1
|
Sen A, Mora AK, Koli M, Mula S, Kundu S, Nath S. Sensing lysozyme fibrils by salicylaldimine substituted BODIPY dyes - A correlation with molecular structure. Int J Biol Macromol 2022; 220:901-909. [PMID: 35998856 DOI: 10.1016/j.ijbiomac.2022.08.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Quick and efficient detection of protein fibrils has enormous impact on the diagnosis and treatment of amyloid related neurological diseases. Among several methods, fluorescence based techniques have garnered most importance in the detection of amyloid fibrils due to its high sensitivity and extreme simplicity. Among other classes of molecular probes, BODIPY derivatives have been employed extensively for the detection of amyloid fibrils. However, there are very few studies on the relationship between the molecular structure of BODIPY dyes and their amyloid sensing activity. Here in a BODIPY based salicylaldimine Schiff base and its corresponding boron complex have been evaluated for their ability to sense amyloid fibrils from hen-egg white lysozyme using steady state and time-resolved spectroscopic techniques. Both dyes show fluorescence enhancement as well as increase in their excited state lifetime upon their binding with lysozyme fibrils. However, the BODIPY derivative which shows more emission enhancement in fibrillar solution has much lower affinity towards amyloid fibrils as compared to other derivative. This contrasting behaviour in the emission enhancement and binding affinity has been explained on the basis of differences in their photophysical properties in water and amyloid fibril originating from the difference in their molecular structure. Such correlation between the amyloid sensitivity and the molecular structure of the probe can open up a new strategy for designing new efficient amyloid probes.
Collapse
Affiliation(s)
- Ayentika Sen
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Soumitra Kundu
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
2
|
Spectroscopic Characterization of Mitochondrial G-Quadruplexes. Int J Mol Sci 2022; 23:ijms23020925. [PMID: 35055110 PMCID: PMC8780183 DOI: 10.3390/ijms23020925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Guanine quadruplexes (G4s) are highly polymorphic four-stranded structures formed within guanine-rich DNA and RNA sequences that play a crucial role in biological processes. The recent discovery of the first G4 structures within mitochondrial DNA has led to a small revolution in the field. In particular, the G-rich conserved sequence block II (CSB II) can form different types of G4s that are thought to play a crucial role in replication. In this study, we decipher the most relevant G4 structures that can be formed within CSB II: RNA G4 at the RNA transcript, DNA G4 within the non-transcribed strand and DNA:RNA hybrid between the RNA transcript and the non-transcribed strand. We show that the more abundant, but unexplored, G6AG7 (37%) and G6AG8 (35%) sequences in CSB II yield more stable G4s than the less profuse G5AG7 sequence. Moreover, the existence of a guanine located 1 bp upstream promotes G4 formation. In all cases, parallel G4s are formed, but their topology changes from a less ordered to a highly ordered G4 when adding small amounts of potassium or sodium cations. Circular dichroism was used due to discriminate different conformations and topologies of nucleic acids and was complemented with gel electrophoresis and fluorescence spectroscopy studies.
Collapse
|
3
|
Verma S, Ravichandiran V, Ranjan N. Beyond amyloid proteins: Thioflavin T in nucleic acid recognition. Biochimie 2021; 190:111-123. [PMID: 34118329 DOI: 10.1016/j.biochi.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
Thioflavin T (ThT) is a commercially available fluorescent dye that is commonly used in biomedical research for over five decades. It was first reported as an extrinsic fluorescent probe for the detection of amyloid fibrils and related processes and it has also been used extensively for assessing protein binding in fluorescence-based assays. Although the nucleic acid binding of ThT was reported half of a century ago in the 1970s, it was not widely explored until the start of this decade. In recent years, Thioflavin T has become a major tool in the recognition of many types of non-canonical nucleic acid conformations including duplexes, triplexes, and G-quadruplexes. The propensity of ThT binding is more towards base aberrations, bulges, and mismatches highlighting its importance in serving as a diagnostic tool in a variety of ailments/disease conditions. In this review, we cover major advancements in nucleic acid detection/binding by ThT to a variety of nucleic acid structures.
