorescent ONO donor-based organotin(IV) complexes, [SnIV(L1-5)Ph2] (1-5), were synthesized by the one-pot reaction method and fully characterized spectroscopically including the single-crystal X-ray diffraction studies of 2-4. Detailed photophysical characterization of all compounds was performed. All the compounds exhibited high luminescent properties with a quantum yield of 17-53%. Additionally, the results of cellular permeability analysis suggest that they are lipophilic and easily absorbed by cells. Confocal microscopy was used to examine the live cell imaging capability of 1-5, and the results show that the compounds are mostly internalized in mitochondria and exhibit negligible cytotoxicity at imaging concentration. Also, 1-5 exhibited high photostability as compared to the commercial dye and can be used in long-term real-time tracking of cell organelles. Also, it is found that the probes (1-5) are highly tolerable during the changes in mitochondrial morphology. Thus, this kind of low-toxic organotin-based fluorescent probe can assist in imaging of mitochondria within living cells and tracking changes in their morphology.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | | | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
7
|
P CAS, Raveendran AV, Sivakrishna N, Nandi RP. Triarylborane-triphenylamine based luminophore for the mitochondria targeted live cell imaging and colorimetric detection of aqueous fluoride. Dalton Trans 2022; 51:15339-15353. [PMID: 36135598 DOI: 10.1039/d2dt01887j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioimaging of subcellular organelles such as mitochondria is crucial for detecting physiological abnormalities induced by fluctuations in the levels of various analytes. Herein, we report the design and synthesis of two novel water-soluble cationic Lewis acid triarylborane-triarylamine conjugates 1 and 2. The optical characteristics of 1 and 2 and their precursor compounds BTPA-NMe2 and BTPA-2NMe2 were evaluated, which show similar absorption and fluorescence spectra, with 1 and 2 exhibiting higher quantum yields of 0.73 and 0.64, respectively, than those of the precursors BTPA-NMe2 and BTPA-2NMe2, indicating the partial disruption of the ICT process and the activation of alternative emission bands in 1 and 2. The live cell imaging ability of compound 2 was examined in HeLa cells using a confocal microscope. Moreover, mitochondrial internalisation using compound 2 was effective and it was found to have high photostability under UV light conditions. Furthermore, compound 2 demonstrated an evident colorimetric response with a colour change to dark yellow in aqueous environments, indicating that it could be used for anion sensing. The spectral changes were observed in UV-visible and fluorescence titration experiments, which were strongly supported by DFT calculations. In short, compound 2 synthesized by us can be exclusively utilized for the selective localization of mitochondria with less cytotoxicity and shows excellent colorimetric response to aqueous inorganic fluoride at levels as low as 0.1 ppm with high selectivity.
Collapse
Affiliation(s)
- Chinna Ayya Swamy P
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, India-673601.
| | - Archana V Raveendran
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, India-673601.
| | - Narra Sivakrishna
- Humanities & Sciences, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India-500090
| | - Rajendra Prasad Nandi
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
8
|
Dai C, Jia H, Wu W, Yin B, Wang H, Wang L, Zhong Y, Wang Z, Zhang C, Yao J. Optically Triggering and Monitoring Single-Cell-Level Metabolism Using Ormosil-Decorated Ultrathin Fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9844-9852. [PMID: 35926220 DOI: 10.1021/acs.langmuir.2c00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The integration of biological components and artificial devices requires a bio-machine interface that can simultaneously trigger and monitor the activities in biosystems. Herein, we use an organically modified silicate (ormosil) composite coating containing a light-responsive nanocapsule and a fluorescent bioprobe for reactive oxygen species (ROS) to decorate ultrathin optical fibers, namely, ormosil-decorated ultrathin fibers (OD-UFs), and demonstrate that these OD-UFs can optically trigger and monitor the intracellular metabolism activities in living cells. The sizes and shapes of UF tips were finely controlled to match the dimension and mechanical properties of living cells. The increased elasticity of the ormosil coating of OD-UFs reduces possible mechanical damage during the cell membrane penetration. The light-responsive nanocapsule was physically absorbed on the surface of the ormosil coating and could release a stimulant to trigger the metabolism activities in cells upon the guided laser through OD-UFs. The fluorescent bioprobe was covalently linked with the ormosil matrix for monitoring the intracellular ROS generation, which was verified by the in vitro experiments on the microdroplets of a hydrogen peroxide solution. Finally, we found that the living cells could maintain most of their viability after being inserted with OD-UFs, and the intracellular metabolism activities were successfully triggered and monitored at the single-cell level. The OD-UF provides a new platform for the investigation of intracellular behaviors for drug stimulations and represents a new proof of concept for a bio-machine interface based on the optical and chemical activities of organic functional molecules.
