1
|
Koksaldi I, Park D, Atilla A, Kang H, Kim J, Seker UOS. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. ACS Synth Biol 2024; 13:1026-1037. [PMID: 38588603 PMCID: PMC11036506 DOI: 10.1021/acssynbio.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.
Collapse
Affiliation(s)
- Ilkay
Cisil Koksaldi
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Dongwon Park
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Abdurahman Atilla
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Hansol Kang
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Urartu Ozgur Safak Seker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Dissanayake M, Wu D, Wu HF. Synthesis of Fluorescent Titanium Nanoclusters at ambient temperature for highly sensitive and selective detection of Creatine Kinase MM in myocardial infarction. Colloids Surf B Biointerfaces 2022; 217:112594. [PMID: 35671572 DOI: 10.1016/j.colsurfb.2022.112594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
Abstract
Fluorescent-based biosensing in Photoluminescence nanomaterials has emerged as a new sensing platform commonly used for disease diagnosis. However, the synthesis of Titanium nanoclusters is highly challenging since Titanium is easily oxidized into TiO2 at ambient temperature. To overcome this problem, we used an acidic medium and simple and robust protocol to synthesize the Titanium nanoclusters of 3-4 nm diameter, which could report the first fluorescent Titanium nanoclusters. New approaches for the novel synthesis of TiNCs can be used for rapid sensing of myocardial infarction (cardiac arrest). In converting creatine to phosphocreatine, CK-MM activates the reaction to convert ATP to ADP, thereby releasing the phosphate groups. Titanium nanoclusters bind strongly to the phosphate group and then quench the Fluorescence. Thus, this phenomenon can be further applied for quantification approaches. The quenching of fluorescence intensity with CK-MM concentration is linear with R² = 0.9829. The current approach can be applied for CK-MM sensing for a wide concentration range (0.625 U/L - 10 U/L). The detection limit was 0.2513 ng/ml in aqueous medium and 0.3465 ng/ml in human serum with high sensitivity when compared with the previous reported methods. Also, this is the first fluorescent-based sensing method to detect CK- MM. The fluorescent TiNCs is a novel platform to be widely applied for the phosphopeptide and phosphoprotein analysis due to the strong and covalent bondings between Ti with P atoms in the near future in medicine, biomedicine, and biological fields.
Collapse
Affiliation(s)
- Manusha Dissanayake
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan, Republic of China
| | - Di Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan, Republic of China
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan, Republic of China; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan, Republic of China; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, Republic of China; International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, Republic of China.
| |
Collapse
|
4
|
Hu XY, Song Z, Yang ZW, Li JJ, Liu J, Wang HS. Cancer drug resistance related microRNAs: recent advances in detection methods. Analyst 2022; 147:2615-2632. [DOI: 10.1039/d2an00171c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MiRNAs are related to cancer drug resistance through various mechanisms. The advanced detection methods for the miRNAs are reviewed.
Collapse
Affiliation(s)
- Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Wei Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia-Jing Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Hong M, Sun H, Yang Q, Cheng S, Yu S, Fan S, Li C, Cui C, Tan W. A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Kasturi S, Eom Y, Torati SR, Kim C. Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Kalimuthu K, Cha BS, Kim S, Park KS. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104296] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Pallares RM, Thanh NTK, Su X. Sensing of circulating cancer biomarkers with metal nanoparticles. NANOSCALE 2019; 11:22152-22171. [PMID: 31555790 DOI: 10.1039/c9nr03040a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The analysis of circulating cancer biomarkers, including cell-free and circulating tumor DNA, circulating tumor cells, microRNA and exosomes, holds promise in revolutionizing cancer diagnosis and prognosis using body fluid analysis, also known as liquid biopsy. To enable clinical application of these biomarkers, new analytical tools capable of detecting them in very low concentrations in complex sample matrixes are needed. Metal nanoparticles have emerged as extraordinary analytical scaffolds because of their unique optoelectronic properties and ease of functionalization. Hence, multiple analytical techniques have been developed based on these nanoparticles and their plasmonic properties. The aim of this review is to summarize and discuss the present development on the use of metal nanoparticles for the analysis of circulating cancer biomarkers. We examine how metal nanoparticles can be used as (1) analytical transducers in various sensing principles, such as aggregation induced colorimetric assays, plasmon resonance energy transfer, surface enhanced Raman spectroscopy, and refractive index sensing, and (2) signal amplification elements in surface plasmon resonance spectroscopy and electrochemical detection. We critically discuss the clinical relevance of each category of circulating biomarkers, followed by a thorough analysis of how these nanoparticle-based designs have overcome some of the main challenges that gold standard analytical techniques currently face, and what new directions the field may take in the future.