Collapse
Affiliation(s)
- Smita Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
4
|
Desai AM, Pandey SP, Singh PK. Effect of counter-anions on the aggregation of Thioflavin-T. Phys Chem Chem Phys 2021; 23:9948-9961. [PMID: 33861224 DOI: 10.1039/d1cp00193k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aggregation of small molecules in aqueous solution is known to be influenced by the ionic strength of the medium; however, the role played by the identity of salt in the phenomenon of small molecule aggregation is rarely investigated. In the present contribution, we have investigated the effect of counter-anions on the aggregation of a popular cationic amyloid sensing probe, Thioflavin-T (ThT), by taking six different anions, viz. chloride, bromide, acetate, iodide, tetrafluoroborate, and perchlorate. Our results clearly indicate that it is not the ionic strength of the medium which solely controls aggregation of small molecules but distinct ions behave distinctly with regard to the organization. In fact, distinct ion effects play a major role in the salt induced organization of fluorophores. Using detailed steady-state emission, time-resolved emission, and ground-state absorption measurements, the optical properties of salt induced aggregates of ThT have been characterized. We have rationalized our observations on the basis of the theory of matching water affinity, which suggests that the matching free hydration energy is a critical aspect for the formation of contact ion pairs, which eventually results in aggregation. In brief, a larger sized anion, perchlorate, has a lower free energy of hydration and forms a suitable contact ion pair, with a larger organic cation, ThT, having weaker hydration. This contact ion-pair formation subsequently leads to the formation of an aggregate assembly which is found to be emissive in nature. Therefore, it is possible to induce aggregation of ThT by selecting the right counterion with the appropriate size, which may help us to evaluate the false positive signals when high ionic strength and specific counterions are present in the sensing matrix.
Collapse
Affiliation(s)
- Akshat M Desai
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | | | |
Collapse
|
5
|
Effect of DNA Origami Nanostructures on hIAPP Aggregation. NANOMATERIALS 2020; 10:nano10112200. [PMID: 33158138 PMCID: PMC7694230 DOI: 10.3390/nano10112200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) plays a major role in the pathogenesis of type 2 diabetes mellitus (T2DM), and numerous strategies for controlling hIAPP aggregation have been investigated so far. In particular, several organic and inorganic nanoparticles (NPs) have shown the potential to influence the aggregation of hIAPP and other amyloidogenic proteins and peptides. In addition to conventional NPs, DNA nanostructures are receiving more and more attention from the biomedical field. Therefore, in this work, we investigated the effects of two different DNA origami nanostructures on hIAPP aggregation. To this end, we employed in situ turbidity measurements and ex situ atomic force microscopy (AFM). The turbidity measurements revealed a retarding effect of the DNA nanostructures on hIAPP aggregation, while the AFM results showed the co-aggregation of hIAPP with the DNA origami nanostructures into hybrid peptide–DNA aggregates. We assume that this was caused by strong electrostatic interactions between the negatively charged DNA origami nanostructures and the positively charged peptide. Most intriguingly, the influence of the DNA origami nanostructures on hIAPP aggregation differed from that of genomic double-stranded DNA (dsDNA) and appeared to depend on DNA origami superstructure. DNA origami nanostructures may thus represent a novel route for modulating amyloid aggregation in vivo.
Collapse
|
6
|
Pandey SP, Jha P, Singh PK. Aggregation induced emission of an anionic tetraphenylethene derivative for efficient protamine sensing. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113625] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Pramanik S, Nandy A, Chakraborty S, Pramanik U, Nandi S, Mukherjee S. Preferential Binding of Thioflavin T to AT-Rich DNA: White Light Emission through Intramolecular Förster Resonance Energy Transfer. J Phys Chem Lett 2020; 11:2436-2442. [PMID: 32141760 DOI: 10.1021/acs.jpclett.0c00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Herein we report the effect of different nucleobase pair compositions on the association-induced fluorescence enhancement property of Thioflavin T (ThT), upon binding with 20 base pair long double-stranded DNA (dsDNA). Analysis of binding and decay constants along with the association (Kass) and dissociation (Kdiss) rate constants obtained from the fluctuation in the fluorescence intensity of ThT after binding with different DNA revealed selective affinity of ThT toward AT-rich dsDNA. Molecular docking also substantiates the experimental results. We also observed that addition of orange-emitting ethidium bromide (EtBr) to cyan-emitting ThT-DNA complexes leads to bright white light emission (WLE) through Förster resonance energy transfer. Additionally, the emission of white light is far greater in the case of intra-DNA strands. Besides endorsing the binding insights of ThT to AT-rich dsDNA, the present investigations open a new perspective for realizing promising WLE from two biomarkers without labeling the DNA.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Ushasi Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Somen Nandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