Collapse
Affiliation(s)
- Chenghu Dai
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Hao Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wubin Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Baipeng Yin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeteng Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Chen S, Fan W, Sun Z, Zheng E, Wang L, Wu Y, Hou S, Ma X. Acetyl group assisted rapid intramolecular recognition of hydrogen peroxide: A novel promising approach for efficient hydrogen peroxide probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121162. [PMID: 35397454 DOI: 10.1016/j.saa.2022.121162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As a vital biomolecule, hydrogen peroxide (H2O2) is involved in many physiological and pathological processes. Therefore, it is important to detect H2O2 in vivo conveniently and efficiently. In this paper, we report a new method of nucleophilic addition of H2O2 to the acetyl group to promote the rapid intramolecular reaction, which can be used to develop an efficient H2O2 probe. Based on this unique auxiliary recognition part, a fluorescent probe for H2O2 detection was designed and synthesized. This probe has the advantages of high sensitivity (limits of detection 7.0 × 10-8 M or even lower.), fast response (within 3 min) and large Stokes shift (225 nm), which not only can monitor exogenous and endogenous H2O2 in cells but also successfully achieves the change of endogenous H2O2 level caused by drug sexual organ injury in zebrafish.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhen Sun
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - En Zheng
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
10
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
11
|
Zhang X, Zhang L, Liu F, Hu S, Xu Q, Li F, Li H, Zhang G, Xu J. A unique red-emitting molecular rotor for high-fidelity visualizing and long-term tracking mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119979. [PMID: 34052766 DOI: 10.1016/j.saa.2021.119979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Visualizing and tracking mitochondrial changes is the key to understand the processes of diseases related to mitochondria, which is meaningful to physiology, pathology, and pharmacology. So, a great deal of mitochondrial probes was designed and synthesized according to the principle that probes with a positive charge can target mitochondria through mitochondrial membrane potential (MMP). However, these traditional mitochondrial probes are not able to visualize and track mitochondrial changes, because their targeting abilities depend on high MMP. Once MMP decreases, they will leak from mitochondria. Herein, we designed and synthesized a red-emitting molecule rotor (SQ, sensitive to viscosity) that could visualize mitochondria with high-fidelity. The rotor was able to firmly immobilize in mitochondrial inner membrane through the cooperation of MMP and the high viscosity property of mitochondrial membrane, and it could still stain mitochondria with long-term regardless of MMP changes. Hence, the probe is able to real-time image and distinguish four kinds of mitochondria with high-fidelity in muscle tissues. In addition, SQ can monitor mitochondrial autophagy in real time. These results demonstrate that SQ is a powerful tool for high-fidelity visualizing and long-term tracking mitochondria in vitro and in vivo.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Long Zhang
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Fang Liu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Shuxin Hu
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Quan Xu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Fei Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Hui Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Ge Zhang
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Jingkun Xu
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| |
Collapse
|
12
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Saxon E, Peng X. Recent Advances in Hydrogen Peroxide Responsive Organoborons for Biological and Biomedical Applications. Chembiochem 2021; 23:e202100366. [PMID: 34636113 DOI: 10.1002/cbic.202100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.
Collapse
Affiliation(s)
- Eron Saxon
- University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Xiaohua Peng
- University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
14
|
Yang G, Zhu T, Wang D, Liu Z, Zhang R, Han G, Tian X, Liu B, Han MY, Zhang Z. Revealing the signaling regulation of hydrogen peroxide to cell pyroptosis using a ratiometric fluorescent probe in living cells. Chem Commun (Camb) 2021; 57:6628-6631. [PMID: 34124718 DOI: 10.1039/d1cc02008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A ratiometric fluorescent probe with a large emission shift was developed for the accurate measurement of hydrogen peroxide (H2O2) in sophisticated pyroptosis signaling pathways. The results reported here demonstrate that H2O2, as a principal member of ROS, is a critical upstream signaling molecule in regulating pyroptosis.
Collapse
Affiliation(s)
- Guanqing Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Tong Zhu
- School of Life Science, Anhui University, Hefei 230601, China
| | - Dong Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Zhengjie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Ruilong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
| | - Guangmei Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bianhua Liu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Ming-Yong Han
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhongping Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
| |
Collapse
|
15
|
Wagalgave SM, Birajdar SS, Malegaonkar JN, Bhosale SV. Patented AIE materials for biomedical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:199-223. [PMID: 34782106 DOI: 10.1016/bs.pmbts.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years aggregation induced emission (AIE) concept has attracted researcher's interest worldwide. Several organic building blocks are developed as AIE materials. This chapter discusses the patented AIE material and their utilization related in biological, medicinal and biotechnology fields. It is demonstrated that AIE chromophores such as tetraphenylethylene (TPE) as well as other AIE building blocks became important fluorescent emissive bioactive materials. Such emissive materials are widely employed as bioprobes for the detection of mitochondria, cellular imaging and tracking, protein carrier detection of S-phase DNA, detection of d-glucose, visualization of cancer treatment, drug screening, image-guided therapy, bacterial imaging, photodynamic therapy and drug screening. Such AIE materials upon imaging in cellular environment displays significant enhancement of fluorescence emission. Such patented AIE chromophores has a great potential for bioimaging and biomedical applications. In this chapter we compile some patented representative examples to explore their bioimaging/medicinal imaging applications since lot of new inventions are reported every day.
