1
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
2
|
Zhang R, Chen R, Ma Y, Liang J, Ren S, Gao Z. Application of DNA Nanotweezers in biosensing: Nanoarchitectonics and advanced challenges. Biosens Bioelectron 2023; 237:115445. [PMID: 37421799 DOI: 10.1016/j.bios.2023.115445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 07/10/2023]
Abstract
Deoxyribonucleic acid (DNA) is a carrier of genetic information. DNA hybridization is characterized by predictability, diversity, and specificity owing to the strict complementary base-pairing assembly mode, which stimulates the use of DNA to build a variety of nanomachines, including DNA tweezers, motors, walkers, and robots. DNA nanomachines have become prevalent for signal amplification and transformation in the field of biosensing, providing a new method for constructing highly sensitive sensing analysis strategies. DNA tweezers have exhibited unique advantages in biosensing applications owing to their simple structures and fast responses. The two-state conformation of DNA tweezers, the open and closed states, enable them to open and close autonomously after stimulation, thus facilitating the quick detection of corresponding signal changes of different targets. This review discusses the recent progress in the application of DNA nanotweezers in the field of biosensing, and the trends in their development for application in the field of biosensing are summarized.
Collapse
Affiliation(s)
- Rui Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yujing Ma
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
3
|
Xing H, Zhu Y, Xu D, Wu R, Xing X, Li LS. DNA tetrahedron-mediated triplex molecular switch for extracellular pH monitoring. Anal Chim Acta 2023; 1265:341336. [PMID: 37230576 DOI: 10.1016/j.aca.2023.341336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
This study aimed to construct a novel DNA triplex molecular switch modified with DNA tetrahedron (DTMS-DT) with sensitive response to extracellular pH using a DNA tetrahedron as the anchoring unit and DNA triplex as the response unit. The results showed that the DTMS-DT had desirable pH sensitivity, excellent reversibility, outstanding anti-interference ability, and good biocompatibility. Confocal laser scanning microscopy suggested that the DTMS-DT could not only be stably anchored on the cell membrane but also be employed to dynamically monitor the change in extracellular pH. Compared with the reported probes for extracellular pH monitoring, the designed DNA tetrahedron-mediated triplex molecular switch exhibited higher cell surface stability and brought the pH-responsive unit closer to the cell membrane surface, making the results more reliable. In general, developing the DNA tetrahedron-based DNA triplex molecular switch is helpful for understanding and illustrating the pH dependent cell behaviors and disease diagnostics.
Collapse
Affiliation(s)
- Huanhuan Xing
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yazhen Zhu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Dangdang Xu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Hu Y, Ying JY. A Strong Acid-Induced DNA Hydrogel Based on pH-Reconfigurable A-Motif Duplex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205909. [PMID: 36587983 DOI: 10.1002/smll.202205909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Under a pH value lower than the pKa of adenine (3.5), adenine-rich sequences (A-strand) form a unique parallel A-motif duplex due to the protonation of A-strand. At a pH above 3.5, deprotonation of adenines leads to the dissolution of A-motif duplex to A-strand single coil. This pH-reconfigurable A-motif duplex has been developed as a novel pH-responsive DNA hydrogel, termed A-hydrogel. The hydrogel state is achieved at pH 1.2 by the A-motif duplex bridging units, which are cross-linked by both reverse Hoogsteen interaction and electrostatic attraction. Hydrogel-to-solution transition is triggered by pH 4.3 due to the deprotonation-induced separation of A-motif duplex. The A-hydrogel system undergoes reversible hydrogel-solution transitions by subjecting the system to cyclic pH shifts between 1.2 and 4.3. An anti-inflammatory medicine, sulfasalazine (SSZ), which intercalates into A-motif duplex, is loaded into A-hydrogel. Its pH-controlled release from A-hydrogel is successfully demonstrated. The strong acid-induced A-hydrogel may fill the gap that other mild acid-responsive DNA hydrogels cannot do, such as protection of orally delivered drug in hostile stomach environment against strong acid (pH ~ 1.2) and digestive enzymes.
Collapse
Affiliation(s)
- Yuwei Hu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Labs, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| |
Collapse
|
5
|
Peng S, Chang Y, Zeng X, Lai R, Yang M, Wang D, Zhou X, Shao Y. Selectivity of natural isoquinoline alkaloid assembler in programming poly(dA) into parallel duplex by polyvalent synergy. Anal Chim Acta 2023; 1241:340777. [PMID: 36657870 DOI: 10.1016/j.aca.2022.340777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Ligand-induced assembly of disordered DNAs attracts much attention due to its potential action in transcription regulation and molecular switches-based sensors. Among natural isoquinoline alkaloids (NIAs), we screened out nitidine (NIT) as polyvalent-binding assembler to program poly(dA) into a parallel duplex assembly at neutral pH. The molecule planarity of NIAs was believed to be a determinant factor in programming the parallel poly(dA) assembly. Poly(dA) with more than six adenines can initiate the synergistic binding of NIT to generate the parallel assembly. It is expected that one A-A pair in duplex can bind one NIT molecule provided that poly(dA) is long enough, suggesting the pivotal role of the polyvalent synergy of NIT in programming the parallel poly(dA) assembly. A gold nanoparticles-based colorimetric method was also developed to screen NIT out of NIAs having the potential to construct the poly(dA) assembly. Our work will inspire more interest in developing polyadenine-based switches and sensors by concentrating NIT within the polyadenine parallel assembly.
