1
|
Bhunia S, Ghatak A, Rana A, Dey A. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e -/4H + Oxygen Reduction Rates at Lower Overpotentials. J Am Chem Soc 2023; 145:3812-3825. [PMID: 36744304 DOI: 10.1021/jacs.2c13552] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron porphyrins with one or four tertiary amine groups in their second sphere are used to investigate the electrochemical O2 reduction reaction (ORR) in organic (homogeneous) and aqueous (heterogeneous) conditions. Both of these complexes show selective 4e-/4H+ reduction of oxygen to water at rates that are 2-3 orders of magnitude higher than those of iron tetraphenylporphyrin lacking these amines in the second sphere. In organic solvents, these amines get protonated, which leads to the lowering of overpotentials, and the rate of the ORR is enhanced almost 75,000 times relative to rates expected from the established scaling relationship for the ORR by iron porphyrins. In the aqueous medium, the same trend of higher ORR rates at a lower overpotential is observed. In situ resonance Raman data under heterogeneous aqueous conditions show that the presence of one amine group in the second sphere leads to a cleavage of the O-O bond in a FeIII-OOH intermediate as the rate-determining step (rds). The presence of four such amine groups enhances the rate of O-O bond cleavage such that this intermediate is no longer observed during the ORR; rather, the proton-coupled reduction of the FeIII-O2- intermediate with a H/D isotope effect of 10.6 is the rds. These data clearly demonstrate changes in the rds of the electrochemical ORR depending on the nature of second-sphere residues and explain their deviation from linear scaling relationships.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| |
Collapse
|
2
|
Abstract
Homogeneous electrocatalysis has been well studied over the past several decades for the conversion of small molecules to useful products for green energy applications or as chemical feedstocks. However, in order for these catalyst systems to be used in industrial applications, their activity and stability must be improved. In naturally occurring enzymes, redox equivalents (electrons, often in a concerted manner with protons) are delivered to enzyme active sites by small molecules known as redox mediators (RMs). Inspired by this, co-electrocatalytic systems with homogeneous catalysts and RMs have been developed for the conversion of alcohols, nitrogen, unsaturated organic substrates, oxygen, and carbon dioxide. In these systems, the RMs have been shown to both increase the activity of the catalyst and shift selectivity to more desired products by altering catalytic cycles and/or avoiding high-energy intermediates. However, the area is currently underdeveloped and requires additional fundamental advancements in order to become a more general strategy. Here, we summarize the recent examples of homogeneous co-electrocatalysis and discuss possible future directions for the field.
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
3
|
Chattopadhyay S, Samanta S, Sarkar A, Bhattacharya A, Patra S, Dey A. Silver nanostructure-modified graphite electrode for in-operando SERRS investigation of iron porphyrins during high-potential electrocatalysis. J Chem Phys 2023; 158:044201. [PMID: 36725507 DOI: 10.1063/5.0136333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In-operando spectroscopic observation of the intermediates formed during various electrocatalytic oxidation and reduction reactions is crucial to propose the mechanism of the corresponding reaction. Surface-enhanced resonance Raman spectroscopy coupled to rotating disk electrochemistry (SERRS-RDE), developed about a decade ago, proved to be an excellent spectroscopic tool to investigate the mechanism of heterogeneous oxygen reduction reaction (ORR) catalyzed by synthetic iron porphyrin complexes under steady-state conditions in water. The information about the formation of the intermediates accumulated during the course of the reaction at the electrode interface helped to develop better ORR catalysts with second sphere residues in the porphyrin rings. To date, the application of this SERRS-RDE setup is limited to ORR only because the thiol self-assembled monolayer (SAM)-modified Ag electrode, used as the working electrode in these experiments, suffers from stability issues at more cathodic and anodic potential, where H2O oxidation, CO2 reduction, and H+ reduction reactions occur. The current investigation shows the development of a second-generation SERRS-RDE setup consisting of an Ag nanostructure (AgNS)-modified graphite electrode as the working electrode. These electrodes show higher stability (compared to the conventional thiol SAM-modified Ag electrode) upon exposure to very high cathodic and anodic potential with a good signal-to-noise ratio in the Raman spectra. The behavior of this modified electrode toward ORR is found to be the same as the SAM-modified Ag electrode, and the same ORR intermediates are observed during electrochemical ORR. At higher cathodic potential, the signatures of Fe(0) porphyrin, an important intermediate in H+ and CO2 reduction reactions, was observed at the electrode-water interface.