Collapse
Affiliation(s)
- Sopan M Wagalgave
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Shailesh S Birajdar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jotiram N Malegaonkar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sidhanath Vishwanath Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
16
|
Ren M, Dong D, Xu Q, Yin J, Wang S, Kong F. A biotin-guided two-photon fluorescent probe for detection of hydrogen peroxide in cancer cells ferroptosis process. Talanta 2021; 234:122684. [PMID: 34364483 DOI: 10.1016/j.talanta.2021.122684] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Hydrogen peroxide (H2O2) plays a vital role in organism due to its strong oxidizability, especially in resisting the invasion of pathogens. Cancer cells have abnormal concentrations of hydrogen peroxide due to their disordered reproduction. In complex biological systems, however, conventional fluorescent probes based solely on their fluorescent response to abnormal H2O2 overexpression in cancer cells are not enough to distinguish cancer cells from other unhealthy or immune cells. Therefore, it is necessary to develop other methods to allow the probe to selectively enter the cancer cells and perform fluorescence imaging of the hydrogen peroxide in the cancer cells. Herein, we developed a biotin-guided, two-photon fluorescent probe (BT-HP) for sensitive detection of H2O2 in cancer cells. Through the study on the properties of the probe, it was found that the probe can selectively enter cancer cells. The depth penetration imaging of H2O2 in cancer cells and tumor tissues by two-photon microscope proves the potential of the probe BT-HP as a tumor targeting H2O2 biosensor. The probe was further applied to detect hydrogen peroxide in cancer cells during the ferroptosis process.
Collapse
Affiliation(s)
- Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Dejun Dong
- Nantong, Zhuhai, Kunming Cellulose Fibers Company Technical Center, Nantong, China
| | - Qingyu Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jingfen Yin
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shoujuan Wang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
17
|
Mayakrishnan S, Tamizmani M, Balachandran C, Aoki S, Maheswari NU. Rh(iii)-Catalysed synthesis of cinnolinium and fluoranthenium salts using C-H activation/annulation reactions: organelle specific mitochondrial staining applications. Org Biomol Chem 2021; 19:5413-5425. [PMID: 34047328 DOI: 10.1039/d1ob00376c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The construction of a novel class of indazolo[2,1-a]cinnolin-7-ium and diazabenzofluoranthenium salts was developed by using Rh(iii)-catalyzed C-H activation/annulation reactions with 2-phenyl-2H-indazole, and internal alkynes, which resulted in structurally important polycyclic heteroaromatic compounds (PHAs). This reaction uses mild reaction conditions and has a high efficiency, low catalyst loading, and wide substrate scope. The overall catalytic process involves C-H activation followed by C-C/C-N bond formation. Furthermore, the synthesised cinnolinium/fluoranthenium salts exhibit potential fluorescence properties and 5i was targeted in particular for specific mitochondrial staining in order to investigate cancer cell lines.
Collapse
Affiliation(s)
- Sivakalai Mayakrishnan
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - Masilamani Tamizmani
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Narayanan Uma Maheswari
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| |
Collapse
|
18
|
Pham TC, Heo S, Nguyen VN, Lee MW, Yoon J, Lee S. Molecular Design toward Heavy-Atom-free Photosensitizers Based on the C═S Bond and their Dual Functions in Hypoxia Photodynamic Cancer Therapy and ClO - Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13949-13957. [PMID: 33729767 DOI: 10.1021/acsami.0c22174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this article, we designed and synthesized the thionated NpImidazole derivatives BS and NS, new heavy-atom-free photosensitizers, which efficiently generate a triplet excited state with high singlet oxygen quantum yield. The introduction of the C═S bond to the NpImidazole core is essential for increasing spin-orbit coupling (SOC). The fluorescence emission of BS and NS was quenched at standard ambient temperature, accompanied with the increase in the ISC process from the singlet states to triplet excited states via thionation. BS and NS showed negligible dark cytotoxicity against HeLa cells in working concentration. In contrast, BS and NS rapidly induced cell death under blue light irradiation both under normoxia and hypoxia conditions. Our current study demonstrates that the C═S group can play an important role in type I ROS generation of PSs, which are unprecedented in the previous reports. Finally, the photophysical changes were assigned to the oxidative desulfurization of the C═S group of BS and NS to the C═O group of the corresponding BO and NO via hypochlorite. The combined results demonstrated the dual function of BS and NS as a fluorescent imaging agent for ClO- and an anti-cancer therapeutic by PDT that showed the potential strategy for "one-for-all" and multifunctional agents.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Seonye Heo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Myung Won Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
19
|
Zhou Z, Yuan X, Long D, Liu M, Li K, Xie Y. A pyridine-Si-rhodamine-based near-infrared fluorescent probe for visualizing reactive oxygen species in living cells. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118927. [PMID: 32987271 DOI: 10.1016/j.saa.2020.118927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
A lysosomal-targeted near infrared (NIR) fluorescent probe for reactive oxygen species (ROS) was developed with highly sensitive ability. The different responding activity toward H2O2, OH, and HClO were investigated. Meanwhile, the probe has been successfully applied in detecting and imaging reactive oxygen species both in cells and in vivo.