Collapse
Affiliation(s)
- Roger M Pallares
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
9
|
Wang G, Yu M, Wang G. A versatile dynamic light scattering strategy for the sensitive detection of microRNAs based on plasmonic core-satellites nanoassembly coupled with strand displacement reaction. Biosens Bioelectron 2019; 138:111319. [PMID: 31108381 DOI: 10.1016/j.bios.2019.111319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/28/2023]
Abstract
A low-cost, effective and enzyme-free sensing strategy for ultrasensitive microRNA (miRNA) detection was developed based on dynamic light scattering (DLS) coupled with strand displacement reaction (SDR). The combination of DLS and SDR was used to assess the size changes of core-satellites nanoassembly. This strategy realized the limit of detection (LOD) as low as 0.24 pM (S/N = 3) and the detection range of 5 pM-150 pM, which might urge this strategy as an ideal candidate for the sensitive detection of miRNA in the future. In addition, the proposed strategy could be successfully used to analyze target miRNA in various cancer cells, indicating that the developed SDR-DLS strategy has promising clinical implications for rapid and early diagnosis of cancer-related diseases.
Collapse
Affiliation(s)
- Ganglin Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Guoping Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China.
| |
Collapse
|
10
|
Moros M, Kyriazi ME, El-Sagheer AH, Brown T, Tortiglione C, Kanaras AG. DNA-Coated Gold Nanoparticles for the Detection of mRNA in Live Hydra Vulgaris Animals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13905-13911. [PMID: 30525369 DOI: 10.1021/acsami.8b17846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in nanoparticle design have led to the development of nanoparticulate systems that can sense intracellular molecules, alter cellular processes, and release drugs to specific targets in vitro. In this work, we demonstrate that oligonucleotide-coated gold nanoparticles are suitable for the detection of mRNA in live Hydra vulgaris, a model organism, without affecting the animal's integrity. We specifically focus on the detection of Hymyc1 mRNA, which is responsible for the regulation of the balance between stem cell self-renewal and differentiation. Myc deregulation is found in more than half of human cancers, thus the ability to detect in vivo related mRNAs through innovative fluorescent systems is of outmost interest.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | |
Collapse
|
11
|
Ding W, Song C, Li T, Ma H, Yao Y, Yao C. TiO 2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 2019; 199:442-448. [PMID: 30952281 DOI: 10.1016/j.talanta.2019.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 11/28/2022]
Abstract
Numerous nanomaterials have been utilized for novel biosensors with sensitivity and selectivity in the last decades due to their intrinsic unique properties. Herein, a facile fluorescence method for nucleic acid detection was developed by employing TiO2 nanowires (NWs) as the sensing platform. The quenching effect of TiO2 NWs to fluorophore-labelled single-stranded DNA (ssDNA) was found to be more significant than that to fluorophore-labelled double-stranded DNA (dsDNA) or triplex DNA probes. More importantly, the whole quenching process was also fast since it just took about ten minutes to reach the equilibrium. Based on the different affinities of TiO2 NWs to ssDNA, dsDNA and triplex DNA probes, the sequence-specific nucleic acids were detected with sensitivity and specificity. Further investigation has demonstrated that the quenching efficiency of TiO2 NWs to long ssDNA was apparently superior than that to short ssDNA. Moreover, the fluorescence from various ssDNA probes labelled with a wide spectrum of fluorescent dyes could also be quenched by TiO2 NWs. These inspiring results reveal that TiO2 NWs could be an excellent universal nanoquencher used in the next-generation biosensors.