Collapse
Affiliation(s)
- Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ankita Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Aishik Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Feng YC, Wang X, Yi ZY, Wang YQ, Yan HJ, Wang D. In-situ ECSTM investigation of H2O2 production in cobalt—porphyrin-catalyzed oxygen reduction reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Ghatak A, Samanta S, Nayek A, Mukherjee S, Dey SG, Dey A. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorg Chem 2022; 61:12931-12947. [PMID: 35939766 DOI: 10.1021/acs.inorgchem.2c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that control the rate and selectivity of 4e-/4H+ O2 reduction are important for efficient energy transformation as well as for understanding the terminal step of respiration in aerobic organisms. Inspired by the design of naturally occurring enzymes which are efficient catalysts for O2 and H2O2 reduction, several artificial systems have been generated where different second-sphere residues have been installed to enhance the rate and efficiency of the 4e-/4H+ O2 reduction. These include hydrogen-bonding residues like amines, carboxylates, ethers, amides, phenols, etc. In some cases, improvements in the catalysis were recorded, whereas in some cases improvements were marginal or nonexistent. In this work, we use an iron porphyrin complex with pendant 1,10-phenanthroline residues which show a pH-dependent variation of the rate of the electrochemical O2 reduction reaction (ORR) over 2 orders of magnitude. In-situ surface-enhanced resonance Raman spectroscopy reveals the presence of different intermediates at different pH's reflecting different rate-determining steps at different pH's. These data in conjunction with density functional theory calculations reveal that when the distal 1,10-phenanthroline is neutral it acts as a hydrogen-bond acceptor which stabilizes H2O (product) binding to the active FeII state and retards the reaction. However, when the 1,10-phenanthroline is protonated, it acts as a hydrogen-bond donor which enhances O2 reduction by stabilizing FeIII-O2.- and FeIII-OOH intermediates and activating the O-O bond for cleavage. On the basis of these data, general guidelines for controlling the different possible rate-determining steps in the complex multistep 4e-/4H+ ORR are developed and a bioinspired principle-based design of an efficient electrochemical ORR is presented.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
6
|
Arima H, Nakazono T, Wada T. Proton Relay Effects on Oxygen Reduction Reaction Catalyzed by Dinuclear Cobalt Polypyridyl Complexes with OH Groups on Bipyridine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroaki Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
7
|
Amanullah S, Saha P, Dey A. Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chem Commun (Camb) 2022; 58:5808-5828. [PMID: 35474535 DOI: 10.1039/d2cc00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes a diverse set of tetrapyrrole-based macrocycles (referred to as porphyrinoids) for catalyzing various biological processes. Investigation of the differences in electronic structure and reactivity in these reactions have revealed striking differences that lead to diverse reactivity from, apparently, similar looking active sites. Therefore, the role of the different heme cofactors as well as the distal superstructure in the proteins is important to understand. This article summarizes the role of a few synthetic metallo-porphyrinoids towards catalyzing several small molecule activation reactions, such as the ORR, NiRR, CO2RR, etc. The major focus of the article is to enlighten the synthetic routes to the well-decorated active-site mimic in a tailor-made fashion pursuing a retrosynthetic approach, learning from the biosynthesis of the cofactors. Techniques and the role of the second-sphere residues on the reaction rate, selectivity, etc. are incorporated emulating the basic amino acid residues fencing the active sites. These bioinspired mimics play an important role towards understanding the role of the prosthetic groups as well as the basic residues towards any reaction occurring in Nature.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
8
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
9
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
10
|