Collapse
Affiliation(s)
- Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| |
Collapse
|
6
|
Chakraborty A, Ravi SP, Shamiya Y, Cui C, Paul A. Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chem Soc Rev 2021; 50:7779-7819. [PMID: 34036968 DOI: 10.1039/d0cs01387k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The biological purpose of DNA is to store, replicate, and convey genetic information in cells. Progress in molecular genetics have led to its widespread applications in gene editing, gene therapy, and forensic science. However, in addition to its role as a genetic material, DNA has also emerged as a nongenetic, generic material for diverse biomedical applications. DNA is essentially a natural biopolymer that can be precisely programed by simple chemical modifications to construct materials with desired mechanical, biological, and structural properties. This review critically deciphers the chemical tools and strategies that are currently being employed to harness the nongenetic functions of DNA. Here, the primary product of interest has been crosslinked, hydrated polymers, or hydrogels. State-of-the-art applications of macroscopic, DNA-based hydrogels in the fields of environment, electrochemistry, biologics delivery, and regenerative therapy have been extensively reviewed. Additionally, the review encompasses the status of DNA as a clinically and commercially viable material and provides insight into future possibilities.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Caroline Cui
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada. and School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada and Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
7
|
Bhatia D, Wunder C, Johannes L. Self-assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications. Chembiochem 2021; 22:763-778. [PMID: 32961015 DOI: 10.1002/cbic.202000372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/19/2020] [Indexed: 12/28/2022]
Abstract
The broad field of structural DNA nanotechnology has diverged into various areas of applications ranging from computing, photonics, synthetic biology, and biosensing to in-vivo bioimaging and therapeutic delivery, to name but a few. Though the field began to exploit DNA to build various nanoscale architectures, it has now taken a new path to diverge from structural DNA nanotechnology to functional or applied DNA nanotechnology. More recently a third sub-branch has emerged-biologically oriented DNA nanotechnology, which seeks to explore the functionalities of combinatorial DNA devices in various biological systems. In this review, we summarize the key developments in DNA nanotechnology revealing a current trend that merges the functionality of DNA devices with the specificity of biomolecules to access a range of functions in biological systems. This review seeks to provide a perspective on the evolution and biological applications of DNA nanotechnology, where the integration of DNA structures with biomolecules can now uncover phenomena of interest to biologists and biomedical scientists. Finally, we conclude with the challenges, limitations, and perspectives of DNA nanodevices in fundamental and applied research.
Collapse
Affiliation(s)
- Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382330, Gandhinagar, India
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team U1143 INSERM UMR 3666 CNRS, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team U1143 INSERM UMR 3666 CNRS, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| |
Collapse
|
8
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
9
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
10
|
Xiao F, Chen Z, Wei Z, Tian L. Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001048. [PMID: 32832360 PMCID: PMC7435255 DOI: 10.1002/advs.202001048] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Indexed: 05/13/2023]
Abstract
The comprehensive understanding and proper use of supramolecular interactions have become critical for the development of functional materials, and so is the biomedical application of nucleic acids (NAs). Relatively rare attention has been paid to hydrophobic interaction compared with hydrogen bonding and electrostatic interaction of NAs. However, hydrophobic interaction shows some unique properties, such as high tunability for application interest, minimal effect on NA functionality, and sensitivity to external stimuli. Therefore, the widespread use of hydrophobic interaction has promoted the evolution of NA-based biomaterials in higher-order self-assembly, drug/gene-delivery systems, and stimuli-responsive systems. Herein, the recent progress of NA-based biomaterials whose fabrications or properties are highly determined by hydrophobic interactions is summarized. 1) The hydrophobic interaction of NA itself comes from the accumulation of base-stacking forces, by which the NAs with certain base compositions and chain lengths show properties similar to thermal-responsive polymers. 2) In conjugation with hydrophobic molecules, NA amphiphiles show interesting self-assembly structures with unique properties in many new biosensing and therapeutic strategies. 3) The working-mechanisms of some NA-based complex materials are also dependent on hydrophobic interactions. Moreover, in recent attempts, NA amphiphiles have been applied in organizing macroscopic self-assembly of DNA origami and controlling the cell-cell interactions.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- School of Materials Science and EngineeringHarbin Institute of TechnologyNangang DistrictHarbin150001P. R. China
| | - Zhe Chen
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- Cancer Centre and Centre of ReproductionDevelopment and AgingFaculty of Health SciencesUniversity of MacauTaipaMacau999078P. R. China
| | - Zixiang Wei
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- Cancer Centre and Centre of ReproductionDevelopment and AgingFaculty of Health SciencesUniversity of MacauTaipaMacau999078P. R. China