Collapse
Affiliation(s)
- Zhengbing Zhou
- Department of Orthopedics, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233 Shanghai, China.
| | - Xiao Yuan
- Department of Orthopedics, The First People's Hospital of Huaihua, Huaihua 418000, Hunan, China
| | - Da Long
- Department of Ophthalmology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233 Shanghai, China.
| | - Manhua Liu
- Department of Orthopedics, The First People's Hospital of Huaihua, Huaihua 418000, Hunan, China
| | - Kun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| |
Collapse
|
20
|
Wei Y, Liu Y, He Y, Wang Y. Mitochondria and lysosome-targetable fluorescent probes for hydrogen peroxide. J Mater Chem B 2021; 9:908-920. [PMID: 33346307 DOI: 10.1039/d0tb02440f] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen peroxide (H2O2), as a key member of the reactive oxygen species (ROS), has a certain regulatory effect on many physiological processes, such as cell proliferation, differentiation and migration. However, abnormal production of H2O2 can cause diseases including cancer, Alzheimer's disease, cardiovascular disease, and so on. Therefore, it is important to detect changes in H2O2 at the subcellular level. In recent years, many fluorescent probes for H2O2 have been developed and used in living cells. In this review, we introduce some typical fluorescent probes for H2O2 with mitochondrial and lysosomal targeting. This review contains targeting strategies, detection mechanisms, optical characteristics and cell imaging of these probes.
Collapse
Affiliation(s)
- Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China.
| | | | | | | |
Collapse
|
21
|
Wang P, Gong Q, Hu J, Li X, Zhang X. Reactive Oxygen Species (ROS)-Responsive Prodrugs, Probes, and Theranostic Prodrugs: Applications in the ROS-Related Diseases. J Med Chem 2020; 64:298-325. [PMID: 33356214 DOI: 10.1021/acs.jmedchem.0c01704] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated levels of reactive oxygen species (ROS) have commonly been implicated in a variety of diseases, including cancer, inflammation, and neurodegenerative diseases. In light of significant differences in ROS levels between the nonpathogenic and pathological tissues, an increasing number of ROS-responsive prodrugs, probes, and theranostic prodrugs have been developed for the targeted treatment and precise diagnosis of ROS-related diseases. This review will summarize and provide insight into recent advances in ROS-responsive prodrugs, fluorescent probes, and theranostic prodrugs, with applications to different ROS-related diseases and various subcellular organelle-targetable and disease-targetable features. The ROS-responsive moieties, the self-immolative linkers, and the typical activation mechanism for the ROS-responsive release are also summarized and discussed.
Collapse
Affiliation(s)
- Pengfei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qijie Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
22
|
Design of a novel mitochondria targetable turn-on fluorescence probe for hydrogen peroxide and its two-photon bioimaging applications. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Chen X, Ren X, Zhang L, Liu Z, Hai Z. Mitochondria-Targeted Fluorescent and Photoacoustic Imaging of Hydrogen Peroxide in Inflammation. Anal Chem 2020; 92:14244-14250. [DOI: 10.1021/acs.analchem.0c03506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoxia Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Xingxing Ren
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lele Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zhengjie Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zijuan Hai
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
24
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
25
|
Wang H, He Z, Yang Y, Zhang J, Zhang W, Zhang W, Li P, Tang B. Ratiometric fluorescence imaging of Golgi H 2O 2 reveals a correlation between Golgi oxidative stress and hypertension. Chem Sci 2019; 10:10876-10880. [PMID: 32190242 PMCID: PMC7066677 DOI: 10.1039/c9sc04384e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Golgi oxidative stress is significantly associated with the occurrence and progression of hypertension. Notably, the concentration of hydrogen peroxide (H2O2) is directly proportional to the degree of Golgi oxidative stress. Therefore, based on a novel Golgi-targeting phenylsulfonamide group, we developed a two-photon (TP) fluorescent probe, Np-Golgi, for in situ H2O2 ratiometric imaging in living systems. The phenylsulfonamide moiety effectively assists Np-Golgi in the precise location of Golgi apparatus. In addition, the raw material of phenylsulfonamide is easily available, and chemical modification is easily implemented. By application of Np-Golgi, we explored the generation of H2O2 during Golgi oxidative stress, and also successfully revealed increases on the levels of Golgi H2O2 in the kidneys of mice with hypertension. This work provides an ideal tool to monitor Golgi oxidative stress for the first time and novel drug targets for the future treatment of hypertension.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Zixu He
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Yuyun Yang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Jiao Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wei Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wen Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Ping Li
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Bo Tang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| |
Collapse
|
26
|
|
27
|
Zheng DJ, Yang YS, Zhu HL. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Liu Y, Jiao C, Lu W, Zhang P, Wang Y. Research progress in the development of organic small molecule fluorescent probes for detecting H 2O 2. RSC Adv 2019; 9:18027-18041. [PMID: 35520548 PMCID: PMC9064630 DOI: 10.1039/c9ra02467k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen peroxide (H2O2), as an important signaling molecule during biological metabolism, is a key member of the reactive oxygen species (ROS) family. The excess of H2O2 will lead to oxidative stress, which is a crucial factor in the production of various ROS-related diseases. In order to study the diverse biological roles of H2O2 in cells and animal tissues, many methods have been developed to detect H2O2. Recently, fluorescence imaging has attracted more and more attention because of its high sensitivity, simple operation, experimental feasibility, and real-time online monitoring. Based on the response group, this study will review the research progress on hydrogen peroxide and summarizes the mechanisms, actualities and prospects of fluorescent probes for H2O2.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Chunpeng Jiao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Wenjuan Lu
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Pingping Zhang
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Yanfeng Wang
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
29
|
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10:6035-6071. [PMID: 31360411 PMCID: PMC6585876 DOI: 10.1039/c9sc01652j] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dynamic fluctuations of bioactive species in living cells are associated with numerous physiological and pathological phenomena. The emergence of organelle-targeted fluorescent probes has significantly facilitated our understanding on the biological functions of these species. This review describes the design, applications, challenges and potential directions of organelle-targeted bioactive species probes.