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) to generate fixed forms of carbons that have commercial value is a lucrative avenue to ameliorate the growing concerns about the detrimental effect of CO2 emissions as well as to generate carbon-based feed chemicals, which are generally obtained from the petrochemical industry. The area of electrochemical CO2RR has seen substantial activity in the past decade, and several good catalysts have been reported. While the focus was initially on the rate and overpotential of electrocatalysis, it is gradually shifting toward the more chemically challenging issue of selectivity. CO2 can be partially reduced to produce several C1 products like CO, HCOOH, CH3OH, etc. before its complete 8e-/8H+ reduction to CH4. In addition to that, the low-valent electron-rich metal centers deployed to activate CO2, a Lewis acid, are prone to reduce protons, which are a substrate for CO2RR, leading to competing hydrogen evolution reaction (HER). Similarly, the low-valent metal is prone to oxidation by atmospheric O2 (i.e., it can catalyze the oxygen reduction reaction, ORR), necessitating strictly anaerobic conditions for CO2RR. Not only is the requirement of O2-free reaction conditions impractical, but it also leads to the release of partially reduced O2 species such as O2-, H2O2, etc., which are reactive and result in oxidative degradation of the catalyst.In this Account, mechanistic investigations of CO2RR by detecting and, often, chemically trapping and characterizing reaction intermediates are used to understand the factors that determine the selectivity in CO2RR. The spectroscopic data obtained from different intermediates have been identified in different CO2RR catalysts to develop an electronic structure selectivity relationship that is deemed to be important for deciding the selectivity of 2e-/2H+ CO2RR. The roles played by the spin state, hydrogen bonding, and heterogenization in determining the rate and selectivity of CO2RR (producing only CO, only HCOOH, or only CH4) are discussed using examples of both iron porphyrin and non-heme bioinspired artificial mimics. In addition, strategies are demonstrated where the competition between CO2RR and HER as well as CO2RR and ORR could be skewed overwhelmingly in favor of CO2RR in both cases.
Collapse
Affiliation(s)
- Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
11
|
Hua Q, Madsen KE, Esposito AM, Chen X, Woods TJ, Haasch RT, Xiang S, Frenkel AI, Fister TT, Gewirth AA. Effect of Support on Oxygen Reduction Reaction Activity of Supported Iron Porphyrins. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qi Hua
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kenneth E. Madsen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Anne Marie Esposito
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xinyi Chen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Toby J. Woods
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Richard T. Haasch
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shuting Xiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Timothy T. Fister
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andrew A. Gewirth
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Singha A, Mittra K, Dey A. Synthetic heme dioxygen adducts: electronic structure and reactivity. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
14
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Proton reduction in the presence of oxygen by iron porphyrin enabled with 2nd sphere redox active ferrocenes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63761-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Smith PT, Benke BP, An L, Kim Y, Kim K, Chang CJ. A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem 2021. [DOI: 10.1002/celc.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Lun An
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
17
|
Williams CK, Lashgari A, Devi N, Ang M, Chaturvedi A, Dhungana P, Jiang JJ. Hydrodechlorination of Dichloromethane by a Metal-Free Triazole-Porphyrin Electrocatalyst: Demonstration of Main-Group Element Electrocatalysis*. Chemistry 2021; 27:6240-6246. [PMID: 33476410 DOI: 10.1002/chem.202005012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 01/17/2023]
Abstract
In this work, the electrocatalytic reduction of dichloromethane (CH2 Cl2 ) into hydrocarbons involving a main group element-based molecular triazole-porphyrin electrocatalyst H2PorT8 is reported. This catalyst converted CH2 Cl2 in acetonitrile to various hydrocarbons (methane, ethane, and ethylene) with a Faradaic efficiency of 70 % and current density of -13 mA cm-2 at a potential of -2.2 V vs. Fc/Fc+ using water as a proton source. The findings of this study and its mechanistic interpretations demonstrated that H2PorT8 was an efficient and stable catalyst for the hydrodechlorination of CH2 Cl2 and that main group catalysts could be potentially used for exploring new catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221-0172, United States
| | - Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221-0172, United States
| | - Nilakshi Devi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221-0172, United States
| | - Marcus Ang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221-0172, United States