| | - Leilei Tian
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
| |
Collapse
|
11
|
Chakraborty S, Nandi S, Bhattacharyya K, Mukherjee S. Time Evolution of Local pH Around a Photo-Acid in Water and a Polymer Hydrogel: Time Resolved Fluorescence Spectroscopy of Pyranine. Chemphyschem 2019; 20:3221-3227. [PMID: 31596029 DOI: 10.1002/cphc.201900845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/19/2019] [Indexed: 12/31/2022]
Abstract
In this work, we propose a new analysis of the time resolved emission spectra of a photo-acid, HA, pyranine (8-hydroxypyrene-1,3,6-trisulphonic acid, HPTS) based on time resolved area normalized emission spectra (TRANES). Presence of an isoemissive point in TRANES confirms the presence of two emissive species (HA and A- ) inside the system in bulk water and inside a co-polymer hydrogel [F127, (PEO)100 -(PPO)70 -(PEO)100 ]. We show that following electronic excitation, the local pH around HPTS, is much lower than the bulk pH presumably because of ejection of proton from the photo-acid in the excited state. With increase in time, the local pH increases and reaches the bulk value. We further, demonstrate that the excited state pKa of HPTS may be estimated from the emission intensities of HA and A- at long time. The time constant for time evolution of pH is ∼630 ps in water, ∼1300 ps in F127 gel and ∼4700 ps in CTAB micelle. The location and local viscosity sensed by the probe is ascertained using fluorescence correlation spectroscopy (FCS) and fluorescence anisotropy decay. The different values of the local viscosity reported by these two methods are reconciled.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Somen Nandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Kankan Bhattacharyya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
12
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
13
|
Patino T, Porchetta A, Jannasch A, Lladó A, Stumpp T, Schäffer E, Ricci F, Sánchez S. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches. NANO LETTERS 2019; 19:3440-3447. [PMID: 30704240 DOI: 10.1021/acs.nanolett.8b04794] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biocatalytic micro- and nanomotors have emerged as a new class of active matter self-propelled through enzymatic reactions. The incorporation of functional nanotools could enable the rational design of multifunctional micromotors for simultaneous real-time monitoring of their environment and activity. Herein, we report the combination of DNA nanotechnology and urease-powered micromotors as multifunctional tools able to swim, simultaneously sense the pH of their surrounding environment, and monitor their intrinsic activity. With this purpose, a FRET-labeled triplex DNA nanoswitch for pH sensing was immobilized onto the surface of mesoporous silica-based micromotors. During self-propulsion, urea decomposition and the subsequent release of ammonia led to a fast pH increase, which was detected by real-time monitoring of the FRET efficiency through confocal laser scanning microscopy at different time points (i.e., 30 s, 2 and 10 min). Furthermore, the analysis of speed, enzymatic activity, and propulsive force displayed a similar exponential decay, matching the trend observed for the FRET efficiency. These results illustrate the potential of using specific DNA nanoswitches not only for sensing the micromotors' surrounding microenvironment but also as an indicator of the micromotor activity status, which may aid to the understanding of their performance in different media and in different applications.
Collapse
Affiliation(s)
- Tania Patino
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , Barcelona 08028 , Spain
| | - Alessandro Porchetta
- Department of Chemistry , University of Rome , Tor Vergata, Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Anita Jannasch
- Center for Plant Molecular Biology (ZMBP) , University of Tübingen , Auf der Morgenstelle 32 , Tübingen 72076 , Germany
| | - Anna Lladó
- Advanced Digital Microscopy , Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08010 , Spain
| | - Tom Stumpp
- Center for Plant Molecular Biology (ZMBP) , University of Tübingen , Auf der Morgenstelle 32 , Tübingen 72076 , Germany
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP) , University of Tübingen , Auf der Morgenstelle 32 , Tübingen 72076 , Germany
| | - Francesco Ricci
- Department of Chemistry , University of Rome , Tor Vergata, Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , Barcelona 08028 , Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Pg. Lluís Companys 23 , Barcelona 08010 , Spain
| |
Collapse
|
14
|
Chu B, Zhang D, Hwang W, Paukstelis PJ. Crystal Structure of a Tetrameric DNA Fold-Back Quadruplex. J Am Chem Soc 2018; 140:16291-16298. [PMID: 30384604 DOI: 10.1021/jacs.8b10153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA can adopt many structures beyond the Watson-Crick duplex. However, the bounds of DNA structural diversity and how these structures might regulate biological processes is only beginning to be understood. Here, we describe the 1.05 Å resolution crystal structure of a DNA oligonucleotide that self-associates to form a non-G-quadruplex fold-back structure. Distinct from previously described fold-back quadruplexes, two-fold-back dimers interact through noncanonical and Watson-Crick interactions to form a tetrameric assembly. These interactions include a hexad base pairing arrangement from two C-G-G base triples. The assembly is dependent on divalent cations, and the interface between the dimeric units creates a cavity in which a cation resides. This structure provides new sequence and structural contexts for the formation of fold-back quadruplexes, further highlighting the potential biological importance of this type of noncanonical DNA structure. This structure may also serve as the basis for designing new types of DNA nanoarchitectures or cation sensors based on the strong divalent cation dependence.