Bioactive species, including reactive oxygen species (ROS, including O2˙–, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO–, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2Sn, SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
30
|
Gupta G, Kumari P, Ryu JY, Lee J, Mobin SM, Lee CY. Mitochondrial Localization of Highly Fluorescent and Photostable BODIPY-Based Ruthenium(II), Rhodium(III), and Iridium(III) Metal Complexes. Inorg Chem 2019; 58:8587-8595. [DOI: 10.1021/acs.inorgchem.9b00898] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Pratibha Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, Madhya Pradesh, India
| | - Ji Yeon Ryu
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shaikh M. Mobin
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, Madhya Pradesh, India
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
31
|
A FRET-based fluorescent probe for hydrogen peroxide based on the use of carbon quantum dots conjugated to gold nanoclusters. Mikrochim Acta 2019; 186:294. [DOI: 10.1007/s00604-019-3398-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/01/2019] [Indexed: 02/04/2023]
|
32
|
Shaikh AC, Varma ME, Mule RD, Banerjee S, Kulkarni PP, Patil NT. Ionic Pyridinium-Oxazole Dyads: Design, Synthesis, and Application in Mitochondrial Imaging. J Org Chem 2019; 84:1766-1777. [PMID: 30638382 DOI: 10.1021/acs.joc.8b02528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We recently developed an oxidative intramolecular 1,2-amino-oxygenation reaction, combining gold(I)/gold(III) catalysis, for accessing structurally unique ionic pyridinium-oxazole dyads (PODs) with tunable emission wavelengths. On further investigation, these fluorophores turned out to be potential biomarkers; in particular, the one containing -NMe2 functionality (NMe2-POD) was highly selective for mitochondrial imaging. Of note, because of mitochondria's involvement in early-stage apoptosis and degenerative conditions, tracking the dynamics of mitochondrial morphology with such imaging technology has attracted much interest. Along this line, we wanted to build a library of such PODs which are potential mitochondria trackers. However, Au/Selecfluor, our first-generation catalyst system, suffers from undesired fluorination of electronically rich PODs resulting in an inseparable mixture (1:1) of the PODs and their fluorinated derivatives. In our attempt to search for a better alternative to circumvent this issue, we developed a second-generation approach for the synthesis of PODs by employing Cu(II)/PhI(OAC)2-mediated oxidative 1,2-amino-oxygenation of alkynes. Thes newly synthesized PODs exhibit tunable emissions as well as excellent quantum efficiency up to 0.96. Further, this powerful process gives rapid access to a library of NMe2-PODs which are potential mitochondrial imaging agents. Out of the library, the randomly chosen POD-3g was studied for cell-imaging experiments which showed high mitochondrial specificity, superior photostability, and appreciable tolerance to microenvironment changes with respect to commercially available MitoTracker green.
Collapse
Affiliation(s)
- Aslam C Shaikh
- Division of Organic Chemistry CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411 008 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201 002 , India
| | - Mokshada E Varma
- Savitribai Phule Pune University , Ganeshkhind Road , Pune 411 007 , India.,Bioprospecting Group , Agharkar Research Institute , G. G. Agarkar Road , Pune 411 004 , India
| | - Ravindra D Mule
- Division of Organic Chemistry CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411 008 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201 002 , India
| | - Somsuvra Banerjee
- Division of Organic Chemistry CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411 008 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201 002 , India
| | - Prasad P Kulkarni
- Savitribai Phule Pune University , Ganeshkhind Road , Pune 411 007 , India.,Bioprospecting Group , Agharkar Research Institute , G. G. Agarkar Road , Pune 411 004 , India
| | - Nitin T Patil
- Department of Chemistry , Indian Institute of Science Education and Research (IISER)-Bhopal , Bhopal 462 066 , India
| |
Collapse
|
33
|
Wang J, Zhu W, Niu G, Jiang G, Chen Q, Gao P, Li Y, Zhang G, Fan X, Tang BZ. Selectively light-up hydrogen peroxide in hypoxic cancer cells with a novel fluorescent probe. Chem Commun (Camb) 2019; 54:13957-13960. [PMID: 30474657 DOI: 10.1039/c8cc07771a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel fluorescent turn-on probe (HCyHP) was developed in a simple two-step synthesis for monitoring of exogenous and endogenous H2O2 levels in biological samples and hypoxic cancer diagnosis.