| | - Ashwin Chaturvedi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221-0172, United States
| | - Pranita Dhungana
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221-0172, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221-0172, United States
| |
Collapse
|
18
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
19
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
20
|
Lashgari A, Williams CK, Glover JL, Wu Y, Chai J, Jiang JJ. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO 2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry 2020; 26:16774-16781. [PMID: 32701198 DOI: 10.1002/chem.202002813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/05/2022]
Abstract
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2 ) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of -6.2 mA cm-2 at -2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2 -catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jenna L Glover
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| |
Collapse
|
21
|
Ghatak A, Bhunia S, Dey A. Effect of Pendant Distal Residues on the Rate and Selectivity of Electrochemical Oxygen Reduction Reaction Catalyzed by Iron Porphyrin Complexes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sarmistha Bhunia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
22
|
Mukherjee S, Nayek A, Bhunia S, Dey SG, Dey A. A Single Iron Porphyrin Shows pH Dependent Switch between "Push" and "Pull" Effects in Electrochemical Oxygen Reduction. Inorg Chem 2020; 59:14564-14576. [PMID: 32970430 DOI: 10.1021/acs.inorgchem.0c02408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "push-pull" effects associated with heme enzymes manifest themselves through highly evolved distal amino acid environments and axial ligands to the heme. These conserved residues enhance their reactivities by orders of magnitude relative to small molecules that mimic the primary coordination. An instance of a mononuclear iron porphyrin with covalently attached pendent phenanthroline groups is reported which exhibit reactivity indicating a pH dependent "push" to "pull" transition in the same molecule. The pendant phenanthroline residues provide proton transfer pathways into the iron site, ensuring selective 4e-/4H+ reduction of O2 to water. The protonation of these residues at lower pH mimics the pull effect of peroxidases, and a coordination of an axial hydroxide ligand at high pH emulates the push effect of P450 monooxygenases. Both effects enhance the rate of O2 reduction by orders of magnitude over its value at neutral pH while maintaining exclusive selectivity for 4e-/4H+ oxygen reduction reaction.
Collapse
Affiliation(s)
- Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Sarmistha Bhunia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
23
|
Williams CK, Lashgari A, Tomb JA, Chai J, Jiang JJ. Atropisomeric Effects of Second Coordination Spheres on Electrocatalytic CO
2
Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Caroline K. Williams
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Amir Lashgari
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jenny A. Tomb
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jingchao Chai
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| |
Collapse
|
24
|
Williams CK, Lashgari A, Chai J, Jiang JJ. Enhanced Molecular CO 2 Electroreduction Enabled by a Flexible Hydrophilic Channel for Relay Proton Shuttling. CHEMSUSCHEM 2020; 13:3412-3417. [PMID: 32379922 DOI: 10.1002/cssc.202001037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The effects of primary and second coordination spheres on molecular electrocatalysis have been extensively studied, yet investigations of third functional spheres are rarely reported. Here, an electrocatalyst (ZnPEG8T) was developed with a hydrophilic channel as a third functional sphere that facilitates relay proton shuttling to the primary and second coordination spheres for enhanced catalytic CO2 reduction. Using foot-of-the-wave analysis, the ZnPEG8T catalyst displayed CO2 -to-CO activity (TOFmax ) thirty times greater than that of the benchmark catalyst without a third functional sphere. A kinetic isotopic effect (KIE) study, in conjunction with voltammetry and UV/Vis spectroscopy, uncovered that the rate-limiting step was not the protonation step of the metallocarboxylate intermediate, as observed in many other molecular CO2 reduction electrocatalysts, but rather the replenishment of protons in the proton-shuttling channel. Controlled-potential electrolysis using ZnPEG8T displayed a faradaic efficiency of 100 % for CO2 -to-CO conversion at -2.4 V vs. Fc/Fc+ . A Tafel plot was also generated for a comparison to other reported molecular catalysts. This report validates a strategy for incorporating higher functional spheres for enhanced catalytic efficiency in proton-coupled electron-transfer reactions.