Collapse
Affiliation(s)
- Betty Chu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| | - Daoning Zhang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| | - Wonseok Hwang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| | - Paul J Paukstelis
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
15
|
Belleperche M, DeRosa MC. pH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. Pharmaceuticals (Basel) 2018; 11:ph11030080. [PMID: 30149664 PMCID: PMC6161035 DOI: 10.3390/ph11030080] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer binding has been used effectively for diagnostics, in-vivo targeting of therapeutics, and the construction and control of nanomachines. Nanostructures that respond to pH by releasing or changing affinity to a target have also been used for in vivo delivery, and in the construction of sensors and re-usable nanomachines. There are many applications that use aptamers together with pH-responsive materials, notably the targeted delivery of chemotherapeutics. However, the number of reported applications that directly use pH to control aptamer binding is small. In this review, we first discuss the use of aptamers with pH-responsive nanostructures for chemotherapeutic and other applications. We then discuss applications that use pH to denature or otherwise disrupt the binding of aptamers. Finally, we discuss motifs using non-canonical nucleic acid base pairing that can shift conformation in response to pH, followed by an overview of engineered pH-controlled aptamers designed using those motifs.
Collapse
Affiliation(s)
- Micaela Belleperche
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| | - Maria C DeRosa
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| |
Collapse
|
16
|
Srivastava S, Fukuto M, Gang O. Liquid interfaces with pH-switchable nanoparticle arrays. SOFT MATTER 2018; 14:3929-3934. [PMID: 29736540 DOI: 10.1039/c8sm00583d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive 2D nanoscale systems offer intriguing opportunities for creating switchable interfaces. At liquid interfaces, such systems can provide control over interfacial energies, surface structure, and rheological and transport characteristics, which is relevant, for example, to bio- and chemical reactors, microfluidic devices, and soft robotics. Here, we explore the formation of a pH-responsive membrane formed from gold nanoparticles grafted with DNA (DNA-NPs) at a liquid-vapor interface. A DNA-NP 2D hexagonal lattice can be reversibly switched by pH modulation between an expanded state of non-connected nanoparticles at neutral pH and a contracted state of linked nanoparticles at acidic pH due to the AH+-H+A base pairing between A-motifs. Our in situ surface X-ray scattering studies reveal that the reversible lattice contraction can be tuned by the length of pH-activated linkers, with up to ∼71% change in surface area.
Collapse
Affiliation(s)
- Sunita Srivastava
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | | | |
Collapse
|
17
|
Li Y, Song L, Wang B, He J, Li Y, Deng Z, Mao C. Universal pH‐Responsive and Metal‐Ion‐Free Self‐Assembly of DNA Nanostructures. Angew Chem Int Ed Engl 2018; 57:6892-6895. [DOI: 10.1002/anie.201804054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yongfei Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Lei Song
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Bang Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Jianbo He
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Yulin Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Chengde Mao
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
18
|
Li Y, Song L, Wang B, He J, Li Y, Deng Z, Mao C. Universal pH‐Responsive and Metal‐Ion‐Free Self‐Assembly of DNA Nanostructures. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yongfei Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Lei Song
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Bang Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Jianbo He
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Yulin Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei Anhui 230009 China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Chengde Mao
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
19
|
Ma W, Yan L, He X, Qing T, Lei Y, Qiao Z, He D, Huang K, Wang K. Hairpin-Contained i-Motif Based Fluorescent Ratiometric Probe for High-Resolution and Sensitive Response of Small pH Variations. Anal Chem 2018; 90:1889-1896. [DOI: 10.1021/acs.analchem.7b03972] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Lv’an Yan
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Taiping Qing
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Kaihang Huang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| |
Collapse
|
20
|
Idili A, Ricci F. Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures. Methods Mol Biol 2018; 1811:79-100. [PMID: 29926447 DOI: 10.1007/978-1-4939-8582-1_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triplex DNA is becoming a very useful domain to design pH-triggered DNA nanoswitches and nanodevices. The high versatility and programmability of triplex DNA interactions allows the integration of pH-controllable modules into DNA-based reactions and self-assembly processes. Here, we describe the procedure to characterize DNA-based triplex nanoswitches and more in general pH-triggered structure-switching mechanisms. Procedures to characterize pH-triggered DNA nanodevices will be useful for many applications in the field of biosensing, drug delivery systems and smart nanomaterials.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
21
|
Li H, Zhou X, Yao D, Liang H. pH-Responsive spherical nucleic acid for intracellular lysosome imaging and an effective drug delivery system. Chem Commun (Camb) 2018; 54:3520-3523. [DOI: 10.1039/c8cc00440d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study presents a class of pH-responsive spherical nucleic acids that can exactly image intracellular lysosomes and be an effective drug delivery system.