8
|
Singh VR, Singh PK. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution. J Mater Chem B 2020; 8:1182-1190. [PMID: 31957759 DOI: 10.1039/c9tb02403d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considering the biological relevance of adenosine triphosphate (ATP) as an "energy currency" in all organisms and significance of its detection in various diseased conditions, enormous efforts have been made to develop selective and sensitive fluorescent sensors for the detection of ATP. However, these developed sensor probes frequently involve technically challenging and time-consuming synthetic protocols for the production of sensor molecules and often suffer from poor solubility in aqueous medium. Another major disadvantage of these developed sensor systems is their single wavelength based operation which makes their performance susceptible to minute changes in experimental conditions. Herein, we report a fluorescence turn-on ratiometric sensor for the detection of ATP which operates by the dissociation of Thioflavin-T-sulphated-β-cyclodextrin supramolecular assembly by Zn2+ followed by ATP induced reassociation of the same. This modulation of the monomer/aggregate equilibrium of the supramolecular assembly followed by subsequent interactions with Zn2+ and ATP acts as an optimal scheme for the ratiometric detection of ATP. Overall this supramolecular ensemble based sensing platform provides a simple, sensitive, selective and label free detection approach for ATP in aqueous solution. Importantly, our sensor platform responds to ATP in the biologically complex media of serum samples suggesting its potential for possible applications in real-life scenarios.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| |
Collapse
|
9
|
Mora AK, Nath S. Ultrafast Dynamics of a Molecular Rotor-Based Bioprobe-PicoGreen: Understanding toward Fibril Sensing Mechanism. J Phys Chem B 2019; 123:8767-8776. [DOI: 10.1021/acs.jpcb.9b05922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti
Nagar, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti
Nagar, Mumbai 400085, India
| |
Collapse
|
10
|
Kumar B, Ghosh R, Mora AK, Nath S. Anthryl Benzothiazolium Molecular Rotor-Based Turn-On DNA Probe: Detailed Mechanistic Studies. J Phys Chem B 2019; 123:7518-7527. [DOI: 10.1021/acs.jpcb.9b05570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhupesh Kumar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
11
|
Desai AM, Singh PK. An Ultrafast Molecular‐Rotor‐Based Fluorescent Turn‐On Sensor for the Perrhenate Anion in Aqueous Solution. Chemistry 2019; 25:2035-2042. [DOI: 10.1002/chem.201804848] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Akshat M. Desai
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Prabhat K. Singh
- Radiation & Photochemistry DivisionBhabha Atomic Research Centre Trombay Mumbai 400085 India
- Training School Complex, AnushaktinagarHomi Bhabha National Institute Mumbai 400094 India
| |
Collapse
|
12
|
Zhu J, Yan Z, Zhou W, Liu C, Wang J, Wang E. Lighting Up the Thioflavin T by Parallel-Stranded TG(GA) n DNA Homoduplexes. ACS Sens 2018; 3:1118-1125. [PMID: 29749724 DOI: 10.1021/acssensors.8b00141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thioflavin T (ThT) was once regarded to be a specific fluorescent probe for the human telomeric G-quadruplex, but more other kinds of DNA were found that can also bind to ThT in recent years. Herein, we focus on G-rich parallel-stranded DNA and utilize fluorescence, absorbance, circular dichroism, and surface plasmon resonance spectroscopy to investigate its interaction with ThT. Pyrene label and molecular modeling are applied to unveil the binding mechanism. We find a new class of non-G-quadruplex G-rich parallel-stranded ( ps) DNA with the sequence of TG(GA) n can bind to ThT and increase the fluorescence with an enhancement ability superior to G-quadruplex. The optimal binding specificity for ThT is conferred by two parts. The first part is composed of two bases TG at the 5' end, which is a critical domain and plays an important role in the formation of the binding site for ThT. The second part is the rest alternative d(GA) bases, which forms the ps homoduplex and cooperates with the TG bases at the 5' end to bind the ThT.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanbo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- College of Physics, Jilin University, Changchun 130022, P. R. China
- Department of Chemistry and of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
13
|
Pettiwala AM, Singh PK. A molecular rotor based ratiometric sensor for basic amino acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:120-126. [PMID: 28704806 DOI: 10.1016/j.saa.2017.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples.