Collapse
Affiliation(s)
- Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| |
Collapse
|
25
|
Pyrolysis of a flash nanoprecipitated tannic acid–metal@polymer assembly to create an electrochemically active metal@nanocarbon catalyst. Polym J 2020. [DOI: 10.1038/s41428-020-0305-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
27
|
Ghatak A, Bhakta S, Bhunia S, Dey A. Influence of the distal guanidine group on the rate and selectivity of O 2 reduction by iron porphyrin. Chem Sci 2019; 10:9692-9698. [PMID: 32055338 PMCID: PMC6993607 DOI: 10.1039/c9sc02711d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
The O2 reduction reaction (ORR) catalysed by iron porphyrins with covalently attached pendant guanidine groups is reported. The results show a clear enhancement in the rate and selectivity for the 4e-/4H+ ORR. In situ resonance Raman investigations show that the rate determining step (rds) is O2 binding to ferrous porphyrins in contrast to the case of mononuclear iron porphyrins and heme/Cu analogues where the O-O bond cleavage of a heme peroxide is the rds. The selectivity is further enhanced when an axial imidazole ligand is introduced. Thus, the combination of the axial imidazole ligand and pendant guanidine ligand, analogous to the active site of peroxidases, is determined to be very effective in enabling a facile and selective 4e-/4H+ ORR.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Snehadri Bhakta
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Sarmistha Bhunia
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Abhishek Dey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| |
Collapse
|
28
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Meng J, Lei H, Li X, Qi J, Zhang W, Cao R. Attaching Cobalt Corroles onto Carbon Nanotubes: Verification of Four-Electron Oxygen Reduction by Mononuclear Cobalt Complexes with Significantly Improved Efficiency. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00213] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
30
|
Mondal B, Sen P, Rana A, Saha D, Das P, Dey A. Reduction of CO2 to CO by an Iron Porphyrin Catalyst in the Presence of Oxygen. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00529] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biswajit Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Pritha Sen
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Atanu Rana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Dibyajyoti Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Purusottom Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
31
|
Bhakta S, Nayek A, Roy B, Dey A. Induction of Enzyme-like Peroxidase Activity in an Iron Porphyrin Complex Using Second Sphere Interactions. Inorg Chem 2019; 58:2954-2964. [DOI: 10.1021/acs.inorgchem.8b02707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Snehadri Bhakta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhijit Nayek
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Bijan Roy
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
32
|
Anxolabéhère-Mallart E, Bonin J, Fave C, Robert M. Small-molecule activation with iron porphyrins using electrons, photons and protons: some recent advances and future strategies. Dalton Trans 2019; 48:5869-5878. [DOI: 10.1039/c9dt00136k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Substituted tetraphenyl Fe porphyrins are versatile molecular catalysts for the activation of small molecules (such as O2, H+ or CO2), which could lead to renewable energy storage, the direct production of fuels or new catalytic relevant processes.
