1
|
Dey K, Jayaraman N. Trivalent dialkylaminopyridine-catalyzed site-selective mono- O-acylation of partially-protected pyranosides. Org Biomol Chem 2024; 22:5134-5149. [PMID: 38847370 DOI: 10.1039/d4ob00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This work demonstrates trivalent tris-(3-N-methyl-N-pyridyl propyl)amine (1) catalyzing the site-selective mono-O-acylation of glycopyranosides. Different acid anhydrides were used for the acylation of monosaccharides, mediated by catalyst 1, at a loading of 1.5 mol%; the extent of site-selectivity and the yields of mono-O-acylation products were assessed. The reactions were performed between 2 and 10 h, depending on the nature of the acid anhydride, where the bulkier pivalic anhydride required a longer duration for acylation. The glycopyranosides are maintained as diols and triols, and from a set of experiments, the site-selectivity of acylations was observed to follow the intrinsic reactivities and stereochemistry of hydroxy functionalities. The trivalent catalyst 1 mediates the reactions with excellent site-selectivities for mono-O-acylation product formation in the studied glycopyranosides, in comparison to the monovalent N,N-dimethylamino pyridine (DMAP) catalyst. This study illustrates the benefits of the multivalency of catalytic moieties in catalysis.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
2
|
Luo T, Xu TT, Guo YF, Dong H. SnCl 4 Promoted Efficient Cleavage of Acetal/Ketal Groups with the Assistance of Water in CH 2Cl 2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238258. [PMID: 36500346 PMCID: PMC9736348 DOI: 10.3390/molecules27238258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Acetalization and deacetalation are a pair of routine manipulations to protect and deprotect the 4- and 6-hydroxyl groups of glycosides in the synthesis of glycosyl building blocks. In this study, we found that treatment of SnCl4 with various carbohydrates containing acetal/ketal groups with the assistance of water in CH2Cl2 led to deacetalization/deketalization products in almost quantitative yields. In addition, for substrates containing both acetal/ketal and p-methoxylbenzyl groups, we also found that the p-methoxylbenzyl group was selectively cleaved by the use of a catalytic amount of SnCl4, while the acetal/ketal groups remained. Furthermore, based on this, 4,6-benzylidene glycosides can be conveniently converted to 4,6-OAc or 4-OH, 6-OAc glycosides.
Collapse
|
3
|
Shekunti RK, Tangalipalli S, Dhonthulachitty C, Kothakapu SR, Annapurna PD, Neella CK. N
‐Benzoyl‐4‐dimethylaminopyridinium Chloride: A Lewis Base Adduct for Efficient Poly and Monobenzoylation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Swathi Tangalipalli
- Dept. of M.Sc.Chemistry Palamuru University Raichur Road Mahabubnagar Telangana 509001 India
| | | | - Sridhar Reddy Kothakapu
- Dept. of M.Sc. 5yr Integrated Chemistry Palamuru University Raichur Road Mahabubnagar Telangana 509001 India
| | | | - Chandra Kiran Neella
- Dept. of M.Sc.Chemistry Palamuru University Raichur Road Mahabubnagar Telangana 509001 India
| |
Collapse
|
4
|
Kim T, Bell MR, Thota VN, Lowary TL. One-Pot Regioselective Diacylation of Pyranoside 1,2- cis Diols. J Org Chem 2022; 87:4894-4907. [PMID: 35290061 DOI: 10.1021/acs.joc.2c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot strategy for functionalizing pyranoside 1,2-cis-diols with two different ester protecting groups is reported. The approach employs regioselective acylation via orthoester hydrolysis promoted by a carboxylic acid, e.g., levulinic acid, acetic acid, benzoic acid, or chloroacetic acid. Upon removal of water and introduction of a coupling agent, the carboxylic acid is esterified to the hydroxyl group liberated during hydrolysis. Although applied to 1,2-cis-diols on pyranoside scaffolds, the method should be applicable to such motifs on any six-membered ring.