Collapse
Affiliation(s)
- Wei Ding
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chan Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Tianle Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haoran Ma
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuewei Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
SAKONO N, NAKAMURA K, OHSHIMA T, HAYAKAWA R, SAKONO M. Tyrosinase-mediated Peptide Conjugation with Chitosan-coated Gold Nanoparticles. ANAL SCI 2019; 35:79-83. [DOI: 10.2116/analsci.18sdp03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Naomi SAKONO
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College
| | - Kosuke NAKAMURA
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College
| | - Tatsuki OHSHIMA
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Ryoto HAYAKAWA
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Masafumi SAKONO
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| |
Collapse
|
13
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
14
|
Zhai LY, Li MX, Pan WL, Chen Y, Li MM, Pang JX, Zheng L, Chen JX, Duan WJ. In Situ Detection of Plasma Exosomal MicroRNA-1246 for Breast Cancer Diagnostics by a Au Nanoflare Probe. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39478-39486. [PMID: 30350935 DOI: 10.1021/acsami.8b12725] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Breast cancer is the second cause of cancer mortality in women globally. Early detection, treatment, and metastasis monitoring are of great importance to favorable prognosis. Although conventional diagnostic methods, such as breast X-ray mammography and image positioning biopsy, are accurate, they could cause radioactive or invasive damage to patients. Liquid biopsy as a noninvasive method is convenient for repeated sampling in clinical cancer prognostic, metastatic evaluation, and relapse monitoring. MicroRNAs encased in exosomes circulating in biofluids are promising candidate cancer biomarkers because of their cancer-specific expression profiles. Here, we report an in situ detection of microRNA-1246 (miR-1246) in human plasma exosomes as breast cancer biomarker by a nucleic acid functionalized Au nanoflare probe. Needing neither time-consuming and costly isolation of exosomes from the plasma sample nor transfection means, the Au nanoflare probe can directly enter the plasma exosomes to generate fluorescent signal quantitatively by specifically targeting miR-1246. Only 40 μL of plasma is needed to incubate 4 h with the probe, giving signal sensitive enough to distinguish samples of breast cancer to normal control. Using plasma miR-1246 level detected by our assay as a marker, we differentiated 46 breast cancer patients from 28 healthy controls with 100% sensitivity and 92.9% specificity at the best cutoff. This simple, accurate, sensitive, and cost-effective liquid biopsy by the Au nanoflare probe is potent to be developed as a noninvasive breast cancer diagnostic assay for clinical adaption.
Collapse
Affiliation(s)
| | | | | | | | - Min-Min Li
- Center of Clinical Laboratory , The First Affiliated Hospital of Jinan University , Guangzhou 510630 , People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Verma VK, Tapadia K, Maharana T, Sharma A. Convenient and ultra-sensitive fluorescence detection of bovine serum albumin by using Rhodamine-6G modified gold nanoparticles in biological samples. LUMINESCENCE 2018; 33:1408-1414. [DOI: 10.1002/bio.3563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Vikas Kumar Verma
- Department of Chemistry; National Institute of Technology; Raipur CG India
| | - Kavita Tapadia
- Department of Chemistry; National Institute of Technology; Raipur CG India
| | | | - Ashima Sharma
- Department of Chemistry; National Institute of Technology; Raipur CG India
| |
Collapse
|
16
|
Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters. Anal Chem 2017; 90:1098-1103. [DOI: 10.1021/acs.analchem.7b01991] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangmin Miao
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhiyuan Cheng
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Haiyan Ma
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zongbing Li
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ning Xue
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
17
|
Chen L, Yang G, Wu P, Cai C. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores. Biosens Bioelectron 2017; 96:294-299. [DOI: 10.1016/j.bios.2017.05.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/26/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
18
|
Xia Y, Zhang R, Wang Z, Tian J, Chen X. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes. Chem Soc Rev 2017; 46:2824-2843. [PMID: 28345687 PMCID: PMC5472208 DOI: 10.1039/c6cs00675b] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | |
Collapse
|
19
|
Egatz-Gomez A, Wang C, Klacsmann F, Pan Z, Marczak S, Wang Y, Sun G, Senapati S, Chang HC. Future microfluidic and nanofluidic modular platforms for nucleic acid liquid biopsy in precision medicine. BIOMICROFLUIDICS 2016; 10:032902. [PMID: 27190565 PMCID: PMC4859827 DOI: 10.1063/1.4948525] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/20/2016] [Indexed: 05/05/2023]
Abstract
Nucleic acid biomarkers have enormous potential in non-invasive diagnostics and disease management. In medical research and in the near future in the clinics, there is a great demand for accurate miRNA, mRNA, and ctDNA identification and profiling. They may lead to screening of early stage cancer that is not detectable by tissue biopsy or imaging. Moreover, because their cost is low and they are non-invasive, they can become a regular screening test during annual checkups or allow a dynamic treatment program that adjusts its drug and dosage frequently. We briefly review a few existing viral and endogenous RNA assays that have been approved by the Federal Drug Administration. These tests are based on the main nucleic acid detection technologies, namely, quantitative reverse transcription polymerase chain reaction (PCR), microarrays, and next-generation sequencing. Several of the challenges that these three technologies still face regarding the quantitative measurement of a panel of nucleic acids are outlined. Finally, we review a cluster of microfluidic technologies from our group with potential for point-of-care nucleic acid quantification without nucleic acid amplification, designed to overcome specific limitations of current technologies. We suggest that integration of these technologies in a modular design can offer a low-cost, robust, and yet sensitive/selective platform for a variety of precision medicine applications.