Collapse
Affiliation(s)
- Elodie Anxolabéhère-Mallart
- Université Paris Diderot
- Sorbonne Paris Cité
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- F-75205 Paris Cedex 13
| | - Julien Bonin
- Université Paris Diderot
- Sorbonne Paris Cité
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- F-75205 Paris Cedex 13
| | - Claire Fave
- Université Paris Diderot
- Sorbonne Paris Cité
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- F-75205 Paris Cedex 13
| | - Marc Robert
- Université Paris Diderot
- Sorbonne Paris Cité
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- F-75205 Paris Cedex 13
| |
Collapse
|
33
|
Sen P, Mondal B, Saha D, Rana A, Dey A. Role of 2 nd sphere H-bonding residues in tuning the kinetics of CO 2 reduction to CO by iron porphyrin complexes. Dalton Trans 2019; 48:5965-5977. [PMID: 30608094 DOI: 10.1039/c8dt03850c] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron porphyrins are potential catalysts for the electrocatalytic and photocatalytic reduction of CO2. It has been recently established that the reduction of CO2 by an iron porphyrin complex with a hydrogen bonding distal pocket involves at least two intermediates: a Fe(ii)-CO22- and a Fe(ii)-COOH species. A distal hydrogen bonding interaction was found to be key in determining the stability of these intermediates and affecting both the selectivity and rate of CO2 reduction. In this report, a series of iron porphyrins that vary only in the distal H-bonding network are further investigated and these exhibit turnover frequencies (TOFs) ranging from 1.0 s-1 to 103 s-1. The experimental TOFs correlate with the H-bonding ability of the distal superstructure of these iron porphyrin complexes and analysis suggests that H-bonding alone can tune the rate of CO2 reduction by as much as 1000 fold. DFT calculations provide a detailed insight into how the, apparently weak, 2nd sphere interactions lead to efficient CO2 activation for reduction. The ability to tune CO2 reduction rates by changing the H-bonding residue instead of the acid source is a convenient way to tune CO2 reduction electrocatalysis without compromising selectivity by introducing competitive hydrogen evolution reaction or formate generation.
Collapse
Affiliation(s)
- Pritha Sen
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal, India 700032.
| | | | | | | | | |
Collapse
|
34
|
Singha A, Mittra K, Dey A. Effect of hydrogen bonding on innocent and non-innocent axial ligands bound to iron porphyrins. Dalton Trans 2019; 48:7179-7186. [DOI: 10.1039/c8dt03852j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most known heme enzymes utilize hydrogen bonding interactions in their active sites to control electronic and geometric structures and the ensuing reactivity.
Collapse
Affiliation(s)
- Asmita Singha
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Kaustuv Mittra
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
35
|
Bhunia S, Rana A, Roy P, Martin DJ, Pegis ML, Roy B, Dey A. Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e -/4H + O 2 Reduction: Activation of O-O Bond by 2nd Sphere Hydrogen Bonding. J Am Chem Soc 2018; 140:9444-9457. [PMID: 29975839 DOI: 10.1021/jacs.8b02983] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facile and selective 4e-/4H+ electrochemical reduction of O2 to H2O in aqueous medium has been a sought-after goal for several decades. Elegant but synthetically demanding cytochrome c oxidase mimics have demonstrated selective 4e-/4H+ electrochemical O2 reduction to H2O is possible with rate constants as fast as 105 M-1 s-1 under heterogeneous conditions in aqueous media. Over the past few years, in situ mechanistic investigations on iron porphyrin complexes adsorbed on electrodes have revealed that the rate and selectivity of this multielectron and multiproton process is governed by the reactivity of a ferric hydroperoxide intermediate. The barrier of O-O bond cleavage determines the overall rate of O2 reduction and the site of protonation determines the selectivity. In this report, a series of mononuclear iron porphyrin complexes are rationally designed to achieve efficient O-O bond activation and site-selective proton transfer to effect facile and selective electrochemical reduction of O2 to water. Indeed, these crystallographically characterized complexes accomplish facile and selective reduction of O2 with rate constants >107 M-1 s-1 while retaining >95% selectivity when adsorbed on electrode surfaces (EPG) in water. These oxygen reduction reaction rate constants are 2 orders of magnitude faster than all known heme/Cu complexes and these complexes retain >90% selectivity even under rate determining electron transfer conditions that generally can only be achieved by installing additional redox active groups in the catalyst.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Atanu Rana
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Pronay Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Daniel J Martin
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Michael L Pegis
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bijan Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Abhishek Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| |
Collapse
|
36
|
Zahran ZN, Mohamed EA, Haleem AA, Naruta Y. Efficient Solar-Assisted O2
Reduction Using a Cofacial Iron Porphyrin Dimer Catalyst Integrated into a p-CuBi2
