1
|
Yao Z, Buck M, Bühl M. Density Functional Theory Study of Pd Aggregation on a Pyridine-Terminated Self-Assembled Monolayer. Chemistry 2020; 26:10555-10563. [PMID: 32428284 PMCID: PMC7497155 DOI: 10.1002/chem.202001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/13/2020] [Indexed: 11/08/2022]
Abstract
By using density functional theory calculations, the initial steps towards Pd metal cluster formation on a pyridine-terminated self-assembled monolayer (SAM) consisting of 3-(4-(pyridine-4-yl)phenyl)propane-1-thiol on an Au(1 1 1) surface are investigated. Theoretical modelling allows the investigation of structural details of the SAM surface and the metal/SAM interface at the atomic level, which is essential for elucidating the nature of Pd-SAM and Pd-Pd interactions at the liquid/solid interface and gaining insight into the mechanism of metal nucleation in the initial stage of electrodeposition. The structural flexibility of SAM molecules was studied first and the most stable conformation was identified, planar molecules in a herringbone packing, as the model for Pd adsorption. Two binding sites are found for Pd atoms on the pyridine end group of the SAM. The strong interaction between Pd atoms and pyridines illustrates the importance of SAM functionalisation in the metal nucleation process. Consistent with an energetic driving force of approximately -0.3 eV per Pd atom towards Pd aggregation suggested by static calculations, a spontaneous Pd dimerisation is observed in ab initio molecular dynamic studies of the system. Nudged elastic band calculations suggest a potential route with a low energy barrier of 0.10 eV for the Pd atom diffusion and then dimerisation on top of the SAM layer.
Collapse
Affiliation(s)
- Zhen Yao
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Manfred Buck
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Michael Bühl
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
2
|
Castro-Latorre P, Miranda-Rojas S, Barrientos L, Mendizabal F. Catalytic activity of iron phthalocyanine for the oxidation of thiocyanate and L-cysteine anchored on Au(111) clusters. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1654607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pablo Castro-Latorre
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Lorena Barrientos
- Facultad de Química y de Farmacia, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago de Chile, Chile
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
| | - Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
She Z, Yao Z, Ménard H, Tobish S, Lahaye D, Champness NR, Buck M. Coordination controlled electrodeposition and patterning of layers of palladium/copper nanoparticles on top of a self-assembled monolayer. NANOSCALE 2019; 11:13773-13782. [PMID: 31305824 DOI: 10.1039/c9nr03927a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A scheme for the generation of bimetallic nanoparticles is presented which combines electrodeposition of one type of metal, coordinated to a self-assembled monolayer (SAM), with another metal deposited from the bulk electrolyte. In this way PdCu nanoparticles are generated by initial complexation of Pd2+ to a SAM of 3-(4-(pyridine-4-yl)phenyl)propane-1-thiol (PyP3) on Au/mica and subsequent reduction in an acidic aqueous CuSO4 electrolyte. Cyclic voltammetry reveals that the onset of Cu deposition is triggered by Pd reduction. Scanning tunneling microscopy (STM) shows that layers of connected particles are formed with an average thickness of less than 3 nm and lateral dimensions of particles in the range of 2 to 5 nm. In X-ray photoelectron spectra a range of binding energies for the Pd 3d signal is observed whereas the Cu 2p signal appears at a single binding energy, even though chemically different Cu species are present: normal and more noble Cu. Up to three components are seen in the N 1s signal, one originating from protonated pyridine moieties, the others reflecting the SAM-metal interaction. It is suggested that the coordination controlled electrodeposition yields layers of particles composed of a Pd core and a Cu shell with a transition region of a PdCu alloy. Deposited on top of the PyP3 SAM, the PdCu particles exhibit weak adhesion which is exploited for patterning by selective removal of particles employing scanning probe techniques. The potential for patterning down to the sub-10 nm scale is demonstrated. Harnessing the deposition contrast between native and PdCu loaded PyP3 SAMs, structures thus created can be developed into patterned continuous layers.
Collapse
Affiliation(s)
- Zhe She
- EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| | - Zhen Yao
- EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| | - Hervé Ménard
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Sven Tobish
- Drochaid Research Services, North Haugh, St. Andrews, KY16 9ST, UK
| | - Dorothée Lahaye
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Neil R Champness
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Manfred Buck
- EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| |
Collapse
|
4
|
Sensing electroadsorption reactions and surface mobility of electroadsorbed species by scanning electrochemical induced desorption. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Muglali MI, Bashir A, Birkner A, Rohwerder M. Hydrogen as an optimum reducing agent for metallization of self-assembled monolayers. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32111d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Muglali MI, Liu J, Bashir A, Borissov D, Xu M, Wang Y, Wöll C, Rohwerder M. On the complexation kinetics for metallization of organic layers: palladium onto a pyridine-terminated araliphatic thiol film. Phys Chem Chem Phys 2012; 14:4703-12. [DOI: 10.1039/c2cp40072c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|