Collapse
Affiliation(s)
- Ana Egatz-Gomez
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Ceming Wang
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Flora Klacsmann
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Zehao Pan
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Steve Marczak
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Yunshan Wang
- Electrical and Computer Engineering, University of Utah , Salt Lake City, Utah 84112, USA
| | - Gongchen Sun
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| |
Collapse
|
20
|
|
21
|
Chen L, Ye S, Cai K, Zhang C, Zhou G, He Z, Han H. An aqueous platinum nanotube based fluorescent immuno-assay for porcine reproductive and respiratory syndrome virus detection. Talanta 2015; 144:324-8. [DOI: 10.1016/j.talanta.2015.06.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/11/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
|
22
|
Affiliation(s)
- Wen Zhou
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xia Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Ratiometric biosensor array for multiplexed detection of microRNAs based on electrochemiluminescence coupled with cyclic voltammetry. Biosens Bioelectron 2015; 75:308-14. [PMID: 26332383 DOI: 10.1016/j.bios.2015.08.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022]
Abstract
A novel multiplexed ratiometric biosensor array was fabricated on a homemade screen-printed carbon electrode (SPCE) for near-simultaneous detection of microRNA (miRNA)-21 and miRNA-141 based on electrochemiluminescence (ECL) coupled with cyclic voltammetry (CV) method. In the detection system, the ECL signal tags (Ru-SiO2@PLL-Au) were fabricated using poly-l-lysine (PLL) as bridging agent and co-reactant to connect Ru-SiO2 (Ru(bpy)3(2+)-doped silica) and gold nanoparticles (Au NPs), which were respectively modified on two spatial resolved working electrodes (WE1 and WE2) of SPCE. Then the ferrocene (Fc)-labeled hairpin DNA (Fc-HDNA1 and Fc-HDNA2) as CV signal tags and ECL quenching material were immobilized on Ru-SiO2@PLL-Au. Upon miRNA-21 and miRNA-141 adding, the target miRNAs could hybridize with corresponding Fc-HDNA, which could lead to Fc away from Ru-SiO2@PLL-Au. Such conformational changes could recover the ECL of Ru-SiO2@PLL-Au and decreased the CV current of Fc, respectively. This "signal-on" of ECL and "signal-off" of CV were employed for dual-signal ratiometric readout. With the help of a multiplexed switch, two dual-signals from WE1 and WE2 were used for multiplexed detection of miRNA-21 and miRNA-141 down to 6.3 and 8.6fM, respectively. This approach was used in real sample analysis and has significant potential for miRNA biomarkers detection in a clinical laboratory setting.