Collapse
Affiliation(s)
- Hui Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Xiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Dongbao Yao
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
22
|
Huang Z, Liu B, Liu J. Parallel Polyadenine Duplex Formation at Low pH Facilitates DNA Conjugation onto Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11986-11992. [PMID: 27771956 DOI: 10.1021/acs.langmuir.6b03253] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA-functionalized gold nanoparticles (AuNPs) have been extensively used in sensing, drug delivery, and materials science. A key step is to attach DNA to AuNPs, forming a stable and functional conjugate. Although the traditional salt-aging method takes a full day or longer, a recent low-pH method allows DNA conjugation in a few minutes. The effect of low pH was attributed to the protonation of adenine (A) and cytosine (C), resulting in an overall lower negative charge density on DNA. In this work, the effect of DNA conformation at low pH is studied. Using circular dichroism (CD) spectroscopy, the parallel poly-A duplex (A-motif) is detected when a poly-A segment is linked to a random DNA, a design typically used for DNA conjugation. A DNA staining dye, thiazole orange, is identified for detecting such A-motifs. The A-motif structure is ideal for DNA conjugation because it exposes the thiol group to directly react with the gold surface while minimizing nonspecific DNA base adsorption. For nonthiolated DNA, the optimal procedure is to incubate DNA and AuNPs followed by lowering the pH. The i-motif formed by poly-C DNA at low pH is less favorable to the conjugation reaction because of its unique way of folding. The stability of poly-A and poly-G DNA at low pH is examined. An excellent stability of poly-A DNA is confirmed, but poly-G has lower stability. This study provides new fundamental insights into a practically useful technique of conjugating DNA to AuNPs.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
|
24
|
Saoji M, Zhang D, Paukstelis PJ. Probing the role of sequence in the assembly of three-dimensional DNA crystals. Biopolymers 2016; 103:618-26. [PMID: 26015367 DOI: 10.1002/bip.22688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 11/10/2022]
Abstract
DNA is a widely used biopolymer for the construction of nanometer-scale objects due to its programmability and structural predictability. One long-standing goal of the DNA nanotechnology field has been the construction of three-dimensional DNA crystals. We previously determined the X-ray crystal structure of a DNA 13-mer that forms a continuously hydrogen bonded three-dimensional lattice through Watson-Crick and non-canonical base pairs. Our current study sets out to understand how the sequence of the Watson-Crick duplex region influences crystallization of this 13-mer. We screened all possible self-complementary sequences in the hexameric duplex region and found 21 oligonucleotides that crystallized. Sequence analysis showed that one specific Watson-Crick pair influenced the crystallization propensity and the speed of crystal self-assembly. We determined X-ray crystal structures for 13 of these oligonucleotides and found sequence-specific structural changes that suggests that this base pair may serve as a structural anchor during crystal assembly. Finally, we explored the crystal self-assembly and nucleation process. Solution studies indicated that these oligonucleotides do not form base pairs in the absence of cations, but that the addition of divalent cations leads to rapid self-assembly to higher molecular weight complexes. We further demonstrate that crystals grown from mixtures of two different oligonucleotide sequences contain both oligonucleotides. These results suggest that crystal self-assembly is nucleated by the formation of the Watson-Crick duplexes initiated by a simple chemical trigger. This study provides new insight into the role of sequence for the assembly of periodic DNA structures.
Collapse
Affiliation(s)
- Maithili Saoji
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Daoning Zhang
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742.,Biomolecular NMR Facility, College Park, MD, 20742
| | - Paul J Paukstelis
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742.,Center for Biomolecular Structure & Organization, College Park, MD, 20742.,Maryland Nanocenter, College Park, MD, 20742
| |
Collapse
|
25
|
Tripathi S, Paukstelis PJ. Structural Implications of Homopyrimidine Base Pairs in the Parallel-Stranded d(YGA) Motif. Chembiochem 2016; 17:1177-83. [PMID: 26629965 DOI: 10.1002/cbic.201500491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/28/2022]
Abstract
DNA can adopt many other structures beyond the canonical B-form double helix. These alternative DNA structures have become increasingly significant as new biological roles are found for them. Additionally, there has been a growing interest in using non-canonical base pairs to provide structural diversity for designing DNA architectures for nanotechnology applications. We recently described the crystal structure of d(ACTCGGATGAT), which forms a tetraplex through parallel-stranded homo-base pairs and nucleobase intercalation. The homoduplex region contains a d(YGA⋅YGA) motif observed in crystal and solution structures. Here, we examine the structural implications of the homopyrimidine base pair within this motif. We determined crystal structures of two variants that differ from the original structure in the homopyrimidine base pairs and number of d(YGA) motifs. Our results show that the intercalation-locked tetraplex motif is predictable in these different sequence contexts and that substituting C⋅C base pairs for T⋅T base pairs introduces asymmetry to the homoduplex. These results have important implications for utilizing d(YGA) motifs in DNA crystal design and could provide a basis for understanding how local structures could be associated with repeat expansions.