Collapse
Affiliation(s)
- Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Michael R Bell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - V Narasimharao Thota
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.,Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Roosevelt Road, Section 4, #1, Taipei, 10617, Taiwan
| |
Collapse
|
5
|
Seitz A, Wende RC, Roesner E, Niedek D, Topp C, Colgan AC, McGarrigle EM, Schreiner PR. Site-Selective Acylation of Pyranosides with Oligopeptide Catalysts. J Org Chem 2021; 86:3907-3922. [PMID: 33617252 DOI: 10.1021/acs.joc.0c02772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, we report the oligopeptide-catalyzed site-selective acylation of partially protected monosaccharides. We identified catalysts that invert site-selectivity compared to N-methylimidazole, which was used to determine the intrinsic reactivity, for 4,6-O-protected glucopyranosides (trans-diols) as well as 4,6-O-protected mannopyranosides (cis-diols). The reaction yields up to 81% of the inherently unfavored 2-O-acetylated products with selectivities up to 15:1 using mild reaction conditions. We also determined the influence of protecting groups on the reaction and demonstrate that our protocol is suitable for one-pot reactions with multiple consecutive protection steps.
Collapse
Affiliation(s)
- Alexander Seitz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Emily Roesner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Dominik Niedek
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Christopher Topp
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Avene C Colgan
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
6
|
Niedek D, Erb FR, Topp C, Seitz A, Wende RC, Eckhardt AK, Kind J, Herold D, Thiele CM, Schreiner PR. In Situ Switching of Site-Selectivity with Light in the Acetylation of Sugars with Azopeptide Catalysts. J Org Chem 2020; 85:1835-1846. [PMID: 31763833 DOI: 10.1021/acs.joc.9b01913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel concept for the in situ control of site-selectivity of catalytic acetylations of partially protected sugars using light as external stimulus and oligopeptide catalysts equipped with an azobenzene moiety. The isomerizable azobenzene-peptide backbone defines the size and shape of the catalytic pocket, while the π-methyl-l-histidine (Pmh) moiety transfers the electrophile. Photoisomerization of the E- to the Z-azobenzene catalyst (monitored via NMR) with an LED (λ = 365 nm) drastically changes the chemical environment around the catalytically active Pmh moiety, so that the light-induced change in the catalyst shape alters site-selectivity. As a proof of principle, we employed (4,6-O-benzylidene)methyl-α-d-pyranosides, which provide a change in regioselectivity from 2:1 (E) to 1:5 (Z) for the monoacetylated products at room temperature. The validity of this new catalyst-design concept is further demonstrated with the regioselective acetylation of the natural product quercetin. In situ irradiation NMR spectroscopy was used to quantify photostationary states under continuous irradiation with UV light.
Collapse
Affiliation(s)
- Dominik Niedek
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Frederik R Erb
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Christopher Topp
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Alexander Seitz
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Raffael C Wende
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
7
|
Abronina PI, Malysheva NN, Zinin AI, Kolotyrkina NG, Stepanova EV, Kononov LO. Catalyst-free regioselective acetylation of primary hydroxy groups in partially protected and unprotected thioglycosides with acetic acid. RSC Adv 2020; 10:36836-36842. [PMID: 35517942 PMCID: PMC9057154 DOI: 10.1039/d0ra07360a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Highly regioselective acetylation of primary hydroxy groups in thioglycoside derivatives with gluco- and galacto-configurations was achieved by treatment with aqueous or anhydrous acetic acid (60–100% AcOH) at elevated temperatures (80–118 °C), avoiding complex, costly and time-consuming manipulations with protective groups. Acetylation of both 4,6-O-benzylidene acetals and the corresponding diols as well as the unprotected tetraol with AcOH was shown to lead selectively to formation of 6-O-acetyl derivatives. For example, the treatment of phenyl 1-thio-β-d-glucopyranoside with anhydrous AcOH at 80 °C for 24 h gave the corresponding 6-O-acetylated derivative in 47% yield (71% based on the reacted starting material) and unreacted starting tetraol in 34% yield, which can easily be recovered by silica gel chromatography and reused in further acetylation. Highly regioselective acetylation of primary hydroxy groups in thioglycoside derivatives was achieved by treatment with aqueous or anhydrous acetic acid (60–100%) at elevated temperatures (80–118 °C), avoiding manipulations with protective groups.![]()
Collapse
Affiliation(s)
- Polina I. Abronina
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Nelly N. Malysheva
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Alexander I. Zinin
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Natalya G. Kolotyrkina
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Elena V. Stepanova