Collapse
|
24
|
Kishikawa T, Otsuka M, Ohno M, Yoshikawa T, Takata A, Koike K. Circulating RNAs as new biomarkers for detecting pancreatic cancer. World J Gastroenterol 2015; 21:8527-8540. [PMID: 26229396 PMCID: PMC4515835 DOI: 10.3748/wjg.v21.i28.8527] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/29/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains difficult to treat and has a high mortality rate. It is difficult to diagnose early, mainly due to the lack of screening imaging modalities and specific biomarkers. Consequently, it is important to develop biomarkers that enable the detection of early stage tumors. Emerging evidence is accumulating that tumor cells release substantial amounts of RNA into the bloodstream that strongly resist RNases in the blood and are present at sufficient levels for quantitative analyses. These circulating RNAs are upregulated in the serum and plasma of cancer patients, including those with pancreatic cancer, compared with healthy controls. The majority of RNA biomarker studies have assessed circulating microRNAs (miRs), which are often tissue-specific. There are few reports of the tumor-specific upregulation of other types of small non-coding RNAs (ncRNAs), such as small nucleolar RNAs and Piwi-interacting RNAs. Long ncRNAs (lncRNAs), such as HOTAIR and MALAT1, in the serum/plasma of pancreatic cancer patients have also been reported as diagnostic and prognostic markers. Among tissue-derived RNAs, some miRs show increased expression even in pre-cancerous tissues, and their expression profiles may allow for the discrimination between a chronic inflammatory state and carcinoma. Additionally, some miRs and lncRNAs have been reported with significant alterations in expression according to disease progression, and they may thus represent potential candidate diagnostic or prognostic biomarkers that may be used to evaluate patients once detection methods in peripheral blood are well established. Furthermore, recent innovations in high-throughput sequencing techniques have enabled the discovery of unannotated tumor-associated ncRNAs and tumor-specific alternative splicing as novel and specific biomarkers of cancers. Although much work is required to clarify the release mechanism, origin of tumor-specific circulating RNAs, and selectivity of carrier complexes, and technical advances must also be achieved, such as creating a consensus normalization protocol for quantitative data analysis, circulating RNAs are largely unexplored and might represent novel clinical biomarkers.
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs of ~22 nucleotides that play important functions in the regulation of many biological processes, including cell proliferation, differentiation, and death. Since their expression has been in close association with the development of many diseases, recently, miRNAs have been regarded as clinically important biomarkers and drug discovery targets. However, because of the short length, high sequence similarity and low abundance of miRNAs in vivo, it is difficult to realize the sensitive and selective detection of miRNAs with conventional methods. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. In particular, fluorimetric methodologies in combination with nanotechnology are especially rapid, sensitive and efficient. The aim of this review is to provide insight into nanomaterials-based fluorimetric methods for the detection of miRNAs, including metal nanomaterials, quantum dots (QDs), graphene oxide (GO) and silicon nanoparticles.
Collapse
|
26
|
Kim H, Lee KY, Ryu SR, Jung KH, Ahn TK, Lee Y, Kwon OS, Park SJ, Parker KK, Shin K. Charge-selective membrane protein patterning with proteoliposomes. RSC Adv 2015. [DOI: 10.1039/c4ra12088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel method to fabricate transmembrane protein (TP) embedded lipid bilayers has been developed, resulting in an immobilized, but biologically functioning TP embedded lipid layer precisely in the targeted patterns.
Collapse
Affiliation(s)
- Heesuk Kim
- Institute of Biological Interfaces & Department of Chemistry
- Sogang University
- Seoul
- South Korea
| | - Keel Yong Lee
- Institute of Biological Interfaces & Department of Chemistry
- Sogang University
- Seoul
- South Korea
- Department of Energy Science
| | - Soo Ryeon Ryu
- Institute of Biological Interfaces & Department of Chemistry
- Sogang University
- Seoul
- South Korea
| | | | - Tae Kyu Ahn
- Department of Energy Science
- Sungkyunkwan University
- Suwon
- South Korea
| | - Yeonhee Lee
- Advanced Analysis Center
- Korea Institute of Science & Technology
- Seoul
- South Korea
| | - Oh-Sun Kwon
- Institute of Biological Interfaces & Department of Chemistry
- Sogang University
- Seoul
- South Korea
| | - Sung-Jin Park
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Kevin Kit Parker
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Kwanwoo Shin
- Institute of Biological Interfaces & Department of Chemistry
- Sogang University
- Seoul
- South Korea
| |
Collapse
|
27
|
Latorre A, Posch C, Garcimartín Y, Ortiz-Urda S, Somoza Á. Single-point mutation detection in RNA extracts using gold nanoparticles modified with hydrophobic molecular beacon-like structures. Chem Commun (Camb) 2014; 50:3018-20. [PMID: 24496380 DOI: 10.1039/c3cc47862a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles functionalized with oligonucleotides that bear a cholesterol group are used as gene sensors. The hydrophobic molecule is buried inside the nanostructure but when the complementary RNA sequence is present the structure unfolds exposing the cholesterol group to the water molecules. This rearrangement leads to the aggregation of the nanostructures.
