1
|
Bi H, Chen Z, Guo L, Zhang Y, Zeng X, Xu L. Fabrication, modification and application of lipid nanotubes. Chem Phys Lipids 2022; 248:105242. [PMID: 36162593 DOI: 10.1016/j.chemphyslip.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
The potential application of high aspect-ratio nanomaterials motivates the development of the fabrication and modification of lipid nanotubes(LNTs). To date, diverse fabricate processes and elaborate template procedures have produced suitable tubular architectures with definite dimensions and complex structures for expected functions and applications. Herein, we comprehensively summarize the fabrication of LNTs in vitro and discuss the progress made on the micro/nanomaterials fabrication using LNTs as a template, as well as the functions and possible application of a wide range of LNTs as fundamental or derivative material. In addition, the characteristics, advantages, and disadvantages of different fabrication, modification methods, and development prospects of LNTs were briefly summarized.
Collapse
Affiliation(s)
- Hongmei Bi
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Zeqin Chen
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Liuchun Guo
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yingmei Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xinru Zeng
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Liuyi Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
2
|
Kameta N. Stimuli-Responsive Transformable Supramolecular Nanotubes. CHEM REC 2022; 22:e202200025. [PMID: 35244334 DOI: 10.1002/tcr.202200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Supramolecular nanotubes produced by self-assembly of organic molecules can have unique structural features such as a one-dimensional morphology with no branching, distinguishable inner and outer surfaces and membrane walls, or a structure that is hollow and has a high aspect ratio. Incorporation of functional groups that respond to external chemical or physical stimuli into the constituent organic molecules of supramolecular nanotubes allows us to drastically change the structure of the nanotubes by applying such stimuli. This ability affords an array of controllable approaches for the encapsulation, storage, and release of guest compounds, which is expected to be useful in the fields of physics, chemistry, biology, and medicine. In this article, I review the supramolecular nanotubes developed by our group that exhibit morphological transformations in response to pH, chemical reaction, light, temperature, or moisture.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
3
|
Kameta N, Kikkawa Y, Norikane Y. Photo-responsive hole formation in the monolayer membrane wall of a supramolecular nanotube for quick recovery of encapsulated protein. NANOSCALE ADVANCES 2022; 4:1979-1987. [PMID: 36133410 PMCID: PMC9419338 DOI: 10.1039/d2na00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 06/16/2023]
Abstract
Nanotubes with a single monolayer membrane wall comprised of a synthetic glycolipid and one of two synthetic azobenzene derivatives were assembled. X-ray diffraction, infrared, UV-visible, and circular dichroism spectroscopy clarified the embedding style of the azobenzene derivatives in the membrane wall, revealing that, depending on their different intermolecular hydrogen bond strengths, one azobenzene derivative was individually dispersed whereas the other formed a J-type aggregate. The non-aggregated derivative was insensitive to UV irradiation due to tight fixation by the surrounding glycolipid. In contrast, the aggregated derivative was sensitive to UV irradiation, which induced trans-to-cis isomerization of the derivative and disassembly of the J-type aggregate. Subsequent dissociation of the derivative into the bulk solution resulted in the formation of many nanometer-scale holes in the membrane wall. Although a model protein encapsulated within the nanotubes was slowly released over time from the two open ends of the nanotubes without UV irradiation, exposure to UV irradiation resulted in faster, preferential release of the protein through the holes in the membrane wall. The present findings are expected to facilitate the development not only of efficient means of recovering guest compounds stored within nanotubes but also the development of novel stimuli-responsive capsules in biological and medical fields.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan +81-29-861-4545 +81-29-861-4478
| | - Y Kikkawa
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Y Norikane
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
4
|
Ding W, Kameta N, Oyane A. Reactive Oxygen Species (ROS)-responsive Organic Nanotubes. CHEM LETT 2021. [DOI: 10.1246/cl.210413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
5
|
Functionalized organic nanotubes with highly tunable crosslinking site density for mechanical enhancement and pH-controlled drug release of nanocomposite hydrogels. Polym J 2021. [DOI: 10.1038/s41428-021-00556-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Kameta N. Stimuli-Responsive Supramolecular Nanotube Capsules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
7
|
In Vivo Pre-Instructed HSCs Robustly Execute Asymmetric Cell Divisions In Vitro. Int J Mol Sci 2020; 21:ijms21218225. [PMID: 33153113 PMCID: PMC7663432 DOI: 10.3390/ijms21218225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to "pre-instruct" HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs' exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.