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences
| | - Leonid O. Kononov
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| |
Collapse
|
8
|
Ren B, Zhang L, Zhang M. Progress on Selective Acylation of Carbohydrate Hydroxyl Groups. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical EngineeringXinyang Normal University Nanhu Road 237 Xinyang, Henan 464000 P. R. China
| | - Li Zhang
- College of Chemistry & Chemical EngineeringXinyang Normal University Nanhu Road 237 Xinyang, Henan 464000 P. R. China
| | - Mengyao Zhang
- College of Chemistry & Chemical EngineeringXinyang Normal University Nanhu Road 237 Xinyang, Henan 464000 P. R. China
| |
Collapse
|
9
|
Ligand-controlled, transition-metal catalyzed site-selective modification of glycosides. Carbohydr Res 2019; 474:16-33. [DOI: 10.1016/j.carres.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
|
10
|
Aroyl and acyl cyanides as orthogonal protecting groups or as building blocks for the synthesis of heterocycles. Mol Divers 2019; 23:1065-1084. [PMID: 30666490 DOI: 10.1007/s11030-019-09915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
α-Cyanoketones represent a synthetically attractive scaffold possessing bifunctional reactivity which enabled synthesis of a diversity of products. This involves reaction of nucleophiles with electrophilic carbonyl carbon performing an efficient and regioselective way to acylation reaction, cycloaddition of activated cyano function with dipolarophiles, metal-catalyzed cross-dehydrogenative coupling carbocyanation across C-C multiple bonds as well as hydrocyanation. This review provides the recent developments in the chemistry of α-cyanoketones which will be beneficial for researchers and scientists in such field.
Collapse
|
11
|
Lv J, Luo T, Zhang Y, Pei Z, Dong H. Regio/Site-Selective Benzoylation of Carbohydrates by Catalytic Amounts of FeCl 3. ACS OMEGA 2018; 3:17717-17723. [PMID: 31458369 PMCID: PMC6643987 DOI: 10.1021/acsomega.8b02360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/06/2018] [Indexed: 05/10/2023]
Abstract
This work uncovered the regio/site-selective benzoylation of 1,2- and 1,3-diols and glycosides containing a cis-vicinal diol using a catalytic amount of FeCl3 with the assistance of acetylacetone. FeCl3 may initially form [Fe(acac)3] (acac = acetylacetonate) with excess acetylacetone in the presence of diisopropylethylamine (DIPEA) in acetonitrile at room temperature. Then, benzoylation was catalyzed by Fe(acac)3 with added benzoyl chloride in the presence of DIPEA under mild conditions as reported. This reaction produced selectivities and isolated yields similar to or slightly lower than the reaction using Fe(acac)3 as a catalyst in most cases. The result provides not only the green and convenient selective benzoylation method associated with the most inexpensive catalysts but also the possibility that the effects of various metal salts and ligands on the regioselective protection can be extensively investigated in future study to obtain the optimized catalytic system.
Collapse
Affiliation(s)
- Jian Lv
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Tao Luo
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Ying Zhang
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Zhichao Pei
- College
of Chemistry and Pharmacy, Northwest A&F
University, Yangling, 712100 Shaanxi, P. R. China
| | - Hai Dong
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
12
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
13
|
Janssens J, Risseeuw MDP, Van der Eycken J, Van Calenbergh S. Regioselective Ring Opening of 1,3-Dioxane-Type Acetals in Carbohydrates. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jonas Janssens
- Laboratory for Medicinal Chemistry; Department of Pharmaceutics (FFW); Ghent University; Ottergemsesteenweg 460 9000 Ghent Belgium
- Laboratory for Organic and Bioorganic Synthesis; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 (S4) 9000 Ghent Belgium
| | - Martijn D. P. Risseeuw
- Laboratory for Medicinal Chemistry; Department of Pharmaceutics (FFW); Ghent University; Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bioorganic Synthesis; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 (S4) 9000 Ghent Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry; Department of Pharmaceutics (FFW); Ghent University; Ottergemsesteenweg 460 9000 Ghent Belgium
| |
Collapse
|
14
|
Ren B, Gan L, Zhang L, Yan N, Dong H. Diisopropylethylamine-triggered, highly efficient, self-catalyzed regioselective acylation of carbohydrates and diols. Org Biomol Chem 2018; 16:5591-5597. [PMID: 30027976 DOI: 10.1039/c8ob01464g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A diisopropylethylamine (DIPEA)-triggered, self-catalyzed, regioselective acylation of carbohydrates and diols is presented. The hydroxyl groups can be acylated by the corresponding anhydride in MeCN in the presence of a catalytic amount of DIPEA. This method is comparatively green and mild as it uses less organic base compared with other selective acylation methods. Mechanistic studies indicate that DIPEA reacts with the anhydride to form a carboxylate ion, and then the carboxylate ion could catalyze the selective acylation through a dual H-bonding interaction.