Collapse
Affiliation(s)
- Jianguo Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xin F, Tian Y, Gao C, Guo B, Wu Y, Zhao J, Jing J, Zhang X. A two-photon fluorescent probe for basal formaldehyde imaging in zebrafish and visualization of mitochondrial damage induced by FA stress. Analyst 2019; 144:2297-2303. [DOI: 10.1039/c8an02108b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A two-photon fluorescence probe Mito-FA-FP can monitor mitochondrial morphology change and image endogenous FA in vivo.
Collapse
Affiliation(s)
- Fangyun Xin
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Analytical and Testing Centre
- Beijing Institute of Technology
| | - Yong Tian
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Analytical and Testing Centre
- Beijing Institute of Technology
| | - Congcong Gao
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Analytical and Testing Centre
- Beijing Institute of Technology
| | - Bingpeng Guo
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Analytical and Testing Centre
- Beijing Institute of Technology
| | - Yulong Wu
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Analytical and Testing Centre
- Beijing Institute of Technology
| | - Junfang Zhao
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- P. R. China
| | - Jing Jing
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Analytical and Testing Centre
- Beijing Institute of Technology
| | - Xiaoling Zhang
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Analytical and Testing Centre
- Beijing Institute of Technology
| |
Collapse
|
35
|
Song J, Xu C, Huang S, Lei W, Ruan Y, Lu H, Zhao W, Xu J, Chen H. Ultrasmall Nanopipette: Toward Continuous Monitoring of Redox Metabolism at Subcellular Level. Angew Chem Int Ed Engl 2018; 57:13226-13230. [DOI: 10.1002/anie.201808537] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Juan Song
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Cong‐Hui Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Shi‐Zhen Huang
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wen Lei
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hai‐Jie Lu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
36
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
37
|
Song J, Xu C, Huang S, Lei W, Ruan Y, Lu H, Zhao W, Xu J, Chen H. Ultrasmall Nanopipette: Toward Continuous Monitoring of Redox Metabolism at Subcellular Level. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Juan Song
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Cong‐Hui Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Shi‐Zhen Huang
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wen Lei
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hai‐Jie Lu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for, Life Science and Collaborative Innovation Center of, Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
38
|
Hou J, Qian M, Zhao H, Li Y, Liao Y, Han G, Xu Z, Wang F, Song Y, Liu Y. A near-infrared ratiometric/turn-on fluorescent probe for in vivo imaging of hydrogen peroxide in a murine model of acute inflammation. Anal Chim Acta 2018; 1024:169-176. [DOI: 10.1016/j.aca.2018.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
|
39
|
Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications. Antioxid Redox Signal 2018; 29:518-540. [PMID: 29320869 PMCID: PMC6056262 DOI: 10.1089/ars.2017.7491] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/07/2018] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. CRITICAL ISSUES In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. FUTURE DIRECTIONS The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 29, 518-540.
Collapse
Affiliation(s)
- Xiqian Jiang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Shaina L. Carroll
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Jianwei Chen
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Meng C. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Chung CYS, Timblin GA, Saijo K, Chang CJ. Versatile Histochemical Approach to Detection of Hydrogen Peroxide in Cells and Tissues Based on Puromycin Staining. J Am Chem Soc 2018; 140:6109-6121. [PMID: 29722974 PMCID: PMC6069982 DOI: 10.1021/jacs.8b02279] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen peroxide (H2O2) is a central reactive oxygen species (ROS) that contributes to diseases from obesity to cancer to neurodegeneration but is also emerging as an important signaling molecule. We now report a versatile histochemical approach for detection of H2O2 that can be employed across a broad range of cell and tissue specimens in both healthy and disease states. We have developed a first-generation H2O2-responsive analogue named Peroxymycin-1, which is based on the classic cell-staining molecule puromycin and enables covalent staining of biological samples and retains its signal after fixation. H2O2-mediated boronate cleavage uncages the puromycin aminonucleoside, which leaves a permanent and dose-dependent mark on treated biological specimens that can be detected with high sensitivity and precision through a standard immunofluorescence assay. Peroxymycin-1 is selective and sensitive enough to image both exogenous and endogenous changes in cellular H2O2 levels and can be exploited to profile resting H2O2 levels across a panel of cell lines to distinguish metastatic, invasive cancer cells from less invasive cancer and nontumorigenic counterparts, based on correlations with ROS status. Moreover, we establish that Peroxymycin-1 is an effective histochemical probe for in vivo H2O2 analysis, as shown through identification of aberrant elevations in H2O2 levels in liver tissues in a murine model of nonalcoholic fatty liver disease, thus demonstrating the potential of this approach for studying disease states and progression associated with H2O2. This work provides design principles that should enable development of a broader range of histochemical probes for biological use that operate via activity-based sensing.