Collapse
|
8
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
9
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
10
|
Ding W, Kameta N, Minamikawa H, Masuda M, Kogiso M. Preparation and Formation Process of Zn(II)-Coordinated Nanovesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14130-14138. [PMID: 29148794 DOI: 10.1021/acs.langmuir.7b03636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixing a glycylglycine lipid and zinc acetate has been reported to form novel supramolecular Zn(II)-coordinated nanovesicles in ethanol. In this study, we investigate in detail the formation of nanovesicles by using three lipids at different temperatures and discuss their formation process. The original lipids show extremely low solubilities and appear as plate structures in ethanol. Within a small window of lipid solubility, the formation of lipid-Zn(II) complexes occurs mainly on the solid surfaces of plate structures. Controlling of the lipid solubility by temperature affects the kinetics of complex formation and the subsequent transformation of the complexes into nanovesicles and nanotubes. An improved method of two-step control of temperature is developed for preparing all the three kinds of nanovesicles. We provide new insights into the formation process of nanovesicles based on several control experiments. A tetrahedral lipid-cobalt(II) complex similarly produces nanovesicles, whereas an octahedral complex gives sheet structures. Mixing of zinc acetate with a β-alanyl-β-alanine lipid can only give sheet structures, which lack a polyglycine II hydrogen-bond network and induce no morphological changes. We conclude that the formation of the lipid-Zn(II) complexes on solid plate structures, tetrahedral geometry, and polyglycine II hydrogen-bond network in the complexes shall work cooperatively for the formation of Zn(II)-coordinated nanovesicles.
Collapse
Affiliation(s)
- Wuxiao Ding
- Nanomaterials Research Institute and ‡Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute and ‡Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Minamikawa
- Nanomaterials Research Institute and ‡Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Nanomaterials Research Institute and ‡Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masaki Kogiso
- Nanomaterials Research Institute and ‡Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
11
|
Shimizu T, Kameta N, Ding W, Masuda M. Supramolecular Self-Assembly into Biofunctional Soft Nanotubes: From Bilayers to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12242-12264. [PMID: 27248715 DOI: 10.1021/acs.langmuir.6b01632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The inner and outer surfaces of bilayer-based lipid nanotubes can be hardly modified selectively by a favorite functional group. Monolayer-based nanotubes display a definitive difference in their inner and outer functionalities if bipolar wedge-shaped amphiphiles, so-called bolaamphiphiles, as a constituent of the monolayer membrane pack in a parallel fashion with a head-to-tail interface. To exclusively form unsymmetrical monolayer lipid membranes, we focus herein on the rational molecular design of bolaamphiphiles and a variety of self-assembly processes into tubular architectures. We first describe the importance of polymorph and polytype control and then discuss diverse methodologies utilizing a polymer template, multiple hydrogen bonds, binary and ternary coassembly, and two-step self-assembly. Novel biologically important functions of the obtained soft nanotubes, brought about only by completely unsymmetrical inner and outer surfaces, are discussed in terms of protein refolding, drug nanocarriers, lectin detection, a chiral inducer for achiral polymers, the tailored fabrication of polydopamine, and spontaneous nematic alignment.
Collapse
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
12
|
Liu N, Higashi K, Kikuchi J, Ando S, Kameta N, Ding W, Masuda M, Shimizu T, Ueda K, Yamamoto K, Moribe K. Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy. J Phys Chem B 2016; 120:4496-507. [DOI: 10.1021/acs.jpcb.6b00939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nan Liu
- Graduate School
of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School
of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junko Kikuchi
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Shigeru Ando
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | | | | | | | | | - Keisuke Ueda
- Graduate School
of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keiji Yamamoto
- Graduate School
of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School
of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
13
|
Losensky L, Goldenbogen B, Holland G, Laue M, Petran A, Liebscher J, Scheidt HA, Vogel A, Huster D, Klipp E, Arbuzova A. Micro- and nano-tubules built from loosely and tightly rolled up thin sheets. Phys Chem Chem Phys 2016; 18:1292-301. [PMID: 26659839 DOI: 10.1039/c5cp06084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubular structures built from amphiphilic molecules are of interest for nano-sensing, drug delivery, and structuring of oils. In this study, we characterized the tubules built in aqueous suspensions of a cholesteryl nucleoside conjugate, cholesterylaminouridine (CholAU) and phosphatidylcholines (PCs). In mixtures with unsaturated PCs having chain lengths comparable to the length of CholAU, two different types of tubular structures were observed; nano- and micro-tubules had average diameters in the ranges 50-300 nm and 2-3 μm, respectively. Using cryo scanning electron microscopy (cryo-SEM) we found