Collapse
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical Engineering, Xinyang Normal University, Nanhu Road 237, Xinyang, Henan 464000, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Wu D, Li J, Wang W. Selective Formation of Monoacylated Diols through a Mild Passerini Reaction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dan Wu
- Hubei Province Engineering & Technology Research Center for Fluorinated Pharmaceuticals; State Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education Wuhan University School of Pharmaceutical Sciences; 430071 Wuhan China
| | - Jun Li
- Hubei Province Engineering & Technology Research Center for Fluorinated Pharmaceuticals; State Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education Wuhan University School of Pharmaceutical Sciences; 430071 Wuhan China
| | - Wei Wang
- Hubei Province Engineering & Technology Research Center for Fluorinated Pharmaceuticals; State Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education Wuhan University School of Pharmaceutical Sciences; 430071 Wuhan China
| |
Collapse
|
16
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
17
|
Waseem MA, Lone AM, Teli B, Bhat BA. Catalyst Free Selective Monobenzoylation of Diols with Benzoyl Cyanide: A Robust and Regioselective Strategy. ChemistrySelect 2018. [DOI: 10.1002/slct.201702893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malik Abdul Waseem
- CSIR-Indian Institute of Integrative Medicine; Jammu & Kashmir India- 190005
| | - Ali Mohd Lone
- CSIR-Indian Institute of Integrative Medicine; Jammu & Kashmir India- 190005
| | - Bisma Teli
- CSIR-Indian Institute of Integrative Medicine; Jammu & Kashmir India- 190005
- Academy of Scientific & Innovative Research (AcSIR); India
| | - Bilal A. Bhat
- CSIR-Indian Institute of Integrative Medicine; Jammu & Kashmir India- 190005
- Academy of Scientific & Innovative Research (AcSIR); India
| |
Collapse
|
18
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
19
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017; 57:314-318. [PMID: 29125221 DOI: 10.1002/anie.201710310] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
20
|
Xu H, Zhang Y, Dong H, Lu Y, Pei Y, Pei Z. Organotin-catalyzed regioselective benzylation of carbohydrate trans-diols. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Li X, Yang Q. Scalable Sn-Catalyzed Regioselective Allylation of 1-Methyl-l-α-rhamnopyranoside. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyong Li
- Process
Development, Dow AgroSciences, Midland, Michigan 48674, United States
| | - Qiang Yang
- Process
Chemistry, Dow AgroSciences, 9330 Zionsville Rd, Indianapolis, Indiana 46268, United States
| |
Collapse
|
22
|
Donthulachitti C, Kothakapu SR, Shekunti RK, Neella CK. [DMAPTs] +
Cl −
: A Promising Versatile Regioselective Tosyl Transfer Reagent. ChemistrySelect 2017. [DOI: 10.1002/slct.201700675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chiranjeevi Donthulachitti
- Department of 5-Yr M.Sc. Chemistry; University College; Palamuru University; Mahabubanagar, Telangana 509001 India
| | - Sridhar Reddy Kothakapu
- Department of 5-Yr M.Sc. Chemistry; University College; Palamuru University; Mahabubanagar, Telangana 509001 India
| | - Ravi Kumar Shekunti
- Department of 5-Yr M.Sc. Chemistry; University College; Palamuru University; Mahabubanagar, Telangana 509001 India
| | - Chandra Kiran Neella
- Department of 5-Yr M.Sc. Chemistry; University College; Palamuru University; Mahabubanagar, Telangana 509001 India
| |
Collapse
|
23
|
Joosten A, Boultadakis-Arapinis M, Gandon V, Micouin L, Lecourt T. Substitution of the Participating Group of Glycosyl Donors by a Halogen Atom: Influence on the Rearrangement of Transient Orthoesters Formed during Glycosylation Reactions. J Org Chem 2017; 82:3291-3297. [DOI: 10.1021/acs.joc.6b03088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Joosten
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | | | - Vincent Gandon
- Institut de Chimie
Moléculaire et des Matériaux d’Orsay, CNRS UMR
8182, Univ. Paris-Sud, Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France
| | - Laurent Micouin
- Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR
8601), 75006 Paris, France
| | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| |
Collapse
|
24
|
Tong ML, Huber F, Taghuo Kaptouom ES, Cellnik T, Kirsch SF. Enhanced site-selectivity in acylation reactions with substrate-optimized catalysts on solid supports. Chem Commun (Camb) 2017; 53:3086-3089. [DOI: 10.1039/c7cc00655a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A concept for site-selective acylation is presented, using substrate-optimized DMAP–peptide conjugates on a solid support.