Collapse
Affiliation(s)
- Clive Yik-Sham Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Greg A. Timblin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Lampard EV, Sedgwick AC, Sun X, Filer KL, Hewins SC, Kim G, Yoon J, Bull SD, James TD. Boronate-Based Fluorescence Probes for the Detection of Hydrogen Peroxide. ChemistryOpen 2018; 7:262-265. [PMID: 29531890 PMCID: PMC5838387 DOI: 10.1002/open.201700189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 11/09/2022] Open
Abstract
In this work, we synthesized a series of boronate ester fluorescence probes (E)-4,4,5,5-tetramethyl-2-(4-styrylphenyl)-1,3,2-dioxaborolane (STBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)aniline (DSTBPin), (E)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)benzonitrile (CSTBPin), (E)-2-(4-(4-methoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (MSTBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)naphthalen-1-amine (NDSTBPin), and N,N-dimethyl-4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxazol-5-yl)aniline (DAPOX-BPin) for the detection of hydrogen peroxide (H2O2). DSTBPin and MSTBPin displayed an "Off-On" fluorescence response towards H2O2, owing to the loss of the intramolecular charge transfer (ICT) excited state. Whereas, CSTBPin displayed a decrease in fluorescence intensity in the presence of H2O2 owing to the introduction of an ICT excited state. STBPin, on the other hand, produced a small fluorescence decrease, indicating the importance of an electron-withdrawing or electron-donating group in these systems. Unfortunately, the longer wavelength probe, NDSTBPin, displayed a decrease in fluorescence intensity. Oxazole-based probe DAPOX-BPin produced a "turn-on" response. Regrettably, DAPOX-BPin required large concentrations of H2O2 (>3 mm) to produce noticeable changes in fluorescence intensity and, therefore, no change in fluorescence was observed in the cell imaging experiments.
Collapse
Affiliation(s)
| | | | - Xiaolong Sun
- Department of ChemistryThe University of Texas at AustinAustin78712TXUSA
| | | | | | - Gyoungmi Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul120–750Korea
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul120–750Korea
| | | | - Tony D. James
- Department of ChemistryUniversity of BathBA2 7AYBathUK
| |
Collapse
|
42
|
Lu Y, Shi X, Fan W, Black CA, Lu Z, Fan C. A fast-response two-photon fluorescent probe for imaging endogenous H 2O 2 in living cells and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:353-359. [PMID: 28946080 DOI: 10.1016/j.saa.2017.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
As a second messenger, hydrogen peroxide plays significant roles in numerous physiological and pathological processes and is related to various diseases including inflammatory disease, diabetes, neurodegenerative disorders, cardiovascular disease and Alzheimer's disease. Two-photon (TP) fluorescent probes reported for the detection of endogenous H2O2 are rare and most have drawbacks such as slow response and low sensitivity. In this report, we demonstrate a simple H2O2-specific TP fluorescent probe (TX-HP) containing a two-photon dye 6-hydroxy-2,3,4,4a-tetrahydro-1H-xanthen-1-one (TX) on the modulation of the ICT process. The probe exhibits a rapid fluorescent response to H2O2 in 9min with both high sensitivity and selectivity. The probe can detect exogenous H2O2 in living cells. Furthermore, the probe is successfully utilized for imaging H2O2 in liver tissues.
Collapse
Affiliation(s)
- Yanan Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaomin Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenlong Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Cory A Black
- BDG Synthesis, PO Box 38627, Wellington Mail Centre, Wellington 5045, New Zealand
| | - Zhengliang Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Chunhua Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
43
|
Seki H, Onishi S, Asamura N, Suzuki Y, Kawamata J, Kaneno D, Hadano S, Watanabe S, Niko Y. Bright and two-photon active red fluorescent dyes that selectively move back and forth between the mitochondria and nucleus upon changing the mitochondrial membrane potential. J Mater Chem B 2018; 6:7396-7401. [DOI: 10.1039/c8tb02415d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pyrene-based two-photon active and bright red emitters that localize between the mitochondria and nucleus in response to changes in the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Hitomi Seki
- Research and Education Faculty
- Multidisciplinary Science Cluster
- Interdisciplinary Science Unit
- Kochi University
- Kochi
| | - Shozo Onishi
- Graduate School of Medicine
- Yamaguchi University
- Yoshida
- Japan
| | - Naoya Asamura
- Graduate School of Medicine
- Yamaguchi University
- Yoshida
- Japan
| | | | - Jun Kawamata
- Graduate School of Medicine
- Yamaguchi University
- Yoshida
- Japan
| | - Daisuke Kaneno
- Department of Applied Science
- Graduate School of Integrated Arts and Sciences
- Kochi University
- Nankoku City
- Japan
| | - Shingo Hadano
- Research and Education Faculty
- Multidisciplinary Science Cluster
- Interdisciplinary Science Unit
- Kochi University