Collapse
Affiliation(s)
- Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología" Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
28
|
Balcioglu M, Rana M, Robertson N, Yigit MV. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12100-12110. [PMID: 25014711 DOI: 10.1021/am503553h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be tuned with surface functionalized DNA molecules.
Collapse
Affiliation(s)
- Mustafa Balcioglu
- Department of Chemistry and RNA Institute, University at Albany , SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | | | | | | |
Collapse
|
29
|
Ma DL, Lin S, Leung KH, Zhong HJ, Liu LJ, Chan DSH, Bourdoncle A, Mergny JL, Wang HMD, Leung CH. An oligonucleotide-based label-free luminescent switch-on probe for RNA detection utilizing a G-quadruplex-selective iridium(III) complex. NANOSCALE 2014; 6:8489-8494. [PMID: 24816304 DOI: 10.1039/c4nr00541d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report herein the synthesis and application of a novel G-quadruplex-selective luminescent iridium(iii) complex for the construction of an oligonucleotide-based, label-free, rapid and convenient luminescent RNA detection platform.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Avvakumova S, Galbiati E, Pandolfi L, Mazzucchelli S, Cassani M, Gori A, Longhi R, Prosperi D. Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjug Chem 2014; 25:1381-6. [DOI: 10.1021/bc500202b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Svetlana Avvakumova
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elisabetta Galbiati
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Pandolfi
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Serena Mazzucchelli
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Marco Cassani
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | - Davide Prosperi
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
31
|
Li J, Tan S, Kooger R, Zhang C, Zhang Y. MicroRNAs as novel biological targets for detection and regulation. Chem Soc Rev 2014; 43:506-17. [PMID: 24161958 DOI: 10.1039/c3cs60312a] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MicroRNAs are being considered as a novel type of bio-markers and potential therapeutic targets for various diseases. Diverse chemical tools are being developed for the detection or regulation of microRNAs with bio-medical implications. Chemical probes have been developed for use in combination with in situ signal amplification strategies to realize sensitive detection of microRNAs of low abundance. Regulation of microRNAs aberrantly expressed in tumours represents a new approach to cancer chemotherapy. Synthetic oligonucleotides including antisense oligonucleotides and microRNA mimics have been successfully delivered into cells or tissues to inhibit or enhance the function of specific endogenous microRNAs. Small-molecule modifiers of microRNAs that modify the expression or function of endogenous microRNAs are emerging not only as useful probes to explore microRNA-involved regulatory networks, but also as potential therapeutic reagents. In this tutorial review, we discuss the strategies developed by chemists in recent years for microRNA detection and regulation, with a focus on the potential of these chemical tools in microRNA-related biomedical applications.
Collapse
Affiliation(s)
- Jinbo Li
- School of Chemistry and Chemical Engineering, State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, P. R. China.
| | | | | | | | | |
Collapse
|
32
|
Latorre A, Posch C, Garcimartín Y, Celli A, Sanlorenzo M, Vujic I, Ma J, Zekhtser M, Rappersberger K, Ortiz-Urda S, Somoza Á. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. NANOSCALE 2014; 6:7436-7442. [PMID: 24882040 DOI: 10.1039/c4nr00019f] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.
Collapse
Affiliation(s)
- Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia, CNB-CSIC-IMDEA Nanociencia Associated Unit, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Degliangeli F, Pompa PP, Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry 2014; 20:9476-92. [PMID: 24989446 DOI: 10.1002/chem.201402649] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression, and many pathological conditions, including cancer, are characterized by altered miRNA expression levels. Therefore, accurate and sensitive quantification of miRNAs may result in correct disease diagnosis establishing these small noncoding RNA transcripts as valuable biomarkers. Aiming at overcoming some limitations of conventional quantification strategies, nanotechnology is currently providing numerous significant alternatives to miRNA sensing. In this review an up-to-date account of nanotechnology-based strategies for miRNA detection and quantification is given. The topics covered are: nanoparticle-based approaches in solution, sensing based on nanostructured surfaces, combined nanoparticle/surface sensing approaches, and single-molecule approaches.