O4
Photocathode. Chemistry 2018; 24:10606-10611. [DOI: 10.1002/chem.201704143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zaki N. Zahran
- Center for Chemical Energy Conversion Research; Institute for Science and Technology Research; Chubu University; Kasugai 487-8501 Japan
- Faculty of Science; Tanta University; Tanta 31527 Egypt
| | - Eman A. Mohamed
- Center for Chemical Energy Conversion Research; Institute for Science and Technology Research; Chubu University; Kasugai 487-8501 Japan
| | - Ashraf Abdel Haleem
- Center for Chemical Energy Conversion Research; Institute for Science and Technology Research; Chubu University; Kasugai 487-8501 Japan
- Department of Engineering Mathematics and Physics; Faculty of Engineering; Fayoum University; Fayoum Egypt
| | - Yoshinori Naruta
- Center for Chemical Energy Conversion Research; Institute for Science and Technology Research; Chubu University; Kasugai 487-8501 Japan
- JST ACT-C, Kawaguchi; Saitama 332-0012 Japan
| |
Collapse
|
37
|
Functionalization of A3B-type porphyrin with Fe3O4 MNPs. Supramolecular assemblies, gas sensor and catalytic applications. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
|
39
|
Chatterjee S, Sengupta K, Mondal B, Dey S, Dey A. Factors Determining the Rate and Selectivity of 4e -/4H + Electrocatalytic Reduction of Dioxygen by Iron Porphyrin Complexes. Acc Chem Res 2017; 50:1744-1753. [PMID: 28686419 DOI: 10.1021/acs.accounts.7b00192] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactivity as well as selectivity are crucial in the activation and electrocatalytic reduction of molecular oxygen. Recent developments in the understanding of the mechanism of electrocatalytic O2 reduction by iron porphyrin complexes in situ using surface enhanced resonance Raman spectroscopy coupled to rotating disc electrochemistry (SERRS-RDE) in conjunction with H/D isotope effects on electrocatalytic current reveals that the rate of O2 reduction, ∼104 to 105 M-1 s-1 for simple iron porphyrins, is limited by the rate of O-O bond cleavage of an intermediate ferric peroxide species (FeIII-OOH). SERRS-RDE probes the system in operando when it is under steady state such that any intermediate species that has a greater rate of formation relative to its rate of decay, including the rate determining species, would accumulate and can be identified. This technique is particularly well suited to investigate iron porphyrin electrocatalysts as the intense symmetric ligand vibrations allow determination of the oxidation and spin states of the bound iron with high fidelity. The rate of O2 reduction could be tuned up by 3 orders of magnitude by incorporating residues in the catalyst design that can exert "push" or "pull" effects, that is, axial phenolate and thiolate ligands and distal arginine residues. Similarly the rate of O-O bond cleavage can be enhanced by several orders of magnitude upon incorporating a distal Cu site and installing the active site in a hydrophobic protein environment in synthetic models and biosynthetic protein scaffolds. The selectivity, however, is solely determined by the site of protonation of a ferric peroxide (FeIII-OOH) intermediate and can be governed by installing preorganized second sphere residues in the distal pocket. The 4e-/4H+ reduction of O2 entails protonation of the distal oxygen of the FeIII-OOH species, while 2e-/2H+ reduction requires the proximal oxygen to be protonated. Mechanistic investigations of CO2 reduction by iron porphyrins reveal that the rate-determining step is the C-O bond cleavage of a FeII-COOH species analogous to the O-O bond cleavage step of a FeIII-OOH species in O2 reduction. The selectivity, resulting in either CO or HCOOH, is determined by the site of protonation of this species. These similarities suggests that the chemical principles governing the rate and selectivity of reduction of small molecules like O2, CO2, NOx, and SOx may be quite similar in nature.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Mondal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subal Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
40
|
Mittra K, Singha A, Dey A. Mechanism of Reduction of Ferric Porphyrins by Sulfide: Identification of a Low Spin FeIII–SH Intermediate. Inorg Chem 2017; 56:3916-3925. [DOI: 10.1021/acs.inorgchem.6b02878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaustuv Mittra
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Asmita Singha
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
41
|
Rana A, Mondal B, Sen P, Dey S, Dey A. Activating Fe(I) Porphyrins for the Hydrogen Evolution Reaction Using Second-Sphere Proton Transfer Residues. Inorg Chem 2017; 56:1783-1793. [DOI: 10.1021/acs.inorgchem.6b01707] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Biswajit Mondal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Pritha Sen
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Subal Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
42
|
Anandhababu G, Abbas SC, Lv J, Ding K, Liu Q, Babu DD, Huang Y, Xie J, Wu M, Wang Y. Highly exposed Fe–N4active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Trans 2017; 46:1803-1810. [DOI: 10.1039/c6dt04705j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthesis of highly ORR active Porous 2D PFe–Pc electrocatalystviasimple solid-state chemical reaction without pyrolysis is reported.