- Kochi
| | - Shigeru Watanabe
- Research and Education Faculty
- Multidisciplinary Science Cluster
- Interdisciplinary Science Unit
- Kochi University
- Kochi
| | - Yosuke Niko
- Research and Education Faculty
- Multidisciplinary Science Cluster
- Interdisciplinary Science Unit
- Kochi University
- Kochi
| |
Collapse
|
44
|
Lim CS, Cho MK, Park MY, Kim HM. A Two-Photon Ratiometric Fluorescent Probe for Imaging of Hydrogen Peroxide Levels in Rat Organ Tissues. ChemistryOpen 2018; 7:53-56. [PMID: 29318096 PMCID: PMC5754560 DOI: 10.1002/open.201700155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 01/20/2023] Open
Abstract
Hydrogen peroxide (H2O2) is important in the regulation of a variety of biological processes and is involved in various diseases. Quantitative measurement of H2O2 levels at the subcellular level is important for understanding its positive and negative effects on biological processes. Herein, a two-photon ratiometric fluorescent probe (SHP-Cyto) with a boronate-based carbamate leaving group as the H2O2 reactive trigger and 6-(benzo[d]thiazol-2'-yl)-2-(N,N-dimethylamino) naphthalene (BTDAN) as the fluorophore was synthesized and examined for its ability to detect cytosolic H2O2 in situ. This probe, based on the specific reaction between boronate and H2O2, displayed a fluorescent color change (455 to 528 nm) in response to H2O2 in the presence of diverse reactive oxygen species in a physiological medium. In addition, ratiometric two-photon microscopy (TPM) images with SHP-Cyto revealed that H2O2 levels gradually increased from brain to kidney, skin, heart, lung, and then liver tissues. SHP-Cyto was successfully applied to the imaging of endogenously produced cytosolic H2O2 levels in live cells and various rat organs by using TPM.
Collapse
Affiliation(s)
- Chang Su Lim
- Department of Energy System Research and Department of ChemistryAjou UniversitySuwonGyeonggi-do443–749Republic of Korea
| | - Myoung Ki Cho
- Department of Energy System Research and Department of ChemistryAjou UniversitySuwonGyeonggi-do443–749Republic of Korea
| | - Mi Yeon Park
- Department of Energy System Research and Department of ChemistryAjou UniversitySuwonGyeonggi-do443–749Republic of Korea
| | - Hwan Myung Kim
- Department of Energy System Research and Department of ChemistryAjou UniversitySuwonGyeonggi-do443–749Republic of Korea
| |
Collapse
|
45
|
Xu K, He L, Yang X, Yang Y, Lin W. A ratiometric fluorescent hydrogen peroxide chemosensor manipulated by an ICT-activated FRET mechanism and its bioimaging application in living cells and zebrafish. Analyst 2018; 143:3555-3559. [DOI: 10.1039/c8an00842f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ratiometric fluorescent chemosensor manipulated by an ICT-activated FRET mechanism was engineered for monitoring hydrogen peroxide in living cells and zebrafish.
Collapse
Affiliation(s)
- Kaixin Xu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Longwei He
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Xueling Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yunzhen Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
46
|
Gao C, Tian Y, Zhang R, Jing J, Zhang X. Endoplasmic Reticulum-Directed Ratiometric Fluorescent Probe for Quantitive Detection of Basal H2O2. Anal Chem 2017; 89:12945-12950. [DOI: 10.1021/acs.analchem.7b03809] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Congcong Gao
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Yong Tian
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Jing Jing
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
47
|
Wang L, Chen B, Peng P, Hu W, Liu Z, Pei X, Zhao W, Zhang C, Li L, Huang W. Fluorescence imaging mitochondrial copper(II) via photocontrollable fluorogenic probe in live cells. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Andina D, Leroux JC, Luciani P. Ratiometric Fluorescent Probes for the Detection of Reactive Oxygen Species. Chemistry 2017; 23:13549-13573. [DOI: 10.1002/chem.201702458] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Diana Andina
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Paola Luciani
- Biologisch-Pharmazeutisch Fakultät, Institut für Pharmazie; Friedrich-Schiller-Universität Jena; 07743 Jena Germany
| |
Collapse
|
49
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 961] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
50
|
Moon JY, Choi SJ, Heo CH, Kim HM, Kim HS. α-Syntrophin stabilizes catalase to reduce endogenous reactive oxygen species levels during myoblast differentiation. FEBS J 2017; 284:2052-2065. [DOI: 10.1111/febs.14103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Yun Moon
- Department of Biological Science; College of Natural Sciences; Ajou University; Suwon Korea
| | - Su Jin Choi
- Department of Biological Science; College of Natural Sciences; Ajou University; Suwon Korea
| | - Cheol Ho Heo
- Departments of Chemistry and Energy Systems Research; Ajou University; Suwon Korea
| | - Hwan Myung Kim
- Departments of Chemistry and Energy Systems Research; Ajou University; Suwon Korea
| | - Hye Sun Kim
- Department of Biological Science; College of Natural Sciences; Ajou University; Suwon Korea
| |
Collapse
|