Collapse
Affiliation(s)
- Shailesh Tripathi
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Reagents Drive, College Park, MD, 20742, USA.,National Institute of Mental Health and Neurosciences, Hosur Road 560029, Bengaluru, India
| | - Paul J Paukstelis
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Reagents Drive, College Park, MD, 20742, USA. .,Center for Biomolecular Structure and Organization, Maryland NanoCenter, College Park, MD, 20742, USA.
| |
Collapse
|
26
|
Qu F, Zou X, Kong R, You J. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights. Talanta 2016; 146:549-55. [DOI: 10.1016/j.talanta.2015.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
|
27
|
Narayanaswamy N, Nair RR, Suseela YV, Saini DK, Govindaraju T. A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells. Chem Commun (Camb) 2016; 52:8741-4. [DOI: 10.1039/c6cc02705a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DNA switch based on a molecular beacon (closed state) to A-motif (open state) structural transformation is developed as an efficient and reversible pH sensor in synthetic vesicles and live cells.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Raji R. Nair
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bengaluru 560012
- India
| | - Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bengaluru 560012
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
28
|
Porchetta A, Idili A, Vallée-Bélisle A, Ricci F. General Strategy to Introduce pH-Induced Allostery in DNA-Based Receptors to Achieve Controlled Release of Ligands. NANO LETTERS 2015; 15:4467-71. [PMID: 26053894 PMCID: PMC4498449 DOI: 10.1021/acs.nanolett.5b00852] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/29/2015] [Indexed: 05/23/2023]
Abstract
Inspired by naturally occurring pH-regulated receptors, here we propose a rational approach to introduce pH-induced allostery into a wide range of DNA-based receptors. To demonstrate this we re-engineered two model DNA-based probes, a molecular beacon and a cocaine-binding aptamer, by introducing in their sequence a pH-dependent domain. We demonstrate here that we can finely tune the affinity of these model receptors and control the load/release of their specific target molecule by a simple pH change.
Collapse
Affiliation(s)
- Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Alexis Vallée-Bélisle
- Laboratory
of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
29
|
Luo Y, Miao H, Yang X. Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1. Talanta 2015; 144:488-95. [PMID: 26452852 DOI: 10.1016/j.talanta.2015.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 11/28/2022]
Abstract
Glutathione (GSH), playing roles as both a reducing reagent and protecting ligand, has been successfully employed for synthesizing Cu nanoclusters (CuNCs@GSH) on the basis of a simple and facile approach. The as-prepared CuNCs exhibited a fluorescence emission at 600nm with a quantum yield (QY) of approximately 3.6%. Subsequently, the CuNCs described here was employed as a broad-range pH sensor by virtue of the fluorescence intensity of CuNCs responding sensitively to pH fluctuating in a linear range of 4.0-12.0. Meanwhile, these prepared CuNCs were applied for detections of vitamin B1 (VB1) on the basis of positively charged VB1 neutralizing the negative surface charge of CuNCs, thus leading to the instability and aggregations of CuNCs, and further facilitating to quench their fluorescence. In addition, the proposed analytical method permitted detecting VB1 with a linear range of 2.0×10(-8)-1.0×10(-4) mol L(-1) as well as a detection limit of 4.6×10(-9) mol L(-1). Eventually, the practicability of this sensing approach was validated by assaying VB1 in human urine samples and pharmaceutical tablets, confirming its potential to broaden avenues for assaying VB1.
Collapse
Affiliation(s)
- Yawen Luo
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Southwest University, Chongqing 400715, China
| | - Hong Miao
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xiaoming Yang
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Southwest University, Chongqing 400715, China.