that nano- and micro-tubules differed in their morphology: the nano-tubules were densely packed, whereas micro-tubules consisted of loosely rolled undulated lamellas. Atomic force microscopy (AFM) revealed that the nano-tubules were built from 4 to 5 nm thick CholAU-rich bilayers, which were in the crystalline state. Solid-state (2)H NMR spectroscopy also confirmed that about 25% of the total CholAU, being about the fraction of CholAU composing the tubules, formed the rigid crystalline phase. We found that CholAU/PC tubules can be functionalized by molecules inserted into lipid bilayers and fluorescently labeled PCs and lipophilic nucleic acids inserted spontaneously into the outer layer of the tubules. The tubular structures could be loaded and cross-linked, e.g. by DNA hybrids, and, therefore, are of interest for further development, e.g. as a depot scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Luisa Losensky
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| | - Björn Goldenbogen
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Gudrun Holland
- Robert Koch Institute, ZBS 4, Seestr. 10, 13353 Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, ZBS 4, Seestr. 10, 13353 Berlin, Germany
| | - Anca Petran
- National Institute of Research and Development for Isotopic and Molecular Technologies, Donat 67-103, RO-400293 Cluj-Napoca, Romania
| | - Jürgen Liebscher
- National Institute of Research and Development for Isotopic and Molecular Technologies, Donat 67-103, RO-400293 Cluj-Napoca, Romania
| | - Holger A Scheidt
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Anna Arbuzova
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
14
|
Kameta N, Masuda M, Shimizu T. Photoinduced morphological transformations of soft nanotubes. Chemistry 2015; 21:8832-9. [PMID: 25951299 DOI: 10.1002/chem.201500430] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 01/15/2023]
Abstract
In water, synthetic amphiphiles composed of a photoresponsive azobenzene moiety and an oligoglycine hydrogen-bonding moiety selectively self-assembled into nanotubes with solid bilayer membranes. The nanotubes underwent morphological transformations induced by photoisomerization of the azobenzene moiety within the membranes, and the nature of the transformation depended on the number of glycine residues in the oligoglycine moiety (i.e., on the strength of intermolecular hydrogen bonding). Upon UV-light irradiation of nanotubes prepared from amphiphiles with the diglycine residue, trans-to-cis isomerization induced a transformation from nanotubes (inner diameter (i.d.) 7 nm), several hundreds of nanometers to several tens of micrometers in length, to imperfect nanorings (i.d. 21-38 nm). The cis-to-trans isomerization induced by continuous visible-light irradiation resulted in the stacking of the imperfect nanorings to form nanotubes with an i.d. of 25 nm and an average length of 310 nm, which were never formed by a self-assembly process. Time-lapse fluorescence microscopy enabled us to visualize the transformation of nanotubes with an i.d. of 20 nm (self-assembled from amphiphiles with the monoglycine residue) to cylindrical nanofibers with an i.d. of 1 nm; shrinkage of the hollow cylinders started at the two open ends with simultaneous elongation in the direction of the long axis.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565 (Japan).
| | - Mitsutoshi Masuda
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565 (Japan)
| | - Toshimi Shimizu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565 (Japan)
| |
Collapse
|
15
|
Ding W, Minamikawa H, Kameta N, Shimizu T, Masuda M. Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. Int J Nanomedicine 2014; 9:5811-23. [PMID: 25540582 PMCID: PMC4270402 DOI: 10.2147/ijn.s75604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Application of organic nanotubes (ONTs) into drug nanocarriers ultimately requires validation in live animals. For improving the dispersibility in biological media and in vivo distribution, the outer surface of an ONT was functionalized with polyethylene glycol (PEG) via the coassembly of an ONT-forming lipid with 5-20 mol% of a PEG-tethered lipid analogue (PEG-lipid). Firstly, the effect of PEGylation on the psysicochemical properties of ONTs, such as morphology and dispersibility, was investigated. PEGylation of ONTs slightly reduced the average length and effectively prevented the aggregation in phosphate-buffered saline (PBS). The PEGylated ONTs even showed high thermal stability in aqueous dispersion at least up to 95°C. Secondly, differential scanning calorimetry and powder X-ray diffraction indicated that ~10 mol% of PEG-lipid was completely incorporated into the ONTs, while 20 mol% of PEG-lipid encountered a partial phase separation during coassembly. In the heating differential scanning calorimetry runs, the resultant PEGylated ONTs with 5 mol% PEG-lipid showed no sign of phase separation up to 180°C under lyophilized condition, while those with 10 mol% and 20 mol% PEG-lipid showed some phase separation of the PEG-lipid above 120°C. Finally, PEGylation significantly affected the tissue distribution and prolonged the persistence time in the blood in mice. Non-PEGylated ONTs was quickly cleared from the circulation after intravenous infusion and preferentially accumulated in the lung, while PEGylated ONTs was mainly trapped in the liver and could circulate in the blood up to 24 hours. This study provided valuable information of physicochemical properties and the in vivo distribution behavior of PEGylated ONTs for their potential application into drug nanocarriers.
