1
|
Sahoo J, Panda J, Giri S, Sahoo G. Concept-Driven Chemoselective O/N-Derivatization of Prolinol: A Bee-Line Approach to Access Organocatalysts. J Org Chem 2023. [PMID: 37402179 DOI: 10.1021/acs.joc.3c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
An investigation into the sensitivity of reaction conditions to a highly utilized protocol has been reported, wherein the mono-Boc functionalization of prolinol could be controlled for the exclusive synthesis of either N-Boc, O-Boc, or oxazolidinone derivatives. Mechanistic investigation revealed that the elementary steps could possibly be controlled by (a) a requisite base to recognize the differently acidic sites (NH and OH) for the formation of the conjugate base, which reacts with the electrophile, and (b) the difference in nucleophilicity of the conjugate basic sites. Herein, a successful chemoselective functionalization of the nucleophilic sites of prolinol by employing a suitable base is reported. This has been achieved by exploiting the relative acidity difference of NH and OH along with the reversed nucleophilicity of the corresponding conjugate bases N- and O-. This protocol has also been used for the synthesis of several O-functionalized prolinol derived organocatalysts, few of which have been newly reported.
Collapse
Affiliation(s)
- Jigyansa Sahoo
- Organocatalysis and Synthesis Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Jeetendra Panda
- Organocatalysis and Synthesis Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Santanab Giri
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia 721657, West Bengal, India
| | - Gokarneswar Sahoo
- Organocatalysis and Synthesis Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| |
Collapse
|
2
|
Kurup HM, Kvach MV, Harjes S, Jameson GB, Harjes E, Filichev VV. Seven-membered ring nucleobases as inhibitors of human cytidine deaminase and APOBEC3A. Org Biomol Chem 2023; 21:5117-5128. [PMID: 37282621 PMCID: PMC10282898 DOI: 10.1039/d3ob00392b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
The APOBEC3 (APOBEC3A-H) enzyme family as a part of the human innate immune system deaminates cytosine to uracil in single-stranded DNA (ssDNA) and thereby prevents the spread of pathogenic genetic information. However, APOBEC3-induced mutagenesis promotes viral and cancer evolution, thus enabling the progression of diseases and development of drug resistance. Therefore, APOBEC3 inhibition offers a possibility to complement existing antiviral and anticancer therapies and prevent the emergence of drug resistance, thus making such therapies effective for longer periods of time. Here, we synthesised nucleosides containing seven-membered nucleobases based on azepinone and compared their inhibitory potential against human cytidine deaminase (hCDA) and APOBEC3A with previously described 2'-deoxyzebularine (dZ) and 5-fluoro-2'-deoxyzebularine (FdZ). The nanomolar inhibitor of wild-type APOBEC3A was obtained by the incorporation of 1,3,4,7-tetrahydro-2H-1,3-diazepin-2-one in the TTC loop of a DNA hairpin instead of the target 2'-deoxycytidine providing a Ki of 290 ± 40 nM, which is only slightly weaker than the Ki of the FdZ-containing inhibitor (117 ± 15 nM). A less potent but notably different inhibition of human cytidine deaminase (CDA) and engineered C-terminal domain of APOBEC3B was observed for 2'-deoxyribosides of the S and R isomers of hexahydro-5-hydroxy-azepin-2-one: the S-isomer was more active than the R-isomer. The S-isomer shows resemblance in the position of the OH-group observed recently for the hydrated dZ and FdZ in the crystal structures with APOBEC3G and APOBEC3A, respectively. This shows that 7-membered ring analogues of pyrimidine nucleosides can serve as a platform for further development of modified ssDNAs as powerful A3 inhibitors.
Collapse
Affiliation(s)
- Harikrishnan M Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Maksim V Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Geoffrey B Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
3
|
Siow A, Tasma Z, Walker CS, Brimble MA, Harris PWR. Synthesis and development of seven-membered constrained cyclic urea based PSMA inhibitors via RCM. NEW J CHEM 2022. [DOI: 10.1039/d2nj01016j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular ring-closing metathesis on an N,N-diallyl Glu-urea-Gly substrate affords 7-membered cyclic ureas as inhibitors of prostrate specific membrane antigen (PMSA).