Collapse
Affiliation(s)
- Aafrin M Pettiwala
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
14
|
Ghosh R, Kushwaha A, Das D. Conformational Control of Ultrafast Molecular Rotor Property: Tuning Viscosity Sensing Efficiency by Twist Angle Variation. J Phys Chem B 2017; 121:8786-8794. [DOI: 10.1021/acs.jpcb.7b05947] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajib Ghosh
- Radiation
and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Archana Kushwaha
- Department
of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Dipanwita Das
- Department
of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
15
|
Das S, Purkayastha P. Selective Binding of Thioflavin T in Sequence-Exchanged Single Strand DNA Oligomers and Further Interaction with Phospholipid Membranes. ChemistrySelect 2017. [DOI: 10.1002/slct.201700194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shrabanti Das
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata; Mohanpur 741246, WB India
| | - Pradipta Purkayastha
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata; Mohanpur 741246, WB India
| |
Collapse
|
16
|
Awasthi AA, Singh PK. Stimulus-Responsive Supramolecular Aggregate Assembly of Auramine O Templated by Sulfated Cyclodextrin. J Phys Chem B 2017; 121:6208-6219. [DOI: 10.1021/acs.jpcb.7b03592] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ankur A. Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
17
|
Kalel R, Mora AK, Ghosh R, Dhavale DD, Palit DK, Nath S. Interaction of a Julolidine-Based Neutral Ultrafast Molecular Rotor with Natural DNA: Spectroscopic and Molecular Docking Studies. J Phys Chem B 2016; 120:9843-53. [DOI: 10.1021/acs.jpcb.6b04811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul Kalel
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Dilip D. Dhavale
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Dipak K. Palit
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
18
|
Stsiapura VI, Kurhuzenkau SA, Kuzmitsky VA, Bouganov OV, Tikhomirov SA. Solvent Polarity Effect on Nonradiative Decay Rate of Thioflavin T. J Phys Chem A 2016; 120:5481-96. [DOI: 10.1021/acs.jpca.6b02577] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Valery A. Kuzmitsky
- Institute for Command Engineers of the Ministry for Emergencies of the Republic of Belarus, Minsk, Belarus
| | - Oleg V. Bouganov
- Institute
of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | | |
Collapse
|
19
|
Mudliar NH, Singh PK. Fluorescent H‐Aggregates Hosted by a Charged Cyclodextrin Cavity. Chemistry 2016; 22:7394-8. [DOI: 10.1002/chem.201600925] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Niyati H. Mudliar
- Radiation & Photochemistry Division Bhabha Atomic Research Centre, Trombay Mumbai 400 085 India
- School of Science Narsee Monjee Institute of Management Studies Mumbai 400056 India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division Bhabha Atomic Research Centre, Trombay Mumbai 400 085 India
| |
Collapse
|
20
|
Zakharova GV, Konstantinov RR, Odinokov AV, Chibisov AK, Alfimov MV, Kasheverov IE, Utkin YN, Zhmak MN, Tsetlin VI. Effect of a peptide modeling the nicotinic receptor binding site on the spectral and luminescent properties of dye complexes with cucurbit[8]uril. HIGH ENERGY CHEMISTRY 2016. [DOI: 10.1134/s0018143916020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lee SC, Heo J, Ryu JW, Lee CL, Kim S, Tae JS, Rhee BO, Kim SW, Kwon OP. Pyrrolic molecular rotors acting as viscosity sensors with high fluorescence contrast. Chem Commun (Camb) 2016; 52:13695-13698. [DOI: 10.1039/c6cc06521j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrrolic viscosity sensors exhibit one order of magnitude higher fluorescence contrast compared to that of the conventional phenolic analogues due to the viscosity-sensitive rotation of the rotational pyrrole group.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Jeongyun Heo
- Center for Theragnosis
- Korea Institute of Science and Technology (KIST)
- Seongbuk-gu
- Korea
| | - Jong-Wan Ryu
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute (APRI)
- Gwangju Institute of Science and Technology (GIST)
- Buk-gu
- Korea
| | - Sehoon Kim
- Center for Theragnosis
- Korea Institute of Science and Technology (KIST)
- Seongbuk-gu
- Korea
| | - Joon-Sung Tae
- Department of Mechanical Engineering
- Ajou University
- Suwon
- Korea
| | - Byung-Ohk Rhee
- Department of Mechanical Engineering
- Ajou University
- Suwon
- Korea
| | - Sang-Wook Kim
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - O-Pil Kwon
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| |
Collapse
|
22
|
Singh PK, Mora AK, Nath S. Ultrafast Torsional Relaxation of Thioflavin-T in Tris(pentafluoroethyl)trifluorophosphate (FAP) Anion-Based Ionic Liquids. J Phys Chem B 2015; 119:14252-60. [DOI: 10.1021/acs.jpcb.5b09028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
23
|
Singh PK, Murudkar S, Mora AK, Nath S. Ultrafast torsional dynamics of Thioflavin-T in an anionic cyclodextrin cavity. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Murudkar S, Mora AK, Singh PK, Bandyopadhyay T, Nath S. An ultrafast molecular rotor based ternary complex in a nanocavity: a potential “turn on” fluorescence sensor for the hydrocarbon chain. Phys Chem Chem Phys 2015; 17:5691-703. [DOI: 10.1039/c4cp04636f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Formation of a ternary complex by an ultrafast molecular rotor (UMR) with a macrocyclic cavitand has been investigated for the sensitive detection of the alkyl chain of a surfactant.