Collapse
Affiliation(s)
- Wuxiao Ding
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hiroyuki Minamikawa
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Naohiro Kameta
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Toshimi Shimizu
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Mitsutoshi Masuda
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
16
|
Fahmi MZ, Chang JY. A facile strategy to enable nanoparticles for simultaneous phase transfer, folate receptor targeting, and cisplatin delivery. RSC Adv 2014. [DOI: 10.1039/c4ra11582a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
17
|
|
18
|
Moribe K, Makishima T, Higashi K, Liu N, Limwikrant W, Ding W, Masuda M, Shimizu T, Yamamoto K. Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution. Int J Pharm 2014; 469:190-6. [DOI: 10.1016/j.ijpharm.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 01/14/2023]
|
19
|
Kameta N. Soft nanotube hosts for capsulation and release of molecules, macromolecules, and nanomaterials. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0397-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Kameta N, Ishikawa K, Masuda M, Shimizu T. Control of self-assembled morphology and molecular packing of asymmetric glycolipids by association/dissociation with poly(thiopheneboronic acid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13291-8. [PMID: 24090115 DOI: 10.1021/la4028018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The molecular packing and self-assembled morphologies of asymmetric bolaamphiphiles, N-(2-aminoethyl)-N'-(β-d-glucopyranosyl)alkanediamide [1(n), n = 12, 14, 16, 17, 18, and 20], were precisely controlled by association/dissociation with poly(thiopheneboronic acid) (PTB). Differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy revealed that the starting film of 1(n) associated with 1 equiv of the boronic acid moiety of PTB, (Film-1(n)PTB), had antiparallel molecular packing of 1(n) moiety within the monolayer membranes. However, the molecular packing of the starting film that contained 0.5 equiv of the boronic acid moiety of PTB (Film-2eq1(n)PTB) was parallel. The dispersion of Film-1(n)PTB in water gave only nanotapes, whereas that of Film-2eq1(n)PTB in water selectively formed nanotubes, through a dissociation reaction of PTB based on the hydrolysis of the boronate esters in the complexes. The nanotapes and nanotubes memorized the antiparallel and parallel molecular packing of the starting films, respectively. Changes in the length of the oligomethylene spacer of 1(n) never affected the molecular packing or self-assembled morphologies. However, the inner diameters of the nanotubes increased irregularly in the range of 67.9-79.6 nm as the length of the oligomethylene spacer of 1(n) increased from n = 12 to n = 18.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanosystem Research Institute (NRI) and ‡Nanotube Research Center (NTRC), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | | | | | | |
Collapse
|
21
|
Kameta N, Lee SJ, Masuda M, Shimizu T. Biologically responsive, sustainable release from metallo-drug coordinated 1D nanostructures. J Mater Chem B 2013; 1:276-283. [PMID: 32260751 DOI: 10.1039/c2tb00101b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
A multistep self-assembly process produced one-dimensional nanostructures that consisted of a monolayer membrane functionalized with a ligand that acted as a coordination site for an anticancer Pt complex. Control of the mode of the networks of intermolecular hydrogen bonds within the monolayer membrane of the nanostructures completely determined the morphologies of the one-dimensional nanostructures to be nanotapes having widths of 20-40 nm and nanotubes having widths of 16 nm (8 nm inner diameter and 4 nm membrane thickness). Various spectroscopic measurements and microscopic observations revealed that the ligand in a nanotape was located on the surface, whereas the ligand in a nanotube was selectively located on the inner surface of the nanochannel. We calculated the stability constants of the nanotape and nanotube with an anticancer Pt complex to be 107.81 and 106.53, respectively. The nanotape and nanotube were able to not only stably coordinate the anticancer Pt complex in Milli-Q water but also release it in phosphate-buffered saline through a ligand exchange reaction. With respect to sustainable, slow release of the drug, the nanotube, which has a nanochannel to store the drug, was superior to the nanotape.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanotube Research Center (NTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | |
Collapse
|