Collapse
Affiliation(s)
- Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Paul. W. R. Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Total synthesis of both enantiomers of clavigerins B and C. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhang H, Tian P, Ma L, Zhou Y, Jiang C, Lin X, Xiao X. Remote Directed Isocyanation of Unactivated C(sp3)–H Bonds: Forging Seven-Membered Cyclic Ureas Enabled by Copper Catalysis. Org Lett 2020; 22:997-1002. [DOI: 10.1021/acs.orglett.9b04542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongwei Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, People’s Republic of China
| | - Peiyuan Tian
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, People’s Republic of China
| | - Lishuang Ma
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, People’s Republic of China
| | - Yulu Zhou
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, People’s Republic of China
| | - Cuiyu Jiang
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, People’s Republic of China
| | - Xufeng Lin
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, People’s Republic of China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
6
|
Fujii H, Shimada N, Ohtawa M, Karaki F, Koshizuka M, Hayashida K, Kamimura M, Makino K, Nagamitsu T, Nagase H. Deprotection of silyl ethers by using SO3H silica gel: Application to sugar, nucleoside, and alkaloid derivatives. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Fesenko AA, Grigoriev MS, Shutalev AD. Nucleophile-Mediated Ring Expansion of 5-Acyl-substituted 4-Mesyloxymethyl-1,2,3,4-tetrahydropyrimidin-2-ones in the Synthesis of 7-Membered Analogues of Biginelli Compounds and Related Heterocycles. J Org Chem 2017; 82:8085-8110. [PMID: 28681598 DOI: 10.1021/acs.joc.7b01348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general six-step approach to alkyl 2-oxo-2,3,6,7-tetrahydro-1H-1,3-diazepine-5-carboxylates and 5-acyl-2,3,6,7-tetrahydro-1H-1,3-diazepin-2-ones based on the nucleophile-mediated ring expansion reaction of 5-functionalized 4-mesyloxymethyl-1,2,3,4-tetrahydropyrimidin-2-ones has been developed. Synthesis of the latter involved nucleophilic substitution of tosyl group in readily available N-[(2-benzoyloxy-1-tosyl)ethyl]urea with sodium enolates of β-oxoesters or 1,3-diketones, followed by dehydration or heterocyclization-dehydration of resulting products, removal of benzoyl protection, and conversion of hydroxymethyl group into mesyloxymethyl group. Conformations of the obtained tetrahydro-1H-1,3-diazepin-2-ones in solid state and solutions were established using X-ray diffraction and NMR spectroscopy. A plausible mechanism of tetrahydropyrimidine ring expansion based on DFT calculation at B3LYP/6-31+G(d,p) level and NMR monitoring experiments was discussed. The ring contraction reaction of methoxy- or phenylthio-diazepinones under acidic conditions resulted in the corresponding 3-functionalized 1-carbamoyl-1H-pyrroles.
Collapse
Affiliation(s)
- Anastasia A Fesenko
- Department of Organic Chemistry, Moscow Technological University , 86 Vernadsky Ave., 119571 Moscow, Russian Federation
| | - Mikhail S Grigoriev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31 Leninsky Ave., 119071 Moscow, Russian Federation
| | - Anatoly D Shutalev
- Department of Organic Chemistry, Moscow Technological University , 86 Vernadsky Ave., 119571 Moscow, Russian Federation
| |
Collapse
|
8
|
McCreanor N, Stanton S, Bower JF. Capture-Collapse Heterocyclization: 1,3-Diazepanes by C-N Reductive Elimination from Rhodacyclopentanones. J Am Chem Soc 2016; 138:11465-8. [PMID: 27589060 PMCID: PMC5025829 DOI: 10.1021/jacs.6b07046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 02/06/2023]
Abstract
Rhodacyclopentanones derived from carbonylative C-C activation of cyclopropyl ureas can be "captured" by pendant nucleophiles prior to "collapse" to 1,3-diazepanes. The choice of N-substituent on the cyclopropane unit controls the oxidation level of the product, such that C4-C5 unsaturated or saturated systems can be accessed selectively.
Collapse
Affiliation(s)
| | | | - John F. Bower
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
9
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2012. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|