Collapse
Affiliation(s)
- Federica Degliangeli
- Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (Lecce) (Italy)
| | | | | |
Collapse
|
34
|
Liu H, Li L, Wang Q, Duan L, Tang B. Graphene Fluorescence Switch-Based Cooperative Amplification: A Sensitive and Accurate Method to Detection MicroRNA. Anal Chem 2014; 86:5487-93. [DOI: 10.1021/ac500752t] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haiyun Liu
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Qian Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Lili Duan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| |
Collapse
|
35
|
Rodriguez-Lorenzo L, Fytianos K, Blank F, von Garnier C, Rothen-Rutishauser B, Petri-Fink A. Fluorescence-encoded gold nanoparticles: library design and modulation of cellular uptake into dendritic cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1341-1350. [PMID: 24482355 DOI: 10.1002/smll.201302889] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/07/2013] [Indexed: 06/03/2023]
Abstract
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.
Collapse
Affiliation(s)
- Laura Rodriguez-Lorenzo
- Adolphe Merkle Institute, University of Fribourg, Route de l'Ancienne Papeterie, P.O. Box 209, Marly 1723, (Switzerland)
| | | | | | | | | | | |
Collapse
|
36
|
Liu W, Zhou X, Xing D. Rapid and reliable microRNA detection by stacking hybridization on electrochemiluminescent chip system. Biosens Bioelectron 2014; 58:388-94. [PMID: 24705177 DOI: 10.1016/j.bios.2014.02.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023]
Abstract
MicroRNAs play pivotal roles in many fundamental aspects of life. Because microRNAs have the characteristics of small size, similar sequence, and low abundance, it is challenging to identify microRNAs rapidly and specifically with high sensitivity. Herein, we developed an electrochemiluminescent (ECL) chip system for microRNA detection based on base-stacking hybridization and magnetic microparticle enrichment technology. In the designed system, the integration of the microfluidic system with ECL detection made it easy to assemble the multiple assay steps and allowed the construction of a device that is convenient to carry. A limit of detection of 1fmol was achieved with this assay. The proposed direct optical microRNA detection technique demonstrated an acceptable sensitivity combined with the advantages of reliability and rapidity.
Collapse
Affiliation(s)
- Weipeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
37
|
Wang S, Fu B, Wang J, Long Y, Zhang X, Peng S, Guo P, Tian T, Zhou X. Novel Amplex Red Oxidases Based on Noncanonical DNA Structures: Property Studies and Applications in MicroRNA Detection. Anal Chem 2014; 86:2925-30. [DOI: 10.1021/ac402535a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shaoru Wang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Boshi Fu
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Jiaqi Wang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Yuelin Long
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Xiaoe Zhang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Shuang Peng
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Pu Guo
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Tian Tian
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Xiang Zhou
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
38
|
Abstract
BACKGROUND The recent revolutionary advances made in genome-wide sequencing technology have transformed biology and molecular diagnostics, allowing new sRNA (small RNA) classes to be discovered as potential disease-specific biological indicators. Cell-free microRNAs (miRNAs) have been shown to exist stably in a wide spectrum of body fluids and their expression profiles have been shown to reflect an assortment of physiological conditions, underscoring the utility of this new class of molecules to function as noninvasive biomarkers of disease. CONTENT We summarize information on the known mechanisms of miRNA protection and release into extracellular space and compile the current literature on extracellular miRNAs that have been investigated as biomarkers of 20 different cancers, 11 organ damage conditions and 10 diverse disease states. We also discuss the various strategies involved in the miRNA biomarker discovery workflow and provide a critical opinion on the impediments faced by this advancing field that need to be overcome in the laboratory. SUMMARY The field of miRNA-centered diagnostics is still in its infancy, and basic questions with regard to the exact role of miRNAs in the pathophysiology of diseases, and the mechanisms of their release from affected cells into biological fluids are yet to be completely understood. Nevertheless, these noninvasive micromarkers have immense potential in translational medicine not only for use in monitoring the efficacy and safety of therapeutic regimens but also to guide the diagnosis of diseases, to determine the risk of developing diseases or conditions, and more importantly, to inform treatment options.