| |
Collapse
|
30
|
Zhang L, Dai L, Rong Y, Liu Z, Tong D, Huang Y, Chen T. Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1164-71. [PMID: 25540841 DOI: 10.1021/la504365b] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A photoresponsive amphiphilic gold nanoparticle (AuNP) is achieved through the decoration of AuNP with hydrophilic poly(ethylene glycol) (PEG) and hydrophobic photoresponsive polymethacrylate containing spiropyran units (PSPMA). Owing to the photoresponsive property of spiropyran units, the amphiphilic AuNPs can easily achieve the controllable assembly/disassembly behaviors under the trigger by light. Under visible light, spiropyran units provide weak intermolecular interactions between neighbored AuNPs, leading to isolated AuNPs in the solution. While under UV light irradiation, spiropyran units in the polymer brushes transform into merocyanine isomer with conjugated structure and zwitterionic state, promoting the integration of adjacent AuNPs through π-π stacking and electrostatic attractions, further leading to the formation of Au oligomers. The smart reversible AuNP oligomers exhibited switchable plasmonic coupling for tuning surface-enhanced Raman scattering (SERS) activity, which is promising for the application of SERS based sensors and optical imaging.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science , 1219 Zhongguan West Road, Ningbo 315201, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
We have designed programmable DNA-based nanoswitches whose closing/opening can be triggered over specific different pH windows. These nanoswitches form an intramolecular triplex DNA structure through pH-sensitive parallel Hoogsteen interactions. We demonstrate that by simply changing the relative content of TAT/CGC triplets in the switches, we can rationally tune their pH dependence over more than 5 pH units. The ability to design DNA-based switches with tunable pH dependence provides the opportunity to engineer pH nanosensors with unprecedented wide sensitivity to pH changes. For example, by mixing in the same solution three switches with different pH sensitivity, we developed a pH nanosensor that can precisely monitor pH variations over 5.5 units of pH. With their fast response time (<200 ms) and high reversibility, these pH-triggered nanoswitches appear particularly suitable for applications ranging from the real-time monitoring of pH changes in vivo to the development of pH sensitive smart nanomaterials.
Collapse
Affiliation(s)
- Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata , 00133, Rome, Italy
| | | | | |
Collapse
|
32
|
Maji B, Samanta SK, Bhattacharya S. Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes. NANOSCALE 2014; 6:3721-3730. [PMID: 24569668 DOI: 10.1039/c3nr05045a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Single-stranded DNA (ss-DNA) oligomers (dA20, d[(C3TA2)3C3] or dT20) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA20 takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d[(C3TA2)3C3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at ∼90 °C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
33
|
Wang W, Leng F, Zhan L, Chang Y, Yang XX, Lan J, Huang CZ. One-step prepared fluorescent copper nanoclusters for reversible pH-sensing. Analyst 2014; 139:2990-3. [DOI: 10.1039/c4an00113c] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-step synthesis of water soluble and pH-responsive trypsin-stabilized fluorescent CuNCs was reported without using additional protective or reducing agents.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715, P. R. China
| | - Fei Leng
- College of Chemistry and Chemical Engineering Southwest University
- Chongqing 400715, P. R. China
| | - Lei Zhan
- College of Chemistry and Chemical Engineering Southwest University
- Chongqing 400715, P. R. China
| | - Yong Chang
- College of Chemistry and Chemical Engineering Southwest University
- Chongqing 400715, P. R. China
| | - Xiao Xi Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715, P. R. China
| | - Jing Lan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715, P. R. China
| |
Collapse
|
34
|
Das S, Magut PKS, de Rooy SL, Hasan F, Warner IM. Ionic Liquid-Based Fluorescein Colorimetric pH Nanosensors. RSC Adv 2013; 3:21054-21061. [PMID: 25264488 PMCID: PMC4174468 DOI: 10.1039/c3ra42394h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A novel pH sensitive, colorimetric ionic liquid nanosensor based on phosphonium salts of fluorescein is reported. Herein, fluorescein salts of various stoichiometries were synthesized by use of a trihexyltetradecylphosphonium cation [TTP]+ in combination with dianionic [FL]2- and monoanionic [FL]- fluorescein. Nanomaterials derived from these two compounds yielded contrasting colorimetric responses in neutral and acidic environments. Variations in fluorescence spectra as a function of pH were also observed. Examination of TEM and DLS data revealed significant expansion in the diameter of [TTP]2[FL] nanodroplets in acidic environments of variable pHs. A similar trend was also observed for [TTP][FL] nanoparticles. The pH dependent colorimetric and other optical properties of these nanomaterials are attributed to alterations in molecular orientations and stacking as suggested by measuring the absorption, fluorescence, and zeta potential. Since the pH is an important indicator for many diseases, including cancer, these nanosensors are considered to be potential candidates for biomedical applications.