Collapse
|
43
|
Zhang W, Lai W, Cao R. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chem Rev 2016; 117:3717-3797. [PMID: 28222601 DOI: 10.1021/acs.chemrev.6b00299] [Citation(s) in RCA: 698] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Wenzhen Lai
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China.,Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
44
|
Cai ZF, Wang X, Wang D, Wan LJ. Cobalt-Porphyrin-Catalyzed Oxygen Reduction Reaction: A Scanning Tunneling Microscopy Study. ChemElectroChem 2016. [DOI: 10.1002/celc.201600435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhen-Feng Cai
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (China); Beijing 100049 P.R. China
| | - Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (China); Beijing 100049 P.R. China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences; Beijing 100190 P.R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences; Beijing 100190 P.R. China
| |
Collapse
|
45
|
Hiroto S, Miyake Y, Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem Rev 2016; 117:2910-3043. [PMID: 27709907 DOI: 10.1021/acs.chemrev.6b00427] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review focuses on the postfunctionalization of porphyrins and related compounds through catalytic and stoichiometric organometallic methodologies. The employment of organometallic reactions has become common in porphyrin synthesis. Palladium-catalyzed cross-coupling reactions are now standard techniques for constructing carbon-carbon bonds in porphyrin synthesis. In addition, iridium- or palladium-catalyzed direct C-H functionalization of porphyrins is emerging as an efficient way to install various substituents onto porphyrins. Furthermore, the copper-mediated Huisgen cycloaddition reaction has become a frequent strategy to incorporate porphyrin units into functional molecules. The use of these organometallic techniques, along with the traditional porphyrin synthesis, now allows chemists to construct a wide range of highly elaborated and complex porphyrin architectures.
Collapse
Affiliation(s)
- Satoru Hiroto
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| |
Collapse
|
46
|
Sengupta K, Chatterjee S, Dey A. In Situ Mechanistic Investigation of O2 Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
47
|
Ohta T, Nagaraju P, Liu JG, Ogura T, Naruta Y. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study. J Biol Inorg Chem 2016; 21:745-55. [PMID: 27501847 DOI: 10.1007/s00775-016-1380-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a's of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born-Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe-O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O-O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.
Collapse
Affiliation(s)
- Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo, 679-5148, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Perumandla Nagaraju
- Institute of Science and Technology Research, Chubu University, Kasugai, Aichi, 487-8501, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan
| | - Jin-Gang Liu
- Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo, 679-5148, Japan
| | - Yoshinori Naruta
- Institute of Science and Technology Research, Chubu University, Kasugai, Aichi, 487-8501, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
48
|
Sengupta K, Chatterjee S, Dey A. Catalytic H2O2 Disproportionation and Electrocatalytic O2 Reduction by a Functional Mimic of Heme Catalase: Direct Observation of Compound 0 and Compound I in Situ. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02668] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
49
|
Mittra K, Sengupta K, Singha A, Bandyopadhyay S, Chatterjee S, Rana A, Samanta S, Dey A. Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding. J Inorg Biochem 2016; 155:82-91. [DOI: 10.1016/j.jinorgbio.2015.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/02/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022]
|
50
|
Ladomenou K, Nikolaou V, Charalambidis G, Coutsolelos AG. “Click”-reaction: An alternative tool for new architectures of porphyrin based derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|