Collapse
Affiliation(s)
- My Linh Tong
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Florian Huber
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | | | - Torsten Cellnik
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Stefan F. Kirsch
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| |
Collapse
|
25
|
|
26
|
Xu H, Ren B, Zhao W, Xin X, Lu Y, Pei Y, Dong H, Pei Z. Regioselective mono and multiple alkylation of diols and polyols catalyzed by organotin and its applications on the synthesis of value-added carbohydrate intermediates. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Lu Y, Hou C, Ren J, Xin X, Xu H, Pei Y, Dong H, Pei Z. Regioselective Benzoylation of Diols and Carbohydrates by Catalytic Amounts of Organobase. Molecules 2016; 21:E641. [PMID: 27196888 PMCID: PMC6274181 DOI: 10.3390/molecules21050641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/21/2016] [Accepted: 05/10/2016] [Indexed: 11/26/2022] Open
Abstract
A novel metal-free organobase-catalyzed regioselective benzoylation of diols and carbohydrates has been developed. Treatment of diol and carbohydrate substrates with 1.1 equiv. of 1-benzoylimidazole and 0.2 equiv. of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in MeCN under mild conditions resulted in highly regioselective benzoylation for the primary hydroxyl group. Importantly, compared to most commonly used protecting bulky groups for primary hydroxyl groups, the benzoyl protective group offers a new protection strategy.
Collapse
Affiliation(s)
- Yuchao Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Jingli Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Xiaoting Xin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Hengfu Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Hai Dong
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
28
|
Peng P, Linseis M, Winter RF, Schmidt RR. Regioselective Acylation of Diols and Triols: The Cyanide Effect. J Am Chem Soc 2016; 138:6002-9. [PMID: 27104625 DOI: 10.1021/jacs.6b02454] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation.
Collapse
Affiliation(s)
- Peng Peng
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| | - Michael Linseis
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| | - Rainer F Winter
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| |
Collapse
|
29
|
Abstract
The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances.
Collapse
Affiliation(s)
- Florian Huber
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Stefan F Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
30
|
Zhang X, Ren B, Ge J, Pei Z, Dong H. A green and convenient method for regioselective mono and multiple benzoylation of diols and polyols. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Ren B, Ramström O, Zhang Q, Ge J, Dong H. An Iron(III) Catalyst with Unusually Broad Substrate Scope in Regioselective Alkylation of Diols and Polyols. Chemistry 2016; 22:2481-6. [DOI: 10.1002/chem.201504477] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Ren
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| | - Olof Ramström
- Department of Chemistry; KTH-Royal Institute of Technology; Teknikringen 30 10044 Stockholm Sweden
| | - Qiang Zhang
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| | - Jiantao Ge
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| |
Collapse
|
32
|
Jäger M, Minnaard AJ. Regioselective modification of unprotected glycosides. Chem Commun (Camb) 2016; 52:656-64. [DOI: 10.1039/c5cc08199h] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective modification of unprotected glycosides represents shortcuts in carbohydrate chemistry and enables efficient routes to complex derivatives.