Collapse
Affiliation(s)
- Susmita Das
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA
| | - Paul K. S. Magut
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA
| | - Sergio L. de Rooy
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA
| | - Farhana Hasan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA
| |
Collapse
|
35
|
Qu F, Li NB, Luo HQ. Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1199-205. [PMID: 23282222 DOI: 10.1021/la304558r] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Silver nanoclusters capped by hyperbranched polyethylenimine (PEI) have been developed as a highly sensitive fluorescent and colorimetric pH sensor. The probe responds rapidly to pH fluctuations and has such absorption characteristics that the color changes from the colorless or a nearly colorless state to a colored state with increasing acidity, so PEI-capped Ag nanoclusters could be used as a color indicator for colorimetric pH detection. Quantitatively, the fluorescence intensity of PEI-capped Ag nanoclusters exhibits a linear fashion over the pH range of 5.02-7.96 and increases by around 10-fold approximately with greater fluorescence at higher pH values. The repulsion development and conformational change of PEI with decreasing pH induce the aggregation of Ag nanoclusters, leading to an obvious color change and fluorescence quenching of Ag nanoclusters at low pH values. As expected, the pH probe is also sensitive to the different buffer solutions, except for those containing some anions that could react with Ag nanoclusters. Besides, the ionic strength of the buffers has a little influence on the pH-responsive behavior. Our pH sensor with nanoscaled physical dimensions would be a promising candidate in the applications in biological, medical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Fei Qu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | |
Collapse
|
36
|
Qian QM, Wang YS, Yang HX, Xue JH, Liu L, Zhou B, Wang JC, Yin JC, Wang YS. Colorimetric detection of metallothioneins using a thymine-rich oligonucleotide-Hg complex and gold nanoparticles. Anal Biochem 2013; 436:45-52. [PMID: 23357234 DOI: 10.1016/j.ab.2013.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 01/14/2023]
Abstract
A simple and sensitive method for label-free, colorimetric detection of metallothioneins (MTs) has been developed by using a thymine (T)-rich oligonucleotide (TRO)-Hg-AuNP system. In this colorimetric strategy, the thiol groups of MTs could interact with mercury from the T-Hg(2+)-T complex to release TRO, resulting in a color change of the system. The response signals linearly correlated with the concentration of MTs over the range of 2.56 × 10(-8) to 3.08 × 10(-7) mol L(-1), and the limit of detection was 7.67 × 10(-9) mol L(-1). The relative standard deviation and the recovery were 2.3-4.8% (n = 11) and 94.2-103.9%, respectively. The proposed method avoids the label and derivatization steps in common methods, allows direct analysis of the samples by the naked eye without costly instruments, and is reliable, inexpensive, and sensitive.
Collapse
Affiliation(s)
- Qiu-Mei Qian
- College of Public Health, University of South China, Hengyang 421001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumar V, Kesavan V. Acyclic butyl nucleic acid (BuNA): a novel scaffold for A-switch. RSC Adv 2013. [DOI: 10.1039/c3ra41255e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
38
|
Abstract
The physicochemical properties of small molecules as well as macromolecules are modulated by solution pH, and DNA is no exception. Special sequences of DNA can adopt unusual conformations e.g., triplex, i-motif and A-motif, depending on solution pH. The specific range of pH for these unusual structures is dictated by the pKa of protonation of the relevant nucleobase involved in the resultant non-canonical base pairing that is required to stabilise the structure. The biological significance of these pH-dependent structures is not yet clear. However, these non-B-DNA structures have been used to design different devices to direct chemical reactions, generate mechanical force, sense pH, etc. The performance of these devices can be monitored by a photonic signal. They are autonomous and their ‘waste free’ operation cycles makes them highly processive. Applications of these devices help to increase understanding of the structural polymorphism of the motifs themselves. The design of these devices has continuously evolved to improve their performance efficiency in different contexts. In some examples, these devices have been shown to perform inside complex living systems with similar efficiencies, to report on the chemical environment there. The robust performance of these devices opens up exciting possibilities for pH-sensitive DNA devices in the study of various pH-regulated biological events.
Collapse
Affiliation(s)
- Sonali Saha
- National Centre for Biological Sciences TIFR, GKVK, Bellary Road, Bangalore 560065 India
| | - Yamuna Krishnan*
- National Centre for Biological Sciences TIFR, GKVK, Bellary Road, Bangalore 560065 India
| |
Collapse
|
39
|
Muser SE, Paukstelis PJ. Three-dimensional DNA crystals with pH-responsive noncanonical junctions. J Am Chem Soc 2012; 134:12557-64. [PMID: 22768973 DOI: 10.1021/ja3025033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) DNA crystals have been envisioned as programmable biomaterial scaffolds for creating ordered arrays of biological and nonbiological molecules. Despite having excellent programmable properties, the linearity of the Watson-Crick B-form duplex imposes limitations on 3D crystal design. Predictable noncanonical base pairing motifs have the potential to serve as junctions to connect linear DNA segments into complex 3D lattices. Here, we designed crystals based on a template structure with parallel-stranded noncanonical base pairs. Depending on pH, the structures we determined contained all but one or two of the designed secondary structure interactions. Surprisingly, a conformational change of the designed Watson-Crick duplex region resulted in crystal packing differences between the predicted and observed structures. However, the designed noncanonical motif was virtually identical to the template when crystals were grown at pH 5.5, highlighting the motif's predictability. At pH 7.0 we observed a structurally similar variation on this motif that contains a previously unobserved C-G•G-C quadruple base pair. We demonstrate that these two variants can interconvert in crystallo in response to pH perturbations. This study spotlights several important considerations in DNA crystal design, describes the first 3D DNA lattice composed of A-DNA helical sheets, and reveals a noncanonical DNA motif that has adaptive features that may be useful for designing dynamic crystals or biomaterial assemblies.
Collapse
Affiliation(s)
- Stephanie E Muser
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, Maryland NanoCenter, College Park, Maryland 20742, United States
| | | |
Collapse
|