Collapse
Affiliation(s)
- Janani Saikumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Krithika Ramachandran
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Environmental Health, Harvard School of Public Health, Boston, MA.
| |
Collapse
|
39
|
Wu P, Tu Y, Qian Y, Zhang H, Cai C. DNA strand-displacement-induced fluorescence enhancement for highly sensitive and selective assay of multiple microRNA in cancer cells. Chem Commun (Camb) 2014; 50:1012-4. [DOI: 10.1039/c3cc46773b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
|
41
|
Liu S, Yan Y, Wang Y, Senapati S, Chang HC. Plasmonic hotspots of dynamically assembled nanoparticles in nanocapillaries: Towards a micro ribonucleic acid profiling platform. BIOMICROFLUIDICS 2013; 7:61102. [PMID: 24396534 PMCID: PMC3869822 DOI: 10.1063/1.4832095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/05/2013] [Indexed: 05/05/2023]
Abstract
Plasmonic hot spots, generated by controlled 20-nm Au nanoparticle (NP) assembly, are shown to suppress fluorescent quenching effects of metal NPs, such that hair-pin FRET (Fluorescence resonance energy transfer) probes can achieve label-free ultra-sensitive quantification. The micron-sized assembly is a result of intense induced NP dipoles by focused electric fields through conic nanocapillaries. The efficient NP aggregate antenna and the voltage-tunable NP spacing for optimizing hot spot intensity endow ultra-sensitivity and large dynamic range (fM to pM). The large shear forces during assembly allow high selectivity (2-mismatch discrimination) and rapid detection (15 min) for a DNA mimic of microRNA.
Collapse
Affiliation(s)
- Shoupeng Liu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yu Yan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yunshan Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
42
|
Heuer-Jungemann A, Harimech PK, Brown T, Kanaras AG. Gold nanoparticles and fluorescently-labelled DNA as a platform for biological sensing. NANOSCALE 2013; 5:9503-9510. [PMID: 23982570 DOI: 10.1039/c3nr03707j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past decade gold nanoparticle-nucleic acid conjugates became progressively important for biomedical applications. Fluorophores attached to nucleic acid-gold nanoparticle conjugates have opened up a new era of biological sensing. The most promising advancement in this field was the invention of the so-called 'nano-flare' systems. These systems are capable of detecting specific endocellular targets such as mRNAs, microRNAs or small molecules in real time. In this minireview, we discuss the current progress in the field of DNA-nanoparticles as sensors, their properties, stability, cellular uptake and cytotoxicity.
Collapse
Affiliation(s)
- Amelie Heuer-Jungemann
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | | | | |
Collapse
|
43
|
Liu H, Li L, Duan L, Wang X, Xie Y, Tong L, Wang Q, Tang B. High Specific and Ultrasensitive Isothermal Detection of MicroRNA by Padlock Probe-Based Exponential Rolling Circle Amplification. Anal Chem 2013; 85:7941-7. [DOI: 10.1021/ac401715k] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haiyun Liu
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| | - Lili Duan
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| | - Yanxia Xie
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| | - Qian Wang
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials
Science, Engineering Research Center of Pesticide and Medicine Intermediate
Clean Production, Ministry of Education, Key Laboratory of Molecular
and Nano Probes, Ministry of Education, Shandong Normal University,
Jinan, 250014, China
| |
Collapse
|
44
|
Marín MJ, Galindo F, Thomas P, Wileman T, Russell DA. A photoinduced electron transfer-based nanoprobe as a marker of acidic organelles in mammalian cells. Anal Bioanal Chem 2013; 405:6197-207. [DOI: 10.1007/s00216-013-6905-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 01/08/2023]
|
45
|
Tu Y, Li W, Wu P, Zhang H, Cai C. Fluorescence Quenching of Graphene Oxide Integrating with the Site-Specific Cleavage of the Endonuclease for Sensitive and Selective MicroRNA Detection. Anal Chem 2013; 85:2536-42. [DOI: 10.1021/ac303772m] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yunqiu Tu
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Wen Li
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Ping Wu
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Hui Zhang
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Chenxin Cai
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| |
Collapse
|