Collapse
Affiliation(s)
- Manuel Jäger
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
33
|
Evtushenko EV. Regioselective Benzoylation of 4,6-O-Benzylidene Acetals of Glycopyranosides in the Presence of Transition Metals. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2014.996291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Ren B, Wang M, Liu J, Ge J, Dong H. Enhanced Basicity of Ag2O by Coordination to Soft Anions. ChemCatChem 2015. [DOI: 10.1002/cctc.201403035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Ren B, Rahm M, Zhang X, Zhou Y, Dong H. Regioselective Acetylation of Diols and Polyols by Acetate Catalysis: Mechanism and Application. J Org Chem 2014; 79:8134-42. [DOI: 10.1021/jo501343x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bo Ren
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Martin Rahm
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca 14853, New York, United States
- Department
of Applied Physical Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Xiaoling Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Yixuan Zhou
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| |
Collapse
|
36
|
Xu H, Lu Y, Zhou Y, Ren B, Pei Y, Dong H, Pei Z. Regioselective Benzylation of Diols and Polyols by Catalytic Amounts of an Organotin Reagent. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201301152] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Allen CL, Miller SJ. Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates. Org Lett 2013; 15:6178-81. [PMID: 24274325 DOI: 10.1021/ol4033072] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalyst-controlled regioselective functionalization of partially protected saccharide molecules is a highly important yet under-developed area of carbohydrate chemistry. Such reactions allow for the reduction of protecting group manipulation steps required in syntheses involving sugars. Herein, an approach to these processes using enantiopure copper-bis(oxazoline) catalysts to control couplings of electrophiles to various partially protected sugars is reported. In a number of cases, divergent regioselectivity was observed as a function of the enantiomer of catalyst that is used.
Collapse
Affiliation(s)
- C Liana Allen
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
38
|
Zhou Y, Rahm M, Wu B, Zhang X, Ren B, Dong H. H-bonding activation in highly regioselective acetylation of diols. J Org Chem 2013; 78:11618-22. [PMID: 24164588 DOI: 10.1021/jo402036u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
H-bonding activation in the regioselective acetylation of vicinal and 1,3-diols is presented. Herein, the acetylation of the hydroxyl group with acetic anhydride can be activated by the formation of H-bonds between the hydroxyl group and anions. The reaction exhibits high regioselectivity when a catalytic amount of tetrabutylammonium acetate is employed. Mechanistic studies indicated that acetate anion forms dual H-bonding complexes with the diol, which facilitates the subsequent regioselective monoacetylation.
Collapse
Affiliation(s)
- Yixuan Zhou
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology , Luoyu Road 1037, Wuhan 430074, P. R. China
| | | | | | | | | | | |
Collapse
|
39
|
Hsieh HW, Schombs MW, Witschi MA, Gervay-Hague J. Regioselective silyl/acetate exchange of disaccharides yields advanced glycosyl donor and acceptor precursors. J Org Chem 2013; 78:9677-88. [PMID: 23980653 DOI: 10.1021/jo4013805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glycoconjugates are composed of carbohydrate building blocks linked together in a multitude of ways giving rise to diverse biological functions. Carbohydrates are especially difficult to synthetically manipulate because of the similar reactivity of their numerous and largely equivalent hydroxyl groups. Hence, methodologies for both the efficient protection and selective modification of carbohydrate alcohols are considered important synthetic tools in organic chemistry. When per-O-TMS protected mono- or disaccharides in a mixture of pyridine and acetic anhydride are treated with acetic acid, regioselective exchange of silicon for acetate protecting groups occurs. Acid concentration, thermal conditions, and microwave assistance mediate the silyl/acetate exchange reaction. Regiocontrol is achieved by limiting the equivalents of acetic acid, and microwave irradiation hastens the process. We coined the term Regioselective Silyl Exchange Technology (ReSET) to describe this process, which essentially sets the protecting groups anew. To demonstrate the scope of the reaction, the conditions were applied to lactose, melibiose, cellobiose, and trehalose. ReSET provided rapid access to a wide range of orthogonally protected disaccharides that would otherwise require multiple synthetic steps to acquire. The resulting bifunctional molecules are poised to serve as modular building blocks for more complex glycoconjugates.
Collapse
Affiliation(s)
- Hsiao-Wu Hsieh
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | |
Collapse
|
40
|
|
41
|
Evtushenko EV. Regioselective benzoylation of glycopyranosides by benzoic anhydride in the presence of Cu(CF3COO)2. Carbohydr Res 2012; 359:111-9. [DOI: 10.1016/j.carres.2012.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 11/30/2022]
|