Collapse
Affiliation(s)
- Sushant Murudkar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Aruna K. Mora
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Sukhendu Nath
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
25
|
Dziuba D, Pohl R, Hocek M. Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem Commun (Camb) 2015; 51:4880-2. [DOI: 10.1039/c5cc00530b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent molecular rotors are for the first time used as light-up probes for sensing of DNA–protein interaction.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| |
Collapse
|
26
|
Murudkar S, Mora AK, Jakka S, Singh PK, Nath S. Ultrafast molecular rotor based DNA sensor: An insight into the mode of interaction. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Ghosh S, Banik D, Roy A, Kundu N, Kuchlyan J, Sarkar N. Spectroscopic investigation of the binding interactions of a membrane potential molecule in various supramolecular confined environments: contrasting behavior of surfactant molecules in relocation or release of the probe between nanocarriers and DNA surface. Phys Chem Chem Phys 2014; 16:25024-38. [DOI: 10.1039/c4cp03178d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Sebastiani F, Pietrini A, Longo M, Comez L, Petrillo C, Sacchetti F, Paciaroni A. Melting of DNA Nonoriented Fibers: A Wide-Angle X-ray Diffraction Study. J Phys Chem B 2014; 118:3785-92. [DOI: 10.1021/jp411096d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Sebastiani
- Dipartimento
di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- CNR,
Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento
di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy
| | - Alberto Pietrini
- Dipartimento
di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | - Marialucia Longo
- Dipartimento
di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- Elettra − Sincrotrone Trieste, I-34149 Basovizza, Trieste, Italy
| | - Lucia Comez
- Dipartimento
di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- CNR,
Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento
di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento
di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- CNR,
Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento
di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy
| | - Alessandro Paciaroni
- Dipartimento
di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
| |
Collapse
|
29
|
Singh PK, Mora AK, Murudkar S, Nath S. Dynamics under confinement: torsional dynamics of Auramine O in a nanocavity. RSC Adv 2014. [DOI: 10.1039/c4ra03324h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Confinement inside the novel anionic sulphobutylether β-cyclodextrin nanocavity significantly slows down the torsional relaxation in Auramine O as compared to native β-CD.
Collapse
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Sushant Murudkar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| |
Collapse
|
30
|
Cao J, Hu C, Sun W, Xu Q, Fan J, Song F, Sun S, Peng X. The mechanism of different sensitivity of meso-substituted and unsubstituted cyanine dyes in rotation-restricted environments for biomedical imaging applications. RSC Adv 2014. [DOI: 10.1039/c3ra46612d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
31
|
Singh PK, Nath S. Molecular Recognition Controlled Delivery of a Small Molecule from a Nanocarrier to Natural DNA. J Phys Chem B 2013; 117:10370-5. [DOI: 10.1021/jp402902k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
32
|
Cao J, Wu T, Hu C, Liu T, Sun W, Fan J, Peng X. The nature of the different environmental sensitivity of symmetrical and unsymmetrical cyanine dyes: an experimental and theoretical study. Phys Chem Chem Phys 2013; 14:13702-8. [PMID: 22968489 DOI: 10.1039/c2cp42122d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Symmetrical and unsymmetrical cyanine dyes are used in different applications due to their different fluorogenic behaviors toward bio-macromolecules and micro-environments. In the present paper, computational studies on these dyes reveal that the potential energy of the electronic excited state is controlled by C-C bond rotational motion, which causes mainly nonradiative deactivation, according to the activation energies for the rotation. The rotations of different C-C bonds in the molecules have quite different rotational activation energies. Symmetrical dyes (Cy) possess an obviously higher rotating energy barrier as well as a larger energy gap compared to unsymmetrical dyes (TO). The C-C bond rotation close to the quinoline moiety of unsymmetrical thiazole orange (TO) allows the dye to possess the lowest energy barrier and also the lowest energy gap. This rotation plays a major role in reducing fluorescence quantum yields and providing a low fluorescent background in the free states of the unsymmetrical cyanine dyes. The results might provide a foundation for the interpretation of the behavior of the dyes and are useful for the future design of new cyanine fluorophores.
Collapse
Affiliation(s)
- Jianfang Cao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Singh PK, Sujana J, Mora AK, Nath S. Probing the DNA–ionic liquid interaction using an ultrafast